光学图像相关matlab仿真
- 格式:doc
- 大小:432.17 KB
- 文档页数:18
用Matlab光学仿真设计关于光学中等倾干涉的现象光电11401 刘兴伟17号光线以倾角i入射,上下两条反射光线经过透镜作用汇聚一起,形成干涉.由于入射角相同的光经薄膜两表面反射形成的反射光在相遇点有相同的光程差,也就是说,凡入射角相同的就形成同一条纹,故这些倾斜度不同的光束经薄膜反射所形成的干涉花样是一些明暗相间的同心圆环.这种干涉称为等倾干涉.基本理论:薄膜干涉中两相干光的光程差公式(表示为入射角的函数形式)为式中n 为薄膜的折射率;n0为空气的折射率;h为入射点的薄膜厚度;i0为薄膜的入射角;+λ/2为由于两束相干光在性质不同的两个界面(一个是光疏—光密界面,另一是光密-光疏界面)上反射而引起的附加光程差;λ为真空中波长. 薄膜干涉原理广泛应用于光学表面的检验、微小的角度或线度的精密测量、减反射膜和干涉滤光片的制备等。
当光程差为波长整数倍时,形成亮条纹,为半波长奇数倍时是暗条纹。
等倾条纹是内疏外密的同心圆环.如图所示:设计程序如下:为了方便计算,这里假设光波为垂直入射到薄膜上,并且设光源波长为450nm。
薄膜的厚度魏0。
35nm,透镜焦距为0.25m。
通过matlab编程计算获得等倾干涉二维和三维光强分别如图所示。
二维图像三维图像设计程序如下:F=0。
25;Lambda=450*10e—9;d=3。
5*10e-4;Theta=0.15;rMax=f*tan(theta/2);N=451;For i=1:Nx(i)=(i-1)*rMax/(N-1)—rMax;For j=1:Ny(i)=(i-1)*rMax/(N—1)-rMax;r(i,j)=sqrt(x(i)^2+y(j)^2;delta(i,j)=2*d/sqrt(1+r(i,j)^2/f^2); Phi(i,j)=2*pi*delta(i,j)/lambda;B(i,j)=4*cos(Phi(i,j)/2)^2;endendNCLevels=255;Br=(B/4.0)*NCLevels;figure(1);image(x,y,Br);Colormap(gray(NCLevels));axis sqare;Figure(2);mesh(x,y,Br);Calormap(gray(NCLevels));Axis square;。
基于Matlab的光学实验仿真一、本文概述随着科技的快速发展,计算机仿真技术已成为科学研究、教学实验以及工程应用等领域中不可或缺的一部分。
在光学实验中,仿真技术能够模拟出真实的光学现象,帮助研究者深入理解光学原理,优化实验设计,提高实验效率。
本文旨在探讨基于Matlab的光学实验仿真方法,分析Matlab在光学实验仿真中的优势和应用,并通过具体案例展示其在光学实验仿真中的实际应用效果。
通过本文的阐述,读者将能够了解Matlab在光学实验仿真中的重要作用,掌握基于Matlab的光学实验仿真方法,从而更好地应用仿真技术服务于光学研究和实验。
二、Matlab基础知识Matlab,全称为Matrix Laboratory,是一款由美国MathWorks公司出品的商业数学软件,主要用于算法开发、数据可视化、数据分析以及数值计算等领域。
Matlab以其强大的矩阵计算能力和丰富的函数库,在光学实验仿真领域具有广泛的应用。
Matlab中的变量无需预先声明,可以直接使用。
变量的命名规则相对简单,以字母开头,后面可以跟字母、数字或下划线。
Matlab支持多种数据类型,包括数值型(整数和浮点数)、字符型、逻辑型、结构体、单元数组和元胞数组等。
Matlab的核心是矩阵运算,它支持多维数组和矩阵的创建和操作。
用户可以使用方括号 [] 来创建数组或矩阵,通过索引访问和修改数组元素。
Matlab还提供了大量用于矩阵运算的函数,如矩阵乘法、矩阵转置、矩阵求逆等。
Matlab具有强大的数据可视化功能,可以绘制各种二维和三维图形。
在光学实验仿真中,常用的图形包括曲线图、散点图、柱状图、表面图和体积图等。
用户可以使用plot、scatter、bar、surf和volume 等函数来创建这些图形。
Matlab支持多种控制流结构,如条件语句(if-else)、循环语句(for、while)和开关语句(switch)。
这些控制流结构可以帮助用户编写复杂的算法和程序。
《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学、光学工程和光学科学等领域中重要的研究手段。
然而,实际的光学实验通常涉及到复杂的光路设计和精密的仪器设备,实验成本高、周期长。
因此,通过基于Matlab的光学实验仿真来模拟光学实验,不仅能够为研究提供更方便的实验条件,而且还可以帮助科研人员更深入地理解和掌握光学原理。
本文将介绍基于Matlab的光学实验仿真的实现方法和应用实例。
二、Matlab在光学实验仿真中的应用Matlab作为一种强大的数学计算软件,在光学实验仿真中具有广泛的应用。
其强大的矩阵运算能力、图像处理能力和数值模拟能力为光学仿真提供了坚实的数学基础。
1. 矩阵运算与光线传播Matlab的矩阵运算功能可用于模拟光线传播过程。
例如,光线在空间中的传播可以通过矩阵的变换实现,包括偏振、折射、反射等过程。
通过构建相应的矩阵模型,可以实现对光线传播过程的精确模拟。
2. 图像处理与光场分布Matlab的图像处理功能可用于模拟光场分布和光束传播。
例如,通过傅里叶变换和波前重建等方法,可以模拟出光束在空间中的传播过程和光场分布情况,从而为光学设计提供参考。
3. 数值模拟与实验设计Matlab的数值模拟功能可用于设计光学实验方案和优化实验参数。
通过构建光学系统的数学模型,可以模拟出实验过程中的各种现象和结果,从而为实验设计提供依据。
此外,Matlab还可以用于分析实验数据和优化实验参数,提高实验的准确性和效率。
三、基于Matlab的光学实验仿真实现方法基于Matlab的光学实验仿真实现方法主要包括以下几个步骤:1. 建立光学系统的数学模型根据实际的光学系统,建立相应的数学模型。
这包括光路设计、光学元件的参数、光束的传播等。
2. 编写仿真程序根据建立的数学模型,编写Matlab仿真程序。
这包括矩阵运算、图像处理和数值模拟等步骤。
在编写程序时,需要注意程序的精度和效率,确保仿真的准确性。
3. 运行仿真程序并分析结果运行仿真程序后,可以得到光束传播的模拟结果和光场分布等信息。
MATLAB仿真在光学原理中的应用1. 简介光学是研究光的产生、传播、照明及检测等现象和规律的科学,它在物理学、医学、通信等领域有着重要的应用。
随着计算机科学和数值计算的发展,MATLAB作为一种强大的科学计算软件,被广泛应用于光学原理的仿真和分析中,为光学研究提供了有力的工具和方法。
本文将介绍MATLAB仿真在光学原理中的应用,并通过列举几个典型例子来说明MATLAB在解决光学问题上的优势。
2. 光的传播仿真光的传播是光学研究中的重要内容,MATLAB可以通过数值模拟的方法来进行光的传播仿真。
以下是一些常见的光传播仿真的应用:•光线传播仿真:通过计算光线在不同介质中的折射、反射和衍射等规律,可以模拟光在复杂光学系统中的传播过程。
•光束传输仿真:通过建立传输矩阵或使用波前传输函数等方法,可以模拟光束在光学元件中的传输过程,如透镜、棱镜等。
•光纤传输仿真:通过数值模拟光在光纤中的传播过程,可以分析光纤的传输损耗、模式耦合和色散等问题。
MATLAB提供了许多函数和工具箱,如光学工具箱、光纤工具箱等,可以方便地进行光传播仿真和分析。
3. 光学成像仿真光学成像是光学研究中的重要应用之一,MATLAB可以用于模拟和分析光学成像过程。
以下是一些常见的光学成像仿真的应用:•几何光学成像仿真:根据几何光学理论,可以通过模拟光线的传播和聚焦过程来分析光学成像的特性,如像差、焦距和倍率等。
•衍射光学成像仿真:通过衍射理论和数值计算,可以模拟光的衍射和干涉效应对光学成像的影响,如衍射限制和分辨率等。
•光学投影仿真:通过模拟光束、透镜和光阑等光学元件的组合和调节,可以分析光学投影系统的成像质量和变换特性。
MATLAB提供了丰富的函数和工具箱,如图像处理工具箱、计算光学工具箱等,可以方便地进行光学成像仿真和分析。
4. 激光光学仿真激光是光学研究中的一个重要分支,MATLAB可以用于模拟和分析激光的特性和应用。
以下是一些常见的激光光学仿真的应用:•激光器仿真:通过建立激光器的数学模型和模拟激光的发射过程,可以分析激光器的输出特性和光束质量等。
工程光学仿真实验报告1、杨氏双缝干涉实验(1)杨氏干涉模型屏图, 0(1-8)21(2)仿真程序clear;Lambda=650; %设定波长,以Lambda表示波长Lambda=Lambda*1e-9;d=input('输入两个缝的间距 )'); %设定两缝之间的距离,以d表示两缝之间距离d=d*0.001;Z=0.5; %设定从缝到屏幕之间的距离,用Z表示yMax=5*Lambda*Z/d;xs=yMax; %设定y方向和x方向的范围Ny=101;ys=linspace(-yMax,yMax,Ny);%产生一个一维数组ys,Ny 是此次采样总点数%采样的范围从- ymax 到ymax,采样的数组命名为ys%此数组装的是屏幕上的采样点的纵坐标for i=1:Ny %对屏幕上的全部点进行循环计算,则要进行Ny 次计算L1=sqrt((ys(i)-d/2).^2+Z^2);L2=sqrt((ys(i)+d/2).^2+Z^2); %屏上没一点到双缝的距离L1和L2Phi=2*pi*(L2-L1)/Lambda; %计算相位差B(i,:)=4*cos(Phi/2).^2; %建立一个二维数组,用来装该点的光强的值end %结束循环NCLevels=255; %确定使用的灰度等级为255级Br=(B/4.0)*NCLevels; %定标:使最大光强(4. 0)对应于最大灰度级(白色) subplot(1,4,1),image(xs,ys,Br); %用subplot 创建和控制多坐标轴colormap(gray(NCLevels)); %用灰度级颜色图设置色图和明暗subplot(1,4,2),plot(B(:),ys); %把当前窗口对象分成2块矩形区域 %在第2块区域创建新的坐标轴%把这个坐标轴设定为当前坐标轴%然后绘制以( b (: ) , ys)为坐标相连的线title('杨氏双缝干涉');(3)仿真图样及分析a)双缝间距2mm b)双缝间距4mmc)双缝间距6mm d)双缝间距8mm图1.2改变双缝间距的条纹变化由上面四幅图可以看出,随着双缝之间的距离增大,条纹边缘坐标减小,也就是条纹间距减小,和理论公式d D e /λ=推导一致。
《基于Matlab的光学实验仿真》篇一一、引言光学实验是研究光学现象和规律的重要手段,但在实际操作中往往受到诸多因素的限制,如实验设备的精度、实验环境的稳定性等。
因此,通过计算机仿真进行光学实验具有很大的实际意义。
本文将介绍一种基于Matlab的光学实验仿真方法,以期为光学研究提供一定的参考。
二、仿真原理及模型建立1. 仿真原理基于Matlab的光学实验仿真主要利用了光学的基本原理和数学模型。
通过建立光学系统的数学模型,模拟光在介质中的传播、反射、折射等过程,从而实现对光学实验的仿真。
2. 模型建立在建立光学实验仿真模型时,需要根据具体的实验内容和目的,选择合适的数学模型。
例如,对于透镜成像实验,可以建立光学系统的几何模型和物理模型,通过计算光线的传播路径和透镜的焦距等参数,模拟透镜成像的过程。
三、Matlab仿真实现1. 环境准备在Matlab中,需要安装相应的光学仿真工具箱,如Optic Toolbox等。
此外,还需要准备相关的仿真参数和初始数据。
2. 仿真代码实现根据建立的数学模型,编写Matlab仿真代码。
在代码中,需要定义光学系统的各个组成部分(如光源、透镜、光屏等),并设置相应的参数(如光源的发光强度、透镜的焦距等)。
然后,通过计算光线的传播路径和光强分布等参数,模拟光学实验的过程。
3. 结果分析仿真完成后,可以通过Matlab的图形处理功能,将仿真结果以图像或图表的形式展示出来。
通过对仿真结果的分析,可以得出实验结论和规律。
四、实验案例分析以透镜成像实验为例,介绍基于Matlab的光学实验仿真方法。
首先,建立透镜成像的数学模型,包括光线的传播路径和透镜的焦距等参数。
然后,编写Matlab仿真代码,模拟透镜成像的过程。
最后,通过分析仿真结果,得出透镜成像的规律和特点。
五、结论与展望基于Matlab的光学实验仿真方法具有操作简便、精度高等优点,可以有效地弥补实际实验中的不足。
通过仿真实验,可以更加深入地了解光学现象和规律,为光学研究提供一定的参考。
高等光学仿真Matlab版是一款针对高等光学实验仿真的软件,它基于Matlab编程语言开发,能够模拟各种光学实验,包括激光光学、非线性光学、光波导等。
该软件具有以下特点:
1. 全面性:该软件涵盖了高等光学领域的多个方面,能够模拟各种复杂的光学实验,如激光器、光波导、非线性光学等。
2. 自适应性:该软件采用自适应算法,能够根据用户输入的参数和条件自动调整模拟的精度和计算量,从而更快地得到仿真结果。
3. 可视化界面:该软件具有直观的可视化界面,用户可以通过简单的操作轻松地设置实验参数、运行模拟并查看结果。
4. 丰富的文档和示例:该软件附带了详细的文档和示例,帮助用户快速上手并理解如何使用该软件进行光学实验仿真。
高等光学仿真Matlab版是一款功能强大、易用、全面的光学实验仿真软件,适用于广大科研人员、教师和学生使用。
目录摘要 ..........................................................................................................错误!未定义书签。
Abstract .......................................................................................................错误!未定义书签。
绪论 (1)1.1 课题背景 (1)1.2 本文研究内容、意义及发展方向 (1)第2章相关目标识别理论及仿真 (4)2.1 光学图像识别技术的基本原理 (4)2.1.1 Vander Lugt相关器原理 (4)2.1.2 联合变换相关器原理 (5)2.1.3 图像识别原理及光路图 (7)2.2 MATLAB仿真实现 (9)第3章光学图像识别与防伪技术 (13)3.1 系统描述 (13)3.2 附加的安全措施 (14)结论 (16)参考文献 (17)第1章绪论1.1 课题背景光学图像识别技术是一种有较高鉴别率的技术,具有高度并行性、容量大、速度快的特点,特别适用于信息的快速和实时处理。
光学相关是光学模式识别中的一种主要方法。
无论是空间匹配滤波相关或是联合变换相关,都是基于对信息的光学傅里叶变换。
现在,人们越来越倾向于采用光电混合的处理方式实现模式的识别,它由光学相关处理系统和计算机组成。
光电混合模式识别具备光学处理系统的大信息容量和二位并行处理能力的同时,还具备数字处理系统灵活性好、精度高、便于控制和判断的能力。
因此,光电混合光学模式识别是实现模式识别实用化的最可行方案。
它已在导弹、火箭的导航系统上有着很成熟的应用。
近年来,这一技术也广泛应用于一些民用领域,如:交通系统中的车辆牌照的识别、金融安全系统中个人签名、指纹的识别等。
《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学、光学工程和光学科学等领域中重要的研究手段。
然而,由于实验条件的限制和复杂性,有时难以进行精确的实验。
因此,基于计算机的光学实验仿真技术应运而生。
本文将介绍一种基于Matlab的光学实验仿真方法,通过对光路的建模、光线传播的模拟和光强分布的计算,实现光学实验的精确仿真。
二、仿真原理及建模基于Matlab的光学实验仿真主要包括以下步骤:1. 建立光路模型。
根据实际光学实验的需求,建立光路模型,包括光源、透镜、反射镜等光学元件的参数和位置关系。
2. 光线传播模拟。
根据光路模型,模拟光线在光学元件之间的传播过程,包括光线的折射、反射等物理过程。
3. 光强分布计算。
根据光线传播模拟的结果,计算光强分布,包括光强的空间分布和光谱分布等。
在Matlab中,可以使用矩阵运算和数值计算等方法实现上述步骤。
例如,可以使用矩阵表示光路模型中的光学元件和光线传播路径,通过矩阵运算实现光线的传播和光强分布的计算。
三、仿真实现以一个简单的光学实验为例,介绍基于Matlab的光学实验仿真的实现过程。
1. 定义光源和光学元件参数。
在Matlab中定义光源的发光强度、波长等参数,以及透镜、反射镜等光学元件的参数和位置关系。
2. 建立光路模型。
根据定义的光源和光学元件参数,建立光路模型,包括光线传播路径和光学元件之间的相互作用。
3. 模拟光线传播。
使用Matlab中的矩阵运算和数值计算方法,模拟光线在光学元件之间的传播过程,包括光线的折射、反射等物理过程。
4. 计算光强分布。
根据光线传播模拟的结果,计算光强分布,包括光强的空间分布和光谱分布等。
5. 绘制仿真结果。
将计算得到的光强分布结果绘制成图像或图表,以便于观察和分析。
四、仿真结果分析通过对仿真结果的分析,可以得出以下结论:1. 基于Matlab的光学实验仿真可以实现对光学实验的精确模拟,具有较高的精度和可靠性。
2. 通过仿真可以方便地观察和分析光路中光线传播的过程和光强分布的情况,有助于深入理解光学原理和光学元件的相互作用。
目录摘要 ..........................................................................................................错误!未定义书签。
Abstract .......................................................................................................错误!未定义书签。
绪论 (1)1.1 课题背景 (1)1.2 本文研究内容、意义及发展方向 (1)第2章相关目标识别理论及仿真 (4)2.1 光学图像识别技术的基本原理 (4)2.1.1 Vander Lugt相关器原理 (4)2.1.2 联合变换相关器原理 (5)2.1.3 图像识别原理及光路图 (7)2.2 MATLAB仿真实现 (9)第3章光学图像识别与防伪技术 (13)3.1 系统描述 (13)3.2 附加的安全措施 (14)结论 (16)参考文献 (17)第1章绪论1.1 课题背景光学图像识别技术是一种有较高鉴别率的技术,具有高度并行性、容量大、速度快的特点,特别适用于信息的快速和实时处理。
光学相关是光学模式识别中的一种主要方法。
无论是空间匹配滤波相关或是联合变换相关,都是基于对信息的光学傅里叶变换。
现在,人们越来越倾向于采用光电混合的处理方式实现模式的识别,它由光学相关处理系统和计算机组成。
光电混合模式识别具备光学处理系统的大信息容量和二位并行处理能力的同时,还具备数字处理系统灵活性好、精度高、便于控制和判断的能力。
因此,光电混合光学模式识别是实现模式识别实用化的最可行方案。
它已在导弹、火箭的导航系统上有着很成熟的应用。
近年来,这一技术也广泛应用于一些民用领域,如:交通系统中的车辆牌照的识别、金融安全系统中个人签名、指纹的识别等。
因而对这一技术进行深入的研究具有一定的实用意义,利用计算机对光学图像识别技术进行仿真研究,对于我们进行真实的光学图像识别技术的研究有帮助和借鉴作用,国外已经有人做了一些工作,而在国内,对这一技术进行仿真研究的文章却很少。
MATLAB是国际公认的优秀的数值计算软件。
利用它提供的丰富的图像处理函数,我们可以很方便地模拟某些真实光学系统对图像的处理。
例如:可以对图像进行傅里叶变换和傅里叶逆变换,可以仿真实现对图像的空间滤波等。
我们用MA TLAB对光学图像识别相关器进行仿真,能得到较好的仿真结果。
1.2 本文研究内容、意义及发展方向光学相关模式识别主要分为空间匹配滤波相关识别和联合变换相关识别两大类。
1962年,McLachlan提出利用光学相关实现模式识别的想法,1964年A.Vander Lugt 提出使用离轴全息方法制作复空间匹配滤波器,设计了匹配滤波相关器(Vander Lugt Correlator, VLC)。
由于匹配滤波相关识别需要预先制作滤波器,并且滤波器的中心必须与目标频谱面的中心完全重合,操作繁琐且实时性差,1966年,C.S.Weaver、J .W.Goodman 和J.E.Rau提出了联合变换光学相关的基本理论,设计了联合变换相关器。
这种相关器克服了Vander Lugt 相关器需要提前制作滤波器和调试要求苛刻的缺点,操作灵活方便。
由于是将参考图像和目标图像同时输入光学系统,联合变换相关器比Vander Lugt 相关器有更好的实时处理能力,代表了光学相关器的发展方向。
首先,车牌识别技术在提高高速公路收费站效率方面起着至关重要的作用。
由于高速公路运输中传统的人工收取通行费方法效率低下,而近几年不断增大的交通流量,往往使得各式车辆在收费管卡处滞留形成“瓶颈”,不能完全发挥出高速公路的优点,这个问题如得不到解决,势必影响交通运输线的畅通,甚至导致直接或间接的经济损失。
不停车自动收费系统是解决这一问题的有效方法之一,该系统的启用将大大提高收费站各通道的处理能力,减少车辆通过的时间。
目前,类似的自动收费系统在美国和欧洲一些发达国家已经得到使用推广,据资料表明:高速公路自动收费站车辆的平均通过速度为每小时 1500 辆,而在装有自动收币机的收费站为每小时 650 辆,人工收费则最多为每小时 350 辆。
随着该系统的推广使用,收费站前的车辆赌塞和交通拥挤的情况得到缓解,可以为过往车辆节约运营时间,这对于长途旅客运输和商用货物运输也显得尤为重要。
此外,由于不停车收费系统的自动化水平高、收费迅速而便捷、管理统一规范,对杜绝高速公路人为的“乱收费”现象也具有特别重要的意义。
其次,机动车闯红灯是日常交通管理中常见的交通违法现象,不仅扰乱了正常的交通秩序,也是造成机动车交通事故的主要原因之一。
因此采用现代化的先进技术,采用智能化的交通控制和管理,为公安交通管理部门提供强有力的执法证据,对改善交通秩序、保障交通安全、提高道路交叉口通行能力、减少交通事故、促进社会的进一步发展都具有重大的社会意义。
所以,作为智能交通系统的一个重要分支,电子警察系统综合利用网络、数字图像处理、小波、神经网络、通讯、数学形态学等先进技术对闯红灯这种交通违法现象进行抓拍和处理,为公安交通部门提供强有力的执法证据,对改善交通秩序、保障交通安全、提高道路交叉口通行能力、减少交通事故等都起到了重要作用。
此外,在大型停车场等系统的管理中,车牌识别也起着重要的作用。
本课题在研究联合变换相关模式识别基本原理的基础上,使用了计算机模拟将实验进行的可并行处理、实时性好的光学过程转化为编程控制、精度高和操作灵活的数字模式。
使的没有实验设备也可形象地看到仿真的实验结果。
由于实际应用的需要,目标识别系统正向着高速化、小型化、集成化和智能化的方向发展。
在现有条件下,研究具有这些特征的光电混合目标识别系统才是现实可行的。
从应用上讲,研制性能好的小型高速目标识别系统,加速其在商业和军事应用领域的实用化,对提高生产效率、促进国民经济发展、尤其是提高军事打击能力和防御能力,都有极其重要的意义。
本课题在研究联合变换相关模式识别基本原理的基础上,使用了计算机模拟将实验进行的可并行处理、实时性好的光学过程转化为编程控制、精度高和操作灵活的数字模式。
使的没有实验设备也可形象地看到仿真的实验结果。
第2章 相关目标识别理论及仿真2.1 光学图像识别技术的基本原理光学图像识别技术有两种重要的实现方法:其一是采用Vander Lugt 相关器实现;其二是采用联合变换相关器实现。
这两种方法相同之处是它们都采用了4f 光学成像系统。
如图 1 所示。
其中,I 平面为输入平面,T 平面为频谱平面,O 平面为输出平面,L1、L2为傅里叶透镜。
下面分别介绍这两种方法图2-1 4f 光学成像系统2.1.1 Vander Lugt 相关器原理Vander Lugt 相关器对图像的识别是在空间滤波的基础上实现的,其方法是在4f 系统的频率平面上放置一个匹配滤波器,在频率域中对输入信号进行相位补偿,从而在输出平面上产生会聚的相关光斑。
如果目标图像为),(y x i ,其频谱为)},({),(y x i F f f I y x = ({*}F 为傅里叶变换算符),则匹配滤波器为目标图像频谱的复共轭,即),(*y x f f I 。
将待识别的图像),(y x g 放置在4f 系统的输入平面上,将匹配滤波器放置在4f 系统频谱平面,在单色平行相干光的照明下,经过空间滤波后,频谱平面上的频谱为),()(*,y x y x f f I f f G ,其中)(,y x f f G 为),(y x g 的频谱,即y)}{g(x ,)(,F f f G y x =。
则在4f 系统输出平面上能得到的图像为),(1y x g )y ,x i()},f (f )I ,f {G(f F )y ,x o(y x *y x -''''==''★其中,{*}1-F 为傅里叶逆变换算符,符号“★”表示相关运算, )},({),(y x f f I F y x i ='',)},({),(y x f f G F y x g =''。
如果待识别图像中含有目标图像信息,则在输出图像的相应位置会产生相关最强,出现亮斑,否则只出现弥散的光斑。
2.1.2 联合变换相关器原理联合傅里叶变换相关器(joint-Fourier transform correlator, JTC )简称联合变换相关器,分成两步,第一步是用平方记录介质(或器件)记录联合变换的功率谱,如图所示。
图中L 是傅里叶变换透镜,焦距为f 待识别图像(例如带识别目标、现场指纹)的透过率为),(y x f ,置于输入平面(透镜前焦面)xy 的一侧,起中心位于)0,(a -;参考图像(例如参考目标、档案指纹)的透过率为),(y x g ,置于输入平面的另一侧,其中心位于)0,(a 。
用准直的激光束照射f ,g ,并通过透镜进行傅里叶变换。
在谱面(透镜的后焦面)uv 上的复振幅分布为式中F 、G 分别是f,g 的傅里叶变换。
如果用平方律记录介质或用平方律探测器来记录谱面上的图形,即得到联合变换的功率谱。
当g f =(两个图形完全相同)时,上式化作亦即相同图形联合变换的功率谱为杨氏条纹。
),(]2exp[),(]2exp[)](]2exp[)],(),([,v u G au fi v u F au f i dxdy yv xu f i y a x g y a x f v u S λπλπλπ-+=+--++=⎰⎰∞∞-∞∞-)(222|),(|),(),(]2exp[),(),(]2exp[|),(||),(|v u G v u G v u F au fi v u G v u F au f i v u F v u S +⋅-+⋅+=**λπλπ])2cos[1(|),(|2|),(|22au f v u F v u S λπ+=联合变换相关器是在输入平面上对称地放置待识别图像),(y x v 与目标图像 ),(y x t ,形成联合的输入信号),(),(),(y a x t y a x v y x i ++-=如图2(a)所示。
在单色平行相干光的照明下,经过透镜 L1 的傅里叶变换作用,在频谱平面上形成联合傅里叶谱其中,)},({),(y x v F f f V y x =,)},({),(y x t F f f T y x =。
在频谱平面上用强度敏感器件接收联合傅里叶谱,并将其转化为联合功率谱,其表达式为联合功率谱经透镜 L2 的傅里叶逆变换作用,在输出平面上得到相关输出),(y x o '',其表达式为这里,(*)δ为狄拉克函数,符号“*”表示卷积运算,)},({),(1y x f f T F y x t -='',)},({),(1y x f f V F y x v -='',输出的结果分为3个部分:第一、四项分别为目标图像和待识别图像的自相关,它们重叠在输出平面的中心附近,称为 0 级,它们不是我们要的信号;第二、三项为目标图象和待识别图像共轭互相关项,分别位于输出平面的(2a ,0) 和(-2a ,0)附近,分别称为±1级。