20世纪物理学进展与百年重大新技术
- 格式:doc
- 大小:42.00 KB
- 文档页数:6
哪些重大发现推动了过去两百年的物理学研究?一、量子力学的诞生:颠覆了经典物理学的基础量子力学的提出是物理学史上的一次划时代的突破,它对经典物理学的观念进行了彻底颠覆。
19世纪末20世纪初,普朗克、爱因斯坦等科学家的工作逐步揭示了光的量子性质,进而促成了量子力学的诞生。
这一颠覆性的理论为后来的物理学研究奠定了基础,并对科技和工程的发展产生了深远影响。
1.1 爱因斯坦的光电效应:量子理论的先驱1905年,爱因斯坦通过对光电效应的研究,提出了光的粒子性解释,即光子的概念。
他的工作打破了光的波动理论的束缚,为量子力学的发展提供了充足的动力和支持。
通过光的粒子性和能量量子化的理论,爱因斯坦成功解释了光电效应中一系列反常现象,为后来量子力学的发展奠定了基础。
1.2 普朗克的能量量子化:开启了量子力学的大门1900年,普朗克提出了能量量子化的假设,即能量的辐射和吸收是以离散的量子形式进行的。
这一假设奠定了量子力学的基础,同时也为后来研究原子、分子等微观领域的物理现象提供了重要线索。
普朗克的理论为量子力学的崛起奠定了坚实的基础,引领了后来无数科学家对微观世界的深入探索。
二、相对论:揭示了时空的深度结构相对论是另一个对物理学研究产生深远影响的重大发现。
爱因斯坦于1905年提出了狭义相对论,1915年则推出了广义相对论,这两个理论共同揭示了时空的深度结构和引力的本质。
2.1 狭义相对论:重新定义了时空观念狭义相对论的核心概念是光速不变原理和等效原理。
爱因斯坦通过对光速不变性的假设,离开了以往牛顿的绝对时空观,提出了相对性的时空观念。
这一理论对时间、空间和质量等物理量的测量方法进行了重新定义,引领出了一系列新颖而又矛盾的结论,如时间的相对性和长度的收缩等。
2.2 广义相对论:揭开引力的本质广义相对论是爱因斯坦的又一突破性成果,它揭示了引力的本质和全新的空间时间观。
通过引入弯曲时空的概念,爱因斯坦成功解释了牛顿引力的微小偏差,给出了一套完整而美丽的引力理论。
物理学研究中的新进展与新技术物理学研究是指关于自然界的力、运动、能量、物质等规律的探究和研究。
自从人类诞生以来,物理学就一直是人类探索自然界的重要学科之一。
在不断地研究和实践中,物理学研究也在不断地更新和发展。
本文将介绍物理学研究中的新进展与新技术。
首先,“黑科技”在物理学的发展中扮演着越来越重要的角色。
在物理学研究中,经常需要使用到相对较复杂的仪器和设备,这些仪器和设备都属于黑科技的范畴。
比如在天文学中,望远镜是必不可少的仪器。
在相对论物理学中,需要使用到粒子加速器。
在核物理学中,束缚器和辐射源都是重要的仪器。
这些仪器的不断更新和完善,极大地推动了物理学科技的发展。
第二,“大数据”也是物理学发展中不可或缺的一环。
物理学研究涉及到的数据量非常庞大,从宏观物理学到微观物理学,都需要大量的数据作为基础。
这就需要物理学家掌握大数据处理、分析和挖掘技术。
如今,通过人工智能等技术的应用,可以更快速、更准确地处理、分析、挖掘数据,提高研究效率,取得更有意义的研究结果。
第三,量子计算在物理学研究中的应用也逐渐被重视。
在量子计算中,量子比特是一个非常关键的概念。
与传统计算机中的比特不同,量子比特既可以是0,也可以是1,还可以同时是0和1。
这样的运算方式比传统计算机效率更高,同时也具有更强的计算和加密能力。
许多物理学研究中的难题,通过量子计算可以得到更准确、更快速的解决。
第四,在机器学习、深度学习等领域,物理学家也发挥了重要作用。
物理学家在不断地探索和研究中,需要解决大量的数据分析和图像识别问题。
这些问题也是机器学习、深度学习等技术所关注的重点。
物理学家借助这些技术的应用,可以更好地处理数据和图像,并在研究中获得更加准确、更加有价值的结论。
总之,随着科技的发展,物理学的研究也在不断地更新和发展。
不管是黑科技、大数据、量子计算,还是机器学习、深度学习等技术,在物理学研究中都扮演着不可或缺的角色。
这些新技术的应用,有力地推动了物理学的发展。
物理学的新进展与重大发现物理学是自然科学领域中最基础的一门学科,它的发展是人类认知自然规律的重要标志。
在广阔的物理学领域中,每一项新成果和新发现都将推动人类认知世界的进程。
近年来,物理学领域出现了一系列重大的发现和新进展,其中一些无疑将打开一个新的研究方向,推动物理学的进一步发展。
一、引力波的探测引力波是爱因斯坦广义相对论的一个基本预测,它是由于物体在弯曲时所产生的空间扭曲而传播的扰动。
引力波的探测是一个极具挑战性的任务,因为引力波的幅度极小,与其他物理现象相比非常微弱。
但是,随着技术的提高,科学家们最终于2015年首次成功探测到了引力波。
这项重大进展表明了我们可以通过引力波探测来研究宇宙中不可见的物体,如黑洞、中子星等。
这将为我们更好地了解宇宙提供新的手段。
二、氢原子频率标准的研究氢原子是最简单的原子,也是量子物理学中最基本的实验对象之一。
近年来,科学家们利用氢原子频率标准的研究,在时钟和测量等领域取得了一系列突破。
通过对氢原子光谱线的精确测量,科学家们成功地将库仑常量的精度提高了4个数量级。
这项成果为研制更精确的原子钟以及提高现有的GPS导航技术水平打下了基础。
三、磁性拓扑的发现磁性拓扑是在一些材料中存在的一种特殊的磁性结构。
近年来,科学家们在孪晶磁性材料中首次观察到了磁性拓扑结构的存在,并成功解析了其拓扑性质。
这一发现有望在磁性存储器和量子计算等领域发挥应用,其基础研究也将推动材料学、凝聚态物理学等领域的发展。
四、太阳系外星系的发现太阳系是人类研究的重要对象之一,但是它仅占宇宙的微不足道一部分。
随着科学技术的不断发展,我们在太阳系外的行星和恒星周围发现了越来越多的星系。
人类首次在2003年在利用光晕天文镜头进行的一个大规模巡天中发现了100多个太阳系外的行星。
这些发现为人类研究外星系、探索宇宙源头提供了新的契机。
五、量子计算的突破量子计算是近年来物理学领域的热门话题之一,它利用量子力学中的特殊现象来进行信息存储和处理。
盘点19-20世纪之交的科学重大发现19-20世纪之交是物理学发展史上不平凡的时期,堪称物理学的黄金时代。
这一期间的物理学有许多新的发现,这些发现与经典理论存在着不可调和的矛盾,迫使人们冲破原有理论框架的束缚,从新的视觉探索理解物质世界,从而诞生了相对论和量子理论。
现在我们就来盘点一下这个时期的重大发现。
1. 1895年伦琴发现X射线2. 1896年贝克勒尔发现放射性3. 1896年塞曼发现磁致光谱线分裂4. 1897年汤姆生发现电子5. 1898年卢瑟福发现α射线6. 1898年居里夫妇发现放射性元素钋和镭7. 1899-1900年卢梅尔和鲁本斯等人发现热辐射能量分布曲线偏离维恩分布率8. 1900年维拉德Gamma射线9. 1901年考夫曼发现电子的质量随速度增加10. 1902年勒那德发现光电效应基本规律11. 1902年里查森发现热电子发射规律12. 1903年卢瑟福发现放射性元素的蜕变规律1.1895年伦琴发现X射线X射线的发现过程,是一个充满偶然性的故事。
1895年,德国物理学家威廉·康拉德·伦琴进行有关密封玻璃管里的发光现象的研究——在装有两个电极的真空玻璃管(雷钠管)的电极上实加高电压放电。
这项实验在当时并不是新鲜事,有很多人感兴趣研究,一加高电压,雷钠管内就会发光,但是对于为什么发光却一直是一个谜。
1895年11月8日下午,伦琴和夫人吃完了饭,回到实验室再次观察雷钠管的发光现象。
他从架子上拿了一只雷钠管,用黑色纸套把它严严实实地包了起来。
接着,他关上门窗,把房间弄黑,然后给管子接通高压电源,让管子放电,以便检查黑色纸套是否漏光。
正当他准备开始正式实验时,突然发现一种奇异的现象:附近的小工作台上有一块涂了氰亚铂酸钡的纸板发出了一片明亮的荧光。
切断电源,荧光随之消失。
伦琴发现这一现象后,又仔细观察了产生这种现象的原因。
他用10张黑纸包着玻璃管,氰亚铂酸钡纸板照样出现荧光;如果把厚铅板夹在里面隔开玻璃管和荧光纸板,亮光就突然消失了,当铅板一拿开,又重新发亮。
人类20世纪到21世纪的新发现和新发明一、新发现在20世纪和21世纪,人类取得了许多重要的新发现。
以下是其中几个具有代表性的新发现:1. DNA遗传编码20世纪50年代,科学家首次发现了DNA的双螺旋结构和遗传编码机制。
这一发现揭示了生命的基本单位和遗传信息的传递方式。
随后的几十年里,人们进一步研究了基因组的组成和功能,为遗传学和生物技术的发展奠定了基础。
2. 宇宙微波背景辐射20世纪60年代,科学家发现了宇宙微波背景辐射,这是宇宙大爆炸之后留下的辐射痕迹。
这一发现提供了宇宙演化的重要证据,并支持了宇宙大爆炸理论。
它也为宇宙学的研究提供了新的方向和方法。
3. 量子力学20世纪初,物理学家们提出了量子力学理论,揭示了微观粒子行为背后的规律。
量子力学不仅在理论物理学领域具有重要地位,还为现代科技的发展提供了基础,如半导体器件和量子计算机等。
4. 环境污染与气候变化20世纪后半叶,人们逐渐认识到环境污染对地球和人类的影响。
科学家们发现了温室气体的增加导致全球气候变暖,提出了全球变暖的概念。
这一发现引起了世界范围内的关注,并促使人们采取措施减少排放和保护环境。
二、新发明除了新发现,人类在20世纪和21世纪也取得了许多重要的新发明。
以下是其中几个具有代表性的新发明:1. 互联网20世纪60年代,互联网作为一个通信网络出现,但直到90年代才普及。
互联网的出现改变了人们的生活和工作方式,使信息的传递和获取更加便捷。
互联网也促进了电子商务、在线教育和社交媒体等行业的发展。
2. 移动通信20世纪80年代,第一代移动通信技术出现,人们可以通过手机进行无线通信。
随后的几十年里,移动通信技术不断发展,从2G到5G,使人们的通信更加便利和高效。
3. 基因编辑技术近年来,基因编辑技术CRISPR-Cas9的出现引起了科学界的广泛关注。
这一技术可以精确地修改生物体的基因组,具有巨大的潜力在医学和生物学领域发展新的治疗方法和基因工程技术。
20世纪物理学发展的现状和展望20世纪,物理学在众多领域得到了长足的发展,老的学科新芽满枝,新的学科蓬勃发展;并且开拓出广阔的应用领域。
下面就这几个分支:即统计物理学、低温物理学、生物物理、原子分子和光物理学、受控热核聚变、宇宙线物理学、引力物理学等领域的进展作一些综述和展望。
1、统计物理学的发展统计物理学的概念已有一百多年历史,它可以追溯到19与20世纪转折时期的玻尔兹曼,吉布斯以及许多其他现代物理学家的贡献。
统计物理学它把原子尺度(埃的尺度)的物理性质与宏观尺度的物理性质,以及所有有关的介观与宏观现象联系起来。
如果知道了原子之间的相互作用力,要计算所有感兴趣的宏观物理量,就需要处理涉及大数量的相互作用的问题。
倘若这一任务能够完成,我们不仅理解了热力学的原理,而且具备了应用于许多其他领域,如工程、材料科学以及物理化学等的理论基础。
我们知道,在基本粒子和原子尺度描述系统随时间演化的基本方程已是熟知的了。
在经典极限情况下,量子力学的运动方程还原为经典力学的牛顿方程,它们描述系统的态随时间的演化。
因此,很自然的是把宏观系统的任何可观察量看成是相应的微观量沿着相空间中系统的相轨道的时间平均。
根据统计力学的遍历性假设,时间平均可以代之以适当的统计系综的平均。
例如,完全与其环境隔绝的孤立系统的能量是守恒的,因此系统的相轨道必定落在相空间的能量超曲面上。
按照统计力学的微正则系综,在此能量超曲面上的所有区域是等几率的。
由此可以建立统计力学定义的摘,并由熵极大原理导出相应的可观察量的系综平均值。
当然,沿相轨道的时间平均与在能量超曲面上的系综平均的等价性,是高度非平庸的。
因为它意味着能量超曲面上的相轨道是充分的混饨,以致于它能在足够短的时间内充分接近超曲面上的任意点。
要使这些条件尽可能精确地实现,并认识到系统的哪些性质保证了遍历性假设得以满足,以及对少数几个相当特殊的反例,为什么遍历性假设不满足,这些都是长期以来具有挑战性的问题。
19—20世纪之交物理学的新发现和物理学革命§5.1 历史概述19世纪末,物理学已经有了相当的发展,几个主要部门——力学、热力学和分子运动论、电磁学以及光学,都已经建立了完整的理论体系,在应用上也取得了巨大成果。
这时物理学家普遍认为,物理学已经发展到顶,伟大的发现不会再有了,以后的任务无非是在细节上作些补充和修正,使常数测得更精确而已。
然而,正在这个时候,从实验上陆续出现了一系列重大发现,打破了沉闷的空气,把人们的注意力引向更深入、更广阔的天地,从而揭开了现代物理学革命的序幕。
从伦琴发现X射线的1895年开始,到1905年爱因斯坦发表三篇著名论文为止,在这10年左右世纪之交的年代里,具有重大意义的实验发现如下页表。
这一系列的发现集中在世纪之交的年代里不是偶然的,是生产和技术发展的必然产物。
特别是电力工业的发展,电气照明开始广泛应用,促使科学家研究气体放电和真空技术,才有可能发现阴极射线,从而导致了X射线和电子的发现,而X射线一旦发现,立即取得了广泛应用,又掀起了人们研究物理学的热潮。
所以,随着X射线的发现而迅速展开的这一场物理学革命,有其深刻的社会背景和历史渊源。
本章将分三个方面介绍与物理学革命关系最密切的一些实验发现。
§5.2 X射线和电子的发现X射线、放射性和电子是世纪之交的三大发现。
由于电子的发现直接与阴极射线的研究有关,我们先讲这件事。
放射性的发现打开了核物理学的大门,因此留到第十一章再讲。
5.2.1 电子的发现阴极射线是低压气体放电过程出现的一种奇特现象。
早在1858年就由德国物理学家普吕克尔(JuliusPlücker,1801—1868)在观察放电管中的放电现象时发现。
当时他看到正对阴极的管壁发出绿色的荧光。
1876年,另一位德国物理学家哥尔茨坦(Eügen Goldstein,1850—1930)认为这是从阴极发出的某种射线,并命名为阴极射线。
物理学中的新进展与技术发展一、引言物理学作为自然科学中的一门重要学科,长期以来一直在不断发展和进步。
随着科技的不断发展和人类对自然规律的认识不断加深,物理学也得到了长足的发展。
本文将介绍物理学中的一些新进展与技术发展。
二、粒子物理学的新进展1. 弦理论弦理论是近年来粒子物理学中的一项重要理论进展。
它试图解决量子场论中遇到的一些困难,如能量发散和重整化。
弦理论认为,一切物质和力场都由一维、几乎没有质量但可以振动的弦构成。
这一理论为理解宇宙的起源和宇宙中的基本粒子提供了新的思路。
2. 超对称性超对称性是一种理论,试图将费米子与玻色子统一起来。
它认为,每个已知的费米子都存在一个超对称的玻色子伴侣,每个已知的玻色子也有一个超对称的费米子伴侣。
超对称性的存在可以解释一些物理问题,如暗物质的性质和宇宙初态的选择。
三、量子物理学的新进展1. 量子计算机量子计算机是近年来量子物理学中的一个重要研究领域。
传统的计算机是基于二进制的,而量子计算机利用量子叠加和纠缠的性质,可以在同一时间进行多个计算。
这一技术的发展将极大地提高计算速度,对于解决一些复杂问题具有重要意义。
2. 量子通信量子通信是一种利用量子纠缠来实现安全通信的技术。
由于量子纠缠的非局域性和不可复制性,通过量子通信传输的信息可以实现绝对安全。
这一技术的发展将对信息传输和网络安全领域产生深远影响。
四、天体物理学的新进展1. 引力波探测引力波是由质量和能量分布引起的弯曲时空产生的波动。
近年来,科学家成功地探测到了引力波的存在,这一发现对于验证广义相对论等理论具有重要意义。
引力波探测也为我们研究黑洞、中子星等天体提供了新的手段。
2. 暗物质与暗能量暗物质和暗能量是天体物理学中一个重要的研究领域。
它们是一种不与电磁波相互作用的物质和能量,但对宇宙的演化产生了显著影响。
科学家通过观测星系旋转曲线和宇宙背景辐射等手段,成功地推测出暗物质和暗能量的存在。
五、材料科学的新进展1. 石墨烯石墨烯是由碳原子构成的二维晶格结构。
物理学的新技术与新进展在如今的时代,科学技术得到了飞速的发展,物理学作为一门基础学科,在科技进步中发挥着至关重要的作用。
随着时间的推移,物理学的研究方向也在不断地发展和改变,新技术和新进展正在推动着物理学的未来。
本文将介绍物理学的几个新技术和新进展。
一、量子计算机量子计算机被称为未来计算技术的重要里程碑。
相比于经典计算机,量子计算机通过量子比特的量子叠加、量子纠缠等特性,海量并行计算能力将会被大幅度提升。
物理学家已经在很多实验中验证了这一点,并取得了不俗的成果。
目前,谷歌的超越量子计算机是处理量子算法中的一个重要突破。
二、热量子力学热量子力学是热力学和量子力学的有机结合,它通过研究对量子态的热力学处理,使得物理学家可以更深入地理解宏观物质的相变行为。
这不仅提高了对凝聚态物质的理解,而且也为生物等诸如基因编码、蛋白质折叠等领域的研究提供了启示。
这一方向已经获得了巨大的发展,领域内学者的不断努力将不断拓展热量子力学的应用领域。
三、引力波探测引力波的探测被称为“物理学的新视野”。
引力波是由重力场引起的扰动,其量级为惊人的10的负23次方,远远小于电子的尺度。
如此之小的量级也是各种干扰源的挑战,然而,自几年前LIGO(雷射互相干扰引力波探测器)进行首次成功探测以来,引力波探测实验的技术逐渐稳定发展。
在2017年的诺贝尔物理奖中,有关引力波探测的瑞典天体物理學家Rainer Weiss、Kip Thorne和Barry Barish荣膺此奖项。
四、光学成像光学成像在微观领域中得到了广泛应用,例如在纳米粒子、细胞和分子样品等方面的显微成像。
近年来,光学成像也在研究与生物领域相关的分子传递、细胞生长和病原核酸逃逸行为等方面发挥了关键作用。
这种技术的突破使得将来这种技术在医学、生物学等领域中都会得到广泛应用和发展。
总结:最后,物理学的新技术和新进展使得我们的生活变得更加丰富多彩,同时也为我们透视世界的本质提供新的方法。
物理学领域的重大突破与发展近年来,物理学领域取得了一系列重大突破,为科学研究和人类社会进步做出了巨大贡献。
下面我们来看看物理学领域的这些突破和发展。
一、宇宙背景辐射测量宇宙背景辐射是宇宙形成初期产生的热辐射,可以提供宇宙大爆炸发生后的最早信息,对于研究宇宙的演化历史至关重要。
然而,它的测量极其困难。
一项宇宙背景辐射测量实验——Planck卫星项目,对整个宇宙背景辐射做了一次深入观测,测量结果提供了宇宙学研究的重要数据,例如宇宙形成的时间和构成成分等。
二、重子数不守恒理论重子数不守恒理论是原子核物理研究领域的重要成果之一。
它表明,在某些非常极端的条件下,重子数守恒的基本定律可能会失效,进而导致一系列重大的、前所未有的物理现象的发生。
该理论破解了原子核物理科学领域的难题,对于原子核物理和宇宙学研究有着重要意义。
三、超导材料研究超导材料是一种在极低温下电阻变为零的物质,是物理学领域一项令人感到振奋的突破。
超导材料可以有效提高能源转换的效率,是电力系统和许多器件的理想材料。
近年来,超导材料大量应用于电力工业、通信技术和医学等领域,极大地促进了人类社会的发展。
四、新型能源研究新型能源是各种替代传统化石燃料的能源,减少了资源消耗和环境污染,受到社会各界广泛关注。
一项新型能源研究——核聚变技术,被认为是人类获得永久性、清洁能源的梦想。
聚变技术利用氢作为燃料,在高温和高压条件下使核反应发生,以产生几乎无限的能量。
目前,聚变技术还面临着一系列挑战,但其前景依然广阔。
总的来说,物理学领域的这些重大突破和发展不仅对科学研究具有重要意义,也对人类社会进步做出了积极贡献。
继续深入探索物理学领域的未知领域,不断推进科学技术创新和人类社会的发展,是我们所需要努力的目标。
20世纪物理学进展与百年重大新技术当我们翻开科技发展史册,不难发现许多重大应用技术都是建立在物理科学研究的成果之上的,如人类近代社会发生的三次技术革命中,起到关键性作用的都是物理科学的创新成果.第一次技术革命开始于18世纪60年代,主要标志是蒸汽机的广泛应用,这是牛顿力学和热力学发展的结果;第二次技术革命发生在19世纪70年代,主要标志是电力的广泛应用和无线电通信的实现,这是电、磁现象的研究和经典电磁场理论的重大突破所带来的辉煌成果;第三次技术革命发生在20世纪40年代,基础科学的研究成果引起了技术上一系列革命性的突破,产生了一系列高新技术,如核能源技术、激光技术、电子计算机技术、电子与信息技术、生物工程技术、材料技术、空间技术等,形成了现代技术群,它们已经扩散到社会生产和生活的各个领域.然而,在这个庞大的技术群中,几乎没有一项与现代基础科学无密切关系,尤其是20世纪物理科学的百年成果,给现代高新技术的研究、开发、利用,提供了不尽的源泉和坚实的基础.一、从“质能公式的提出”到核技术1905年9月,爱因斯坦创立狭义相对论,并在他的题为“物质的惯性与它所含的能量相关吗”论文中,揭示了质量与能量之间的关系,提出了著名的质能公式E=mc2,这就从理论上预言了原子内部蕴藏着巨大的能量.能否开发和利用这些能量?当时人类则抱有悲观态度,甚至大科学家卢瑟福也认为“通过原子的变换去探索能源,那简直是无稽之谈”.然而,人类的认识是不会停滞的,科学技术必然是不断进步的.1909年3月,物理学家盖革和马斯顿进行了著名的α粒子散射实验;卢瑟福了解到此实验中α粒子出现了反常的漫散射现象,他则以原子内存在强电场的观点,探索α粒子大角散射的内在原因,推断出原子由带负电的电子和带正电的原子核构成,并据此于1911年提出了原子有核结构,确立了“原子核”概念;1913年,玻尔以卢瑟福原子模型为基础,引入量子概念,构筑了一个新的原子模型——量子化原子模型;1919年,卢瑟福又用天然放射源放射出来的α粒子轰击氮,首次发现了原子核的人工嬗变,即这个实验既发现了在原子核中有呈中性的质子,也第一次用人工方法成功地把一种元素转变为另一种元素,从而开辟了人为变革原子核的途径.那么,原子核又由什么组成呢?由于当时已知的粒子只有电子和质子,而且研究得最多的是氢原子,因此,曾认为原子核是由质子组成的.然而,因氦原子有两个电子,那么氦核则由两个质子组成,于是氦原子的质量就是氢原子的二倍,可是实际上却是四倍!有人认为原子核是由质子和电子组成的,但这又引起许多矛盾;1920年卢瑟福在英国皇家学会的一次演讲中,大胆地提出可能存在一种中性基本粒子,其质量与质子大体相等.如果原子核内存在这种粒子,则可圆满地说明原子核的组成.此后,卡文迪许实验室用了十年时间寻找这种中性粒子,但却一无所获.1932年3月27日《Nature》(自然杂志)刊登了物理学家查德威克的一篇论文,他提出:α粒子轰击铍所产生的“铍辐射”并不是α射线,而是一种新粒子,此新粒子不带电荷,因此取名为“中子”.由此,物理学家则提出了原子核的质子-中子模型.1934年,约里奥-居里夫妇在用α粒子轰击铝靶时,得到一种天然不存在的新放射性元素磷,这是历史上第一种人造的放射性同位素,当然这也是对原子核结构理论的有力证明.为了说明质子和中子结合在尺度很小(10-14m)的原子核内,科学界提出了“核力”概念,核力不同于当时已知的万有引力和电磁力.1933~1939年间的中子-质子散射实验,确定了核力的基本性质.中子和人工放射性的发现极大地激发了物理学家们的热情,促使他们去揭开原子核的奥秘.1934年,费米等人用中子照射铀,企图使铀核俘获中子,再经过β衷变得到原子序数为93或更高的超铀元素.在实验中,他们偶然发现经过慢化的中子(热中子)反而比快中子能更好地引起核反应.费米认为,这是因为慢中子与快中子相比较,它经过原子核附近时滞留的时间较长,因而被原子核俘获的机会要多一些.1934~1938年间,许多物理学家和化学家做过此类实验,但不同的研究者得到了不同的结果,有的说发现了超铀元素,有的宣称得到了镭和锕.1938年9月,居里夫人的女儿伊伦·居里和萨维奇合作,应用放射化学方法分析中子轰击铀的产物,发现其中有一个半衰期为3.5小时的放射性元素,其化学性质和元素镧相近,但镧的原子序数为57,恰在周期表中间,绝不会是“超铀”元素.伊伦·居里的实验结果引起了德国的奥托·哈恩的注意,他与斯特拉斯曼重做了一系列实验后提出:所谓镭和锕实际上是原子量远小于它们的镧和钡.如何解释这种现象?他们认为只有假设原子核分裂为两个或两个以上的碎块,才能给予解释,这种分裂过程称为“核裂变”;1939年,梅特纳和费里施首先建议用带电液滴的分裂来解释裂变现象;同年玻尔等人在原子核液滴模型和统计理论的基础上,系统地研究了原子核的裂变过程,奠定了核裂变理论的基础. 掌握了核裂变和核能释放,物理学家又进一步思考:铀核被一个中子击中后分裂为两个碎片,那么若与此同时再有一个以上的中子从铀核中释放出来,它们就能引起其它铀核的裂变,如此继续下去,就会发生自动而持续的链式反应.但问题的关键是,铀核裂变时是否能产生新的中子?在进一步的实验研究中,约里奥-居里夫妇、费米、西拉德、津恩等都证实在铀核分裂时能产生2~3个中子,同时释放出大量能量.这就在理论上肯定了链式反应是能够发生的.这样看来,只要有一个中子被铀核俘获,那么就会很容易地产生链式反应.原子的人工嬗变、热中子核反应、重核裂变、链式反应的可行性等重大发现,虽然都是纯基础理论研究的成果,但它深深触及了人类开发原子核能这个十分现实的问题.然而,这项工作却首先转向了为战争服务,因为当时正值第二次世界大战期间.由于核裂变最先是在德国发现的,因此德国首先开始研制核武器.消息泄露后,爱因斯坦等科学家致信美国总统罗斯福“加紧研制原子弹”.1942年8月美国开始实施以研制原子弹为内容的“曼哈顿计划”.1942年12月,在费米、西拉德、奥本海默、弗兰克等众多科学家的共同协作下,在美国芝加哥大学建成了世界上第一座核反应堆,首次实现了人工控制的核链式反应.1945年7月16日,美国在新墨西哥州爆炸了世界上第一颗原子弹,从此开始了核武器研制和试验的国际竞争.第一座反应堆的研制成功,其意义是重大而深远的,它不仅直接导致了第一颗子弹的爆炸,还在于建造了原子能反应堆.从此,人类找到了开发原子核能的一条基本途径,为人类的能量来源开辟了崭新的天地.在和平利用原子能方面,核电站的建成是其中的一个主要标志.1954年6月,原苏联建成了第一个小型原子能发电站,首先突破了核能源实际有效利用的新技术;1956年英国建成第一座天然铀石墨冷气发电、产钚两用堆;1957年12月美国也建成了实验性压水堆核电站.20世纪50年代,各国核发电站的发展基本上是实验性的,主要是探索它在技术上的可能性;60年代以后,核电站进入了实用阶段,上述几种主要堆型技术越来越成熟,优越性也日益显露出来,其中轻水堆是目前世界核电站中占首位的堆型,装机容量约点全部核电站总容量的80%;到了70年代,其单堆功率已从第一代的20万千瓦左右提高到130万千瓦,发电效率有很大提高,平均燃耗、发电成本大大降低;从70年代中期起,各国核电站的发电成本已普遍比火电站低,核电站的可利用率已同现代最新的火电站相当,而实际运行的负荷因子已高于火电站;截止到目前,欧洲一些国家核电在整个能源中所占的比例超过50%,法国高达78%.核能在世界能源中的地位和作用在不断地增长,核电站在今后仍将有更大的发展.核技术的开发和利用是很复杂的综合性设施,它涉及到许多学科、工业部门和多项新技术.显然核物理学是最必要最重要的基础学科之一;而核反应堆、核电站、核武器的研究、设计、制造、调试、试验、运行以及更新换代的过程中,又推动了核物理的发展.核物理的发展,不断地为核能装置的设计提供日益精确的数据,从而提高了核能利用效率和经济效益,并为更大规模的核能利用准备了条件.二、从“光量子假说”到激光技术1900年12月24日,在德国物理学会的年会上,普朗克宣读了他的“关于正常光谱的能量分布定律的理论”论文,提出了一个革命性的思想光量子假说.1916年,爱因斯坦在旧量子论的基础上提出了受激(感应)发射的概念,并在他的论文“关于辐射的量子理论”中首次给出了能态之间跃迁的新认识.他认为,在气体分子(普朗克谐振子)的能态跃迁中,存在两种不同的辐射过程:一种是由高能级到低能级的自发辐射,一种是由于频率响应从高能级到低能级的受激辐射.受激辐射概念的提出,实际上已为激光器的发明奠定了理论基础.1921年,美国赫耳发明的磁控管能产生微波振荡,使人类开始了微波的研究;1924年物理学家托耳曼根据原子、分子系统内激发态上粒子数分布的情况,指出可以得到负吸收或放大,并在实验中观察到了这种机制引起的吸收系数的变化;1928年,拉登伯格和科普夫曼在气体放大的色散测量中,观测到由于受激辐射所引起的负色散现象;1934年,美国的斯勒特)的橡皮球,和维维里曼做了波长1~4cm的各种磁控管,将产生的微波射向充有氨气(NH3发现氨分子在1.3cm波长处有强烈的吸收,这是用相干振荡器发现电磁波和分子相互作用的最早实验,也是电磁波谱学的最早实验;1938年,捷尼克在计算各种干涉条件下的光束强度中提出“相干度”的概念.应该说,所有这些研究成果都有助于认识受激辐射概念的实际意义.1939年,法布里坎特在讨论气体放电的发光机理时,提出用实验来证实负吸收的存在,他分析了由负吸收产生光放大的可能性,以及由此所引起的光强度和方向性增加的问题.他根据拉登伯格发现的吸收系数、爱因斯坦系数与粒子数分布的关系指出:要使辐射通过介质不但不衰减而且还要放大的话,必须实现粒子数反转.法布里坎特的这一见解,是从爱因斯坦受激辐射理论向构思激光器技术原理迈出的极为重要的一步,因为它指出了产生激光的最重要的条件.1946年,美国和英国几乎发现氨分子谱线中的精细结构和超精细结构,并开始了微波波谱学的研究;1950年,卡斯特勒提出用“抽运”方法实现粒子数反转的设想;1951年,珀塞尔和庞德在美国哈佛大学研究核磁共振时,第一次在实验上用核磁共振实现负温度状态.同年,物理学家汤斯首次提到实现微波受激放大的可能性,他设想用分子而不是用自由电子来实现微波放大,如果使处在微波激发态的氨分子数大于处在低能态的氨分子数,则受激发射就会占优势,于是能观察到微波发射谱,并可能放大.1954年,汤斯等人成功地制成了氨分子激射器,共振频率为23.87GHz(波长1.25cm),功率为10-8W,这是实验室内最早观察到的微波分子发射谱,氨激射器是世界上第一台“辐射的受激发射微波放大”的装置,简称“脉塞”(Maser).1955年,前苏联物理学家巴索夫和普罗霍洛夫提出得到Maser的受激分子的另一种可能途径,他们指出具有三个或四个能级的原子、分子系统,用高频电磁波造成粒子数反转,在高能态和居间能态之间或居间能态与低能态之间的跃迁频率有可能得到放大.1956年,汤斯正式提出Maser能被无线电波甚至被光波泵浦.同年,美国科学家布罗贝尔金独立地发现了三个能级泵浦方法,并建议能级固态Maser用Ni-Zn氟硅酸盐和Ga-La乙基硫酸盐.1956~1958年,三能级固体量子放大器问世,使厘米波和分米波的高灵敏度接收成为可能,并很快用于射电天文、雷达和宇宙通信的灵敏的低噪声前置放大器.1958年12月,肖洛和汤斯在美国物理评论杂志上发表文章,讨论了谐振腔、工作物质和抽运方式等一系列问题,对他们所提出的在光波波段工作的量子放大器设计方案进行了详细的理论分析,预言了采用法布里-珀罗干涉仪作为开式谐振腔的选模作用,以及激光的相干性、方向性、线宽和噪声等性质.至此,把微波量子放大器扩展到光波波段的理论基础和技术已基本完备,激光器这个现代科技的宠儿,即将临产了. 1960年7月,休斯研究所的一个从事红宝石微波量子放大器研制工作的年轻人梅曼,大体上按照肖洛和汤斯的设计构思,用一种装有被氙放电管抽运红宝石棒非常简单的装置,成功地制造并运转了第一台激光器——红宝石脉冲激光器(工作波长为0.6943μm).从此,小说家们所幻想的“死光”,在科学理论的指导和助产下,终于奇迹般地出现了.此后,激光又得到进一步的发展和应用.1961~1965年,激光光谱用于大气污染分析,半导体激光器用于激光通信,CO激光器用于激光熔炼,激光切割激光钻孔.1968~1969年,月2球上设置激光反射器,地面与卫星联系.1982年,发明激光全息术.1980~1990年,激光外科手术、通信、光盘、激光武器等出现.激光技术是现代物理学和现代科学技术相结合孕育出来的一门科学技术,它的发展历史不仅充分显示出物理科学理论对技术发明的预见性,而且它本身又作为现代科学技术家族中的一个优等生,也大大促进和推动着现代物理学和现代科学技术的发展.三、从“量子力学的建立”到电子和信息技术20世纪20年代无疑是理论物理学的黄金时代,在短短的几年之内,物理学家为了解决旧量子论的困难,在不同的地点,从不同的角度、以不同的形式,建立起一种描述微观世界的统一的基本理论——量子力学.它用严格的数学语言调和了波和粒子这两种对立的经典概念在描写同一微观客体时表现的矛盾.量子力学的建立为人类了解物质结构奠定了基础. 1926年,狄拉克在薛定谔的多体波函数启示下,开始研究全同粒子系统.他发现,如果描述全同粒子的多体波函数是对称的,这些粒子将服从玻色-爱因斯坦统计;如果这一波函数是反对称的,这些粒子将服从另一种统计,即费米 狄拉克统计.虽然费米在几个月前就提出了这种统计法,但狄拉克却更深刻地揭示了统计类型与波函数对称性质间的关系,并证明了在波函数反对称条件下,新的统计是量子力学的必然结果.这一统计法的提出,使人类得知固体中的电子服从泡利原理.1928年普朗克在应用量子力学研究金属导电问题中,提出固体能带理论的基本思想能带论.根据能带论,在外电场作用下,半导体导电是靠满带中的“空穴”和导带中的电子这两种载流子进行的.“空穴”参与的导电过程称为P型导电,电子参与的导电过程称为N型导电.半导体的许多奇异特性正是由“空穴”和电子所共同决定的,能带论第一次科学地阐明了固体为什么可按导电能力的强弱,分为绝缘体、导体、半导体.1931年英国物理学家威尔逊在能带理论的基础上,提出半导体的物理模型.他认为,由于半导体自身存在的晶体缺陷和杂质原子,使得半导体具有两种导电类型:一种是“杂质导电”,即由于半导体中的杂质电离能远比禁带宽度小,所以在较低温度下可以把电子从施主能级上激发到导带,或把满带上的电子激发到受主能级上,从而电导率升高;另一种是“本征导电”,即把满带中的电子直接激发到导带上,而使电导率升高.显然,按照这两种导电机理,半导体所有变化多端的性能和广泛的应用价值,都是由杂质导电机理决定的.因为杂质导电随样品而异,而本征导电则是固定不变的.威尔逊模型相当完好地说明了与体内性质有关的半导体的行为特征,它奠定了半导体学科的理论基础.1939年肖特基、莫特和达维多夫,在弗兰克尔金属 半导体接触的表面理论基础上,应用金属与半导体接触的“势垒”概念,建立了解释金属 半导体接触整流作用的“扩散理论”.这样,能带论、导电机理模型和扩散理论这三个相互关联逐步发展起来的半导体理论模型,便大体上构成了确立晶体管这一技术发明目标的理论背景.大致同时,随着无线电技术发展,在1930年后,短波和超短波通信发展起来,并出现了雷达技术.随着第二次世界大战的到来,对于这两方面的研究愈显得重要,真空管已经不能响应这两种技术中如此迅速变化的电信号,人们又重新回头研究半导体检波器和整流器.由于检波器的性能与半导体材料的纯度关系很大,人们为获得好的材料,对Ⅳ族元素Ge、Si的提纯、多晶制备,以及电学性质作了大量的研究工作.1935年后贝尔实验室的一批科学家转向研究Si材料,1940年,用真空熔炼方法拉制出多晶Si棒并且掌握了掺入Ⅲ、Ⅴ族杂质元素来制造P型和N型多晶Si的技术.还用生长过程中掺杂的方法制造出第一个Si的PN结,发现了Si中杂质元素的分凝现象,以及施主和受主杂质的补偿作用.1942年,普尔都大学物理系对Ge开展全面研究,同年夏天制出了第一个Ge的结,第二年形成反向击穿电压为100V的Ge二极管,并研究了Ge整流器的设计与应用方面的问题.到战争结束的时候,半导体科学已经奠定了较为坚实的实验和理论基础.由于真空管在应用中暴露了坚固性、可靠性不够好,响应速度有限等缺点,科学家从20世纪30年代就开始寻找一种固体放大器来代替它.1945年,二次世界大战刚结束,贝尔实验室成立了一个固体物理研究组,主要成员有:物理学家肖克利、布拉顿、巴丁,还有一些电子线路专家、物理化学家、冶金学家的参与,在大家的共同努力下,于1947年12月23日成功发明了晶体管.晶体管是在半导体理论和实验基础上发明的.由于它展示了光辉的应用前景,从而激起人们为改善晶体管,努力研究半导体物理和技术的极大热情.20世纪50年代,一批原理、工艺新颖,性能优良的半导体二极管、晶体管,登上了应用舞台.它们中有结型场效应晶体管(1951),齐纳二极管(1952),可控硅(1957),肖特基势垒二极管(1960)等,使得晶体管已经在多方面能够代替真空管.同时,属于化合物半导体系列的InSb,AlSb和GaAs,也相继研制出来.20世纪50年代末期,由于科学家在研究半导体表面理论和技术的基础上,实现了在半导体表面形成晶体管工艺,从而在1958年4月12日研制成功了第一块集成电路,这块集成电路共集成了十二个元件(两个晶体管、两个电容和八个电阻),是一种小规模集成电路.集成电路的发明,是以电子元件为主的电子技术的第三次重大突破.这一突破,使电子技术沿着集成电路所开创的电子元件微型化的新道路大踏步前进.随着集成电路集成度的不断提高,到1964年研制成功了中规模集成电路;1968年又研制成功了大规模集成电路;1973年大规模集成电路开始进入工业化生产阶段,这个阶段已经出现了集成20多万个元器件的芯片.大规模集成电路与小规模集成电路相比较,元件的功能发生了质的变化.后者需要大量的元件,甚至是整个设备才能完成的功能,而前者由一个元件就代替了.有源元件、无源元件及线路三者之间的内部矛盾关系也发生了根本改变,矛盾的主要方面从开关逻辑元件转化为传输线路连结系统,逻辑元件主要矛盾也从逻辑的简单性转化为逻辑的规则性和品种的单一性,这就为成批生产大规模集成电路创造了条件.因此,大规模集成电路的出现,是以电子元件为主的电子技术的第四次重大突破.20世纪80年代则是超大规模集成电路时代,集成度实际上已经突破了百万大关,从80年代后期开始集成电路技术步入了1μm和亚微米时代(1μm=10-6m,80年代初芯片的电连接宽度为4~6μm),真正实现了微型化.当时间进入21世纪,集成度则以每年100倍的平均速度增长,集成电路的集成度达到几十亿.集成电路从20世纪50年代末出现至今,其发展速度之快,对社会生产、生活的影响之大是人们始料未及的.以集成电路为核心的微电子技术已经渗透到现代通信、信息技术、计算机、医疗、能源、交通、自动化、教育传播等各个方面,尤其是对现代电子和信息技术的发展起了巨大的作用.此外,量子力学的建立,不仅使人类可以把握宏观物体的各种性能,而且可以深入认识物体的微观结构,从电子、原子、分子、晶格等不同层次来研究材料,发现许多微观结构和宏观性能之间的规律性关系,从更深的层次上揭示出材料性能和结构的本质联系.今天的材料科学技术,已经发展成为一个内容广泛、高度综合的技术系统.描述材料的宏观、微观迁移等现象,要涉及结晶学、凝聚态物理学、固体物理学、分子物理学、核物理学等.研究物质的合成,又需要涉及热力学、物理化学、量子化学等学科.在对材料物性的测定上,要求助于力学、光学、热学、电磁学和声学等方面的技术和设备.从上述的事例,我们不难看到,在许多新技术发现的源头和过程中,物理科学研究成果起了极大的作用.其实,在空间技术、生物工程技术等其它新技术的发展过程中,物理科学研究成果也同样起到了很大的作用.可以说没有物理科学的创新成果,就不可能有这些新技术的发现或迅速的发展.其实,在21世纪的今天,我们仍然可以看到,在物理科学研究的新成果带动下,许多领域的应用科学技术得到了进一步的发展,并出现了一个又一个崭新的产业部门,其影响遍及生产、科研、国防、医学、乃至进入家庭,大大改变了当代社会的结构和面貌,甚至人们的思维方式.历史和经验告诉我们,无论是过去,还是现在、乃至将来,社会和经济的发展总是离不开科学技术的进步,科学技术的进步离不开物理科学的创新成果,而物理科学的创新成果,靠的是具有高素质的物理科学人才.参考文献1 中国科学报社.中国科学院院士谈21世纪科学技术.上海:上海三联书店,1997.2 魏风文、申先甲.20世纪物理学史.南昌:江西教育出版社.1994.3 李醒民等.科学发现集.长沙:湖南科学技术出版社.1998.4 关士续.技术发明集.长沙:湖南科学技术出版社.1998.5 阎康年.卢瑟福与现代科学的发展.北京:科学技术文献出版社.1987.6 David Abbott. Physicists-Biography. New York,1984.7 Spencer R. Weart. History of Physics. New York,1985.。