初中各年级数学知识点总结大全
- 格式:docx
- 大小:24.22 KB
- 文档页数:10
第二章、整式加减1、整式:⑴单项式:只含有数或字母的积的式子叫单项式。
(单独一个字母或数字也是单项式);系数:单项式中的数字因数;次数:单项式中,所有字母的指数和。
⑵多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
①项:每一个单项式(注意带符号)。
②次数:多项式里次数最高的项的次数。
2、同类项:所含字母相同,并且相同字母的指数也相同的项。
几个常数项也是同类项。
3、合并同类项:系数相加,字母和字母的指数不变。
4、去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第三章、一元一次方程含有未知数的等式叫做方程,使方程左右两边相等的未知数的值叫做方程的解。
只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。
1、等式的性质一:等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质二:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2、一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化为1。
注意:①去分母:两边同乘分母的最小公倍时,每一项都不能漏乘。
②去括号:“去正不变,去负全变”。
③移项:是从等号一端移到另一端,移项要变号。
④合并同类项:系数相加减做系数,字母和字母的指数不变。
⑤系数化为一列方程解应用题:(1)设未知数。
(2)找出相等的数量关系,(3)根据相等关系列几何图形:我们把从实物中抽象出的各种图形统称为几何图形。
立体图形:各部分不都在同一平面内,这种图形叫做立体图形。
平面图形:各部分都在同一平面内,这种图形叫做平面图形。
平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
三视图:指主视图、左视图、俯视图。
初中数学知识点总结初中的数学知识点总结(通用11篇)大家都知道,初中数学学习是对学生逻辑计算能力的培养,想要学好初中数学,就要多总结所学知识。
熟读唐诗三百首,不会作诗也会吟,下面是小编为大伙儿整理的初中的数学知识点总结【通用11篇】,仅供参考,希望对大家有所启发。
初中数学知识点总结篇一一元一次方程定义通过化简,只含有一个未知数,且含有未知数的较高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a≠0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。
这里a是未知数的系数,b是常数,x的次数须是1.即一元一次方程须同时满足4个条件:⑴它是等式;⑴分母中不含有未知数;⑴未知数较高次项为1;⑴含未知数的项的系数不为0。
一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a 等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。
一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。
等式与代数式不同,等式中含有等号,代数式中不含等号。
等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。
二、什么是方程,什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7等。
初一到初三数学知识点初一到初三数学知识点总结:1. 有理数的运算:包括加法、减法、乘法、除法以及它们的混合运算。
掌握有理数的运算规则,如正负数的加减法,以及乘除法的符号变化。
2. 代数初步:学习代数式的基本运算,包括合并同类项、去括号、分配律等。
理解变量和常数的概念,以及如何表示简单的代数表达式。
3. 一元一次方程:学习解一元一次方程的方法,如移项、合并同类项、系数化为1等。
理解方程的解和解方程的概念。
4. 二元一次方程组:掌握二元一次方程组的解法,如代入法和加减消元法。
理解方程组的解和解方程组的概念。
5. 不等式:学习不等式的基本概念,包括不等号的含义、不等式的解集和解不等式的方法。
6. 函数的初步:了解函数的概念,包括自变量、因变量、函数的表达式和函数图像。
学习简单的线性函数和它们的图像。
7. 几何初步:学习点、线、面的基本性质,以及平面几何的基本概念,如角度、线段、平行线、垂线等。
8. 三角形:掌握三角形的分类,如等边、等腰、直角三角形等。
学习三角形的内角和定理、外角定理以及三角形的面积计算。
9. 四边形:了解四边形的基本性质,包括平行四边形、矩形、菱形、正方形等。
学习四边形的性质和面积计算。
10. 圆:学习圆的基本性质,包括圆心、半径、直径、圆周角、弦、弧等。
掌握圆的面积和周长的计算方法。
11. 立体几何:了解立体图形的基本性质,如长方体、正方体、圆柱、圆锥、球等。
学习立体图形的表面积和体积的计算。
12. 概率初步:学习概率的基本概念,包括随机事件、概率的计算方法和简单的概率问题。
13. 统计初步:了解数据的收集、整理和描述方法,包括数据的分类、图表的绘制和基本的统计量计算。
14. 数列:学习数列的基本概念,包括等差数列和等比数列的定义、通项公式和求和公式。
15. 代数方程:学习一元二次方程的解法,如配方法、公式法、因式分解法等。
了解高次方程和方程组的解法。
16. 函数和图象:进一步学习函数的性质,包括函数的单调性、奇偶性、极值和最值。
初中数学知识点全部归纳总结一、数与代数1. 有理数- 整数:正整数、零、负整数- 有理数的概念:整数和分数统称为有理数- 有理数的加法、减法、乘法、除法运算规则- 有理数的大小比较2. 整式与分式- 单项式:定义、同类项、合并同类项- 多项式:定义、加减运算、乘法运算- 分式:定义、值、加减运算、乘除运算、通分、约分3. 代数方程- 一元一次方程:解法、解的性质- 二元一次方程组:代入法、消元法- 一元二次方程:定义、解法(开平方法、配方法、公式法、因式分解法)4. 不等式- 不等式的概念:定义、基本性质- 一元一次不等式:解法、解集表示- 一元一次不等式组:解法、解集的确定5. 函数- 函数的概念:定义、函数图像- 线性函数:解析式、图像、性质- 二次函数:解析式、图像、顶点、对称轴、最值二、几何1. 平面图形- 点、线、面的基本性质- 角:分类、性质、角的计算- 三角形:分类、性质、内角和定理、海伦公式- 四边形:分类、性质、面积计算- 圆:基本概念、性质、圆周角定理、垂径定理、弧长计算2. 空间图形- 立体图形的基本概念- 柱、锥、台、球的体积和表面积计算- 棱柱、棱锥的体积计算3. 几何变换- 平移:定义、性质、坐标变化- 旋转:定义、性质、坐标变化- 轴对称:定义、性质、坐标变化4. 相似与全等- 全等三角形的判定条件- 相似三角形的判定条件- 相似比的概念及计算- 三角形的相似性质5. 解析几何- 坐标系:直角坐标系、坐标点的性质- 点的坐标表示、距离公式- 直线方程:点斜式、斜截式、两点式、一般式- 圆的方程:标准式、一般式三、统计与概率1. 统计- 数据的收集、整理、描述- 频数、频率、频数分布表- 平均数、中位数、众数的计算- 方差、标准差的计算2. 概率- 随机事件的概念- 事件的概率定义及计算- 等可能事件的概率- 条件概率、独立事件的概率四、数列1. 等差数列- 等差数列的定义- 通项公式、求和公式- 等差数列的性质2. 等比数列- 等比数列的定义- 通项公式、求和公式- 等比数列的性质以上是初中数学的主要知识点归纳总结。
各章节知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则(6分)9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则(6分)14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法(3分)17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则(6分)第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)(6分)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图(3分)5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线(3分)15.余角的概念16.补角的概念17.余角(补角)的性质(3分)七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定(3分)11.平行线的性质(3分)12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质(3分)第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征(3分)第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理(3分)9.等腰三角形的性质10.等边三角形的性质11.直角三角形的性质(6分)12.多边形及其相关概念(多边形、对角线、正多边形)13.多边形的内角和定理14.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)(6分)4.二元一次方程的应用(6分)5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质(3分)6.一元一次不等式的解法(3分)7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法(6分)第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)(6分)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)(6分)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定(SSS,SAS,ASA,AAS)(6分)5.直角三角形的判定(HL)6.角平分线的性质7.角平分线的判定(6分)第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质(6分)5.线段垂直平分线的判定(6分)6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定(6分)11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质(6分)第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质(3分)4.立方根的概念5.立方根的性质(3分)6.实数的概念7.实数的分类8.实数的相反数、绝对值(3分)9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质(7分)6.一次函数的解析式7.一次函数的图象及其性质(7分)8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式(3分)2.幂的乘方公式(3分)3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则(3分)6.平方差公式7.完全平方公式(3分)8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)(6分)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质(3分)3.约分与通分4.最简分式5.分母有理化(3分)6.分式乘除的法则7.分式加减的法则8.整数指数幂的运算性质(3分)9.分式方程的概念10.分式方程的解法(6分)11.分式方程的应用(7分)第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质(7分)3.反比例函数的应用第十八章《勾股定理》1.勾股定理(6分)2.勾股定理的逆定理(3分)第十九章《四边形》1.平行四边形的概念2.平行四边形的性质(7分)3.平行四边形的判定(7分)4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质(7分)8.菱形的概念9.菱形的性质(7分)10.菱形的判定11.正方形的概念12.正方形的性质与判定(7分)13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定(7分)第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数(3分)4.方差第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式(3分)3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则(6分)6.最简二次根式7.二次根式的加减法法则(3分)九年级上册第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)(6分)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)(6分)第二十三章《二次函数》1. 一元二次方程的概念2. 二次函数的基本形式3. 二次函数图象的平移4. 二次函数图像的画法5. 二次函数图像的性质(7分)6. 二次函数图像的表示方法7. 二次函数图像的图像与各项系数之间的关系(7分)8. 二次函数图象的对称9. 二次函数与一元二次方程(7分)10. 函数的应用第二十四章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质(6分)3.中心对称的相关概念(中心对称、对称中心、对称点)(6分)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征(3分)第二十五章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论(6分)3.弧、弦、圆心角、弦心距之间的关系定理(6分)4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质(3分)8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念(7分)12.切线的性质及判定定理(7分)13.切线长定理(7分)14.圆与圆的位置关系及其相关概念(7分)15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式(7分)17.圆锥及圆柱的侧面积及表面积(7分)第二十六章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式(3分)5.用列表法、树形图计算概率(7分)6.频率与概率的关系第二十七章《相似》1. 有关相似形的概念2. 比例的性质3. 平行线分线段成比例定理(3分)4. 相似三角形(判定,性质,应用)(7分)5. 位似第二十八章《解直角三角形》1. 直角三角形的性质(3分)2. 直角三角形的判定(6分)3. 锐角三角函数的概念4. 解直角三角形(7分)第二十九章《投影与视图》1. 平行投影2. 中心投影3. 正投影。
七年级数学上第一章有理数1.有理数2.数轴3.相反数4.绝对值5.有理数比大小6.互为倒数7. 有理数加法法则8.有理数加法的运算律9.有理数减法法则10 有理数乘法法则11 有理数乘法的运算律:12.有理数除法法则13.有理数乘方的法则:14.乘方的定义15.科学记数法16.近似数的精确位17.有效数字18.混合运算法则第二章整式的加减1.单项式2.单项式的系数与次数3.多项式4.多项式的项数与次数第三章一元一次方程1.一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”(2)画图分析法: …………多用于“行程问题”4.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C 正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.七年级数学下第五章相交线与平行线1.邻补角2.对顶角3.垂线4.平行线5.同位角、内错角、同旁内角:6.命题7.平移8.对应点9.定理与性质10垂线的性质:11.平行公理12.平行线的性质:13.平行线的判定:第六章平面直角坐标系1.有序数对2.平面直角坐标系3.横轴、纵轴、原点4.坐标5.象限第七章三角形1.三角形2.三边关系3.高4.中线5.角平分线6.三角形的稳定性6.多边形7.多边形的内角8.多边形的外角9.多边形的对角线10.正多边形11.平面镶嵌12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质,多边形内角和公式,多边形的外角和多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
初中数学知识点总结最全版一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念和性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用题5. 二元一次方程组- 代入法和消元法- 方程组的解的概念- 解二元一次方程组的应用题6. 不等式- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式- 线性函数和二次函数的图像及性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆 - 周长的计算:三角形、四边形、圆- 体积的计算:长方体、正方体、圆柱、圆锥3. 几何变换- 平移、旋转、对称(轴对称和中心对称)- 几何变换的性质和应用4. 解析几何- 坐标系的基本概念- 点的坐标和几何图形的坐标表示- 直线和曲线的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制:条形图、折线图、饼图 - 算术平均数、中位数和众数2. 概率- 概率的基本概念- 等可能事件的概率- 概率的加法和乘法法则- 简单事件和复合事件的概率计算四、综合应用题1. 数列- 等差数列的概念和性质- 等比数列的概念和性质- 数列的求和2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 统计与概率在实际问题中的应用3. 综合题- 结合数与代数、几何、统计与概率的知识点 - 解决综合性问题的能力培养以上总结了初中数学的主要知识点,学生在学习过程中应注重理解和应用,通过大量的练习来巩固所学知识,提高解题能力和数学思维。
《初一到初三的数学知识点总结.doc》(优选3篇)《初一到初三的数学知识点总结.doc》第1篇(一)概率1.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
2.互斥事件:不可能同时发生的两个事件叫做互斥事件。
3.对立事件:即必有一个发生的互斥事件叫做对立事件。
4.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
5.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
(二)有理数1.定义:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
2.相反数:指绝对值相等,正负号相反的两个数互为相反数。
3.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。
4.有理数的加减法:同号相加,把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
5.有理数的乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。
6.有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不为0的数,都得0。
《初一到初三的数学知识点总结.doc》第2篇第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
初中数学是数学学科的一部分,是指初中阶段学生学习的数学内容。
下面是初中各年级的主要数学知识点:
七年级数学知识点:
1.整数的加减乘除
2.小数的加减乘除
3.分数的加减乘除
4.百分数的意义、运算与应用
5.有理数的加减乘除
6.线段的长、面积和体积
7.几何图形的名称、性质和变换
8.平面镶嵌图形的拼凑与类比
9.数据统计与图表的制作与分析
10.实际问题的数学解法
八年级数学知识点:
1.乘法公式和因式分解
2.数轴上的有理数和二元一次方程
3.锐角、直角与钝角的概念及判断
4.相交线与平行线的判定条件
5.多边形的内角和外角性质
6.正三角形、等边三角形及其性质
7.直角三角形的三角函数
8.空间图形的名称和表示法
9.表格数据的统计与分析
10.几何推理的基本方法和步骤
九年级数学知识点:
1.比例与比例推理
2.一元一次方程和二元一次方程组
3.一元一次不等式和二元一次不等式组
4.相似三角形的判定与性质
5.圆的定义、性质和计算
6.根式的计算与应用
7.平面向量的定义、运算和应用
8.统计与概率
9.三视图和投影图
10.数学建模基础知识
以上是初中各年级数学的主要知识点,很多知识点的内容还涉及到具体的计算、公式推导、证明和应用等方面。
学生在学习数学知识时,需注意理解概念,熟练掌握运算规则,注重实际应用,培养问题分析和解决问题的能力。
初一到初三数学必记重要知识点汇总
一、初一:
1、数与式:绝对值、有理数、分数和小数、根号、百分数和分数的转换、简单的分
式和带分数的因式、无理数的表示与应用;
2、一元一次方程:一元一次方程的解法:利用公式法和简图法解一元一次方程及应用;
3、比:比的定义、可比性和不可比性、等比数列、比的简化、简化等比数的应用;
4、分数的加减法:分数的意义、分数加减法的等幂性、分数大小的比较;
5、角:角的单位、角的规范弧和极弧、正、任意角、三角形内角和外角和外心角、
三角函数。
二、初二:
1、线性一次函数:定义及特征、函数关系、一元一次函数图象和抛物线图象、函数
的性质;
3、几何:直线的性质及其几何性质、圆的定义及其圆的性质、图形面积与周长;
4、三角函数:正弦、余弦函数、三角函数的综合应用;
5、不等式:一元不等式的性质、一元不等式的解法、一元不等式的解集及应用。
三、初三:
1、三角形:三角形的性质与三角函数、相似三角形的性质与结论、余弦定理的应用、海伦公式的应用;
2、统计:分类数据的描述性统计量,频率分布表、算术平均数、几何平均数、各种
概率和几何平均数的比较等;
3、概率与组合:定义和特征、概率的计算、条件概率、独立事件、互斥事件、组合
中的顺序;
4、函数:函数的性质、函数的值域、函数图象、曲线在函数图象中的位置;
5、几何图形:圆柱体、立体结构、图形中的折线、体积、表面积、体积体积系数等。
数学初一到初三的所有知识点
数学初一到初三的知识点涵盖了许多基础但重要的概念和方法,以下是其中的一些关键内容:
1.初一数学知识点:
有理数:包括有理数的定义、数轴、相反数、绝对值等概念,以及有理数的加减法、乘法法则。
整式:学习整式的加减、整式的乘法、因式分解等。
一元一次方程:掌握一元一次方程的概念、解法,以及方程的应用。
图形的初步认识:了解线段、角、平行线、相交线等基本几何元素及其性质。
2.初二数学知识点:
函数:学习函数的概念、正比例函数、一次函数等,理解函数的图象和性质。
三角形:掌握三角形的分类、性质,以及全等三角形、相似三角形的判定和性质。
四边形:学习平行四边形、矩形、菱形、正方形的性质和判定。
轴对称与中心对称:理解轴对称和中心对称的概念,掌握其性质和应用。
3.初三数学知识点:
二次函数:学习二次函数的定义、图象、性质,以及最值问题。
圆:掌握圆的基本性质,包括垂径定理、圆周角定理等,以及点和圆、直线和圆的位置关系。
概率初步:学习概率的基本概念、计算,以及利用概率解决实际问题。
反比例函数:理解反比例函数的概念、图象和性质,掌握其应用。
此外,还有数据的收集与整理、图形的变换(如平移、旋转、翻折等)、勾股定理、锐角三角函数、投影与视图等知识点也是初中数学的重要内容。
初中数学知识点总结完整版一、数与代数1、有理数有理数包括整数和分数。
整数又包括正整数、零和负整数;分数包括正分数和负分数。
有理数的运算包括加、减、乘、除、乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得 0。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。
除法法则:除以一个数等于乘以这个数的倒数;0 除以任何一个不等于 0 的数都得 0。
乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,常见的无理数有π、\(\sqrt{2}\)等。
实数的运算性质和有理数的运算性质相同。
平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
正数的立方根是正数,负数的立方根是负数,0 的立方根是 0。
3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
代数式的求值:把代数式中的字母用给定的值代入计算,求出代数式的值。
4、整式单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数,单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
整式的加减:整式加减的实质是合并同类项。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
初一到初三数学知识点总结一、初一数学知识点总结1. 整数√初一的数学主要学习正整数、负整数的概念及运算法则,例如同号数相加,异号数相加,绝对值等。
2. 分数√学习分数的概念和分数的加减乘除运算。
3. 一元一次方程√学习一元一次方程的概念及解法,包括用通俗方法解方程、用等式性质解方程等。
4. 比例与比例式√学习比例的概念,及比例式的变形和应用。
5. 数据√学习数据的收集、整理、分析方法,学会绘制统计图表。
6. 几何√学习平行线与角、相交线与角等几何基本概念和基本图形的性质。
二、初二数学知识点总结1. 一元一次方程与一元二次方程√学习一元一次方程与一元二次方程的含义及解的方法,同时要学会应用到实际问题中。
2. 多项式√学习多项式的基本概念、多项式的加减乘除以及多项式的因式分解和提公因式等。
3. 几何√学完平面图形的性质,学习平行四边形、梯形、圆的性质及计算等。
4. 直角三角形与勾股定理√学习直角三角形的性质、三角函数的概念及运用,同时也要学习勾股定理的应用。
5. 图形的相似√学习相似三角形的性质、比的运用,区别检验相似三角形、判定两个平面图形是否相似等。
6. 统计√学习统计样本、频数分布、频数分布表及绘制各种统计图表。
三、初三数学知识点总结1. 二次函数√学习二次函数的概念、图像及性质,函数的最值问题及二次函数与一元二次方程的关系。
2. 数列√学习等差数列、等比数列及它们的前n项和的计算,应用到生活中。
3. 三角函数√学习三角函数的概念、性质及图像,利用三角函数解实际问题。
4. 空间几何√学习空间图形的性质与计算,空间图形的投影与沿截面的截面图等。
5. 概率√学习独立事件、互斥事件、概率的计算、事件的并、交及补等。
6. 统计√学习随机变量的概念、离散型与连续型随机变量及它们的概率分布等。
以上就是初一到初三数学知识点总结,初一到初三数学知识点博大精深,要想学好数学,一定要打好数学的基础。
希望同学们能够认真学习,掌握好这些知识点。
初一到初三数学知识点初一数学知识点有理数:有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
理解正数、负数的概念,掌握有理数的加、减、乘、除、乘方运算规则。
数轴是理解有理数的重要工具,数轴上的点与有理数一一对应。
整式:整式包括单项式和多项式。
要掌握整式的加减运算,合并同类项是关键。
一元一次方程:会用方程解决实际问题,找出等量关系是列方程的核心。
掌握一元一次方程的解法,包括去分母、去括号、移项、合并同类项、系数化为 1 等步骤。
图形初步认识:认识直线、射线、线段,掌握它们的性质和表示方法。
角的度量和角的比较,余角和补角的概念也要清楚。
相交线与平行线:理解对顶角、邻补角的概念和性质,垂线的性质,平行线的判定和性质。
实数:了解平方根、算术平方根、立方根的概念,掌握实数的运算。
平面直角坐标系:理解平面直角坐标系的概念,能在坐标系中表示点的位置,以及根据点的坐标描出点。
初二数学知识点三角形:三角形的三边关系、内角和定理,全等三角形的判定(SSS、SAS、ASA、AAS、HL),等腰三角形和等边三角形的性质和判定。
勾股定理:掌握勾股定理及其逆定理,并能运用它们解决实际问题。
平行四边形:包括平行四边形、矩形、菱形、正方形的性质和判定。
一次函数:理解一次函数的概念、图象和性质,能用一次函数解决实际问题。
数据的分析:平均数、中位数、众数的计算和意义,方差的计算和意义。
初三数学知识点二次函数:二次函数的图象和性质,抛物线的顶点、对称轴,二次函数的解析式(一般式、顶点式、交点式),用二次函数解决实际问题,如最值问题。
一元二次方程:一元二次方程的解法(配方法、公式法、因式分解法),根的判别式,根与系数的关系(韦达定理)。
旋转:图形的旋转的性质,中心对称的概念和性质。
圆:圆的有关概念,垂径定理,圆心角、弧、弦之间的关系,圆周角定理,圆的切线的性质和判定。
概率初步:随机事件,概率的定义和计算方法。
反比例函数:反比例函数的图象和性质,用反比例函数解决实际问题。
初中数学知识点大全总结整理一、有理数1.有理数的概念与性质2.有理数的比较与排序3.有理数的运算(加减乘除)4.有理数的乘方与乘方根5.有理数的四则混合运算二、整数1.整数的概念与性质2.整数的比较与排序3.整数的加减法运算4.整数的乘法运算5.整数的除法运算6.整数的乘方与乘方根三、分数1.分数的概念与性质2.分数的化简与比较3.分数的加减法运算4.分数的乘法运算5.分数的除法运算6.分数的乘方与乘方根四、小数1.小数的概念与性质2.小数与分数的相互转换3.小数的加减法运算4.小数的乘法运算5.小数的除法运算6.小数的乘方与乘方根五、代数基础1.代数式的概念与性质2.代数式的加减法运算3.代数式的乘法运算4.代数式的整除运算5.代数式的分离与合并6.代数式的系数与次数六、一元一次方程1.一元一次方程的概念与性质2.一元一次方程的等价变形3.一元一次方程的解与解集4.解一元一次方程的应用问题七、一元一次不等式1.一元一次不等式的概念与性质2.一元一次不等式的解与解集3.一元一次不等式的解集的表示4.解一元一次不等式的应用问题八、平面图形1.平面图形的分类与性质2.三角形的性质与分类3.四边形的性质与分类4.特殊的四边形(平行四边形、矩形、正方形等)5.多边形的性质与分类6.圆的性质与判定九、图形的计算1.从图形中抽象出代数式2.根据已知条件解图形问题3.利用图形计算长度、面积、周长4.解决含图形的复合问题十、几何变换1.平移的概念与性质2.平移的性质与判定3.旋转的概念与性质4.旋转的性质与判定5.对称的概念与性质6.对称的性质与判定十一、统计与概率1.统计调查与统计数据的整理与表示2.抽样调查与统计数据的分析3.概率的基本概念与性质4.事件的相互排斥与相互独立5.概率计算与应用。
初中数学知识点归纳总结一元一次方程1.概念:含有一个未知数,未知数的最高次数为1,这样的方程叫一元一次方程。
2.形式:ax + b = 0(a、b是常数,且a≠0)3.解法:移项、合并同类项、化简系数二元一次方程1.概念:含有两个未知数,未知数的最高次数为1,这样的方程叫二元一次方程。
2.形式:ax + by = c(a、b、c是常数,且a、b≠0)3.解法:消元法、代入法、行列式法一元一次不等式1.概念:含有一个未知数,未知数的最高次数为1,这样的不等式叫一元一次不等式。
2.形式:ax > b(a、b是常数,且a≠0)3.解法:同解一元一次方程,注意不等号的方向4.概念:分式是指形如a/b的表达式,其中a、b是整式,且b≠0。
5.性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。
6.运算:加减乘除、分式的乘方点、线、面1.点:没有长度、宽度、高度的物体。
2.线:只有长度,没有宽度、高度的物体。
3.面:只有长度和宽度,没有高度的物体。
直线方程1.点斜式:y - y1 = k(x - x1)(k是直线的斜率,(x1, y1)是直线上的一点)2.截距式:y = kx + b(k是直线的斜率,b是直线在y轴上的截距)三角形1.概念:由三条线段首尾顺次连接所组成的图形叫三角形。
2.性质:三角形的内角和为180°,三角形的对边相等。
3.分类:不等边三角形、等腰三角形、等边三角形四边形1.概念:由四条线段首尾顺次连接所组成的图形叫四边形。
2.性质:四边形的内角和为360°,四边形的对边相等。
3.分类:矩形、平行四边形、梯形、菱形4.概念:平面上到一个固定点距离相等的所有点的集合叫圆。
5.性质:圆的半径相等,圆心到圆上任意一点的距离相等。
6.公式:圆的周长C = 2πr,圆的面积S = πr²概率与统计1.概念:事件发生的可能性叫概率。
2.求法:列举法、树状图法、列表法3.概念:统计学是研究数据收集、处理、分析、解释的科学。
初一到初三数学知识点一、前言本文旨在为初中阶段学生提供一个关于初一至初三数学知识点的概览。
这些知识点将按照年级和主题进行分类,以便学生能够更好地理解和复习。
二、初一数学知识点1. 数与代数- 自然数、整数、有理数的认识和运算- 代数表达式的理解和简化- 一元一次方程及其解法- 不等式及其解集的表示和解法2. 图形与几何- 平面几何图形的基本性质- 直线、射线、线段、角的概念及其性质- 三角形的基本性质和分类- 四边形的基本性质和分类3. 统计与概率- 数据的收集和整理- 基本的统计图表(条形图、折线图、饼图)的绘制和解读- 简单随机事件的概率计算三、初二数学知识点1. 数与代数- 整式的加减乘除运算- 因式分解的技巧- 二元一次方程组的解法- 一元二次方程的基本解法2. 图形与几何- 圆的基本性质和圆的方程- 空间几何图形的认识- 相似三角形的性质和判定- 平行线与平行公理3. 函数- 函数的概念及其表示方法- 线性函数和二次函数的图像和性质 - 函数的基本运算4. 统计与概率- 复杂统计图表的绘制和解读- 概率的进一步理解和计算- 排列组合的基本概念四、初三数学知识点1. 数与代数- 无理数的认识和运算- 绝对值和不等式的深入理解- 二次方程的解法总结- 多项式函数和有理函数的概念2. 图形与几何- 三角形和四边形的面积计算公式- 圆的性质深入和圆的面积计算- 空间几何体的体积和表面积计算- 几何变换(平移、旋转、对称)3. 函数与方程- 高次函数的图像和性质- 指数函数和对数函数的基本概念- 函数方程的解法4. 统计与概率- 统计推断的基本概念- 概率分布和期望值的计算- 条件概率和独立事件的概念五、结语以上概览了初一至初三数学的主要知识点。
学生应根据这些知识点进行系统的学习和复习,以确保对初中数学内容的全面掌握。
教师和家长也应根据这些知识点指导学生,帮助他们建立扎实的数学基础。
初中数学是基础数学的延伸和扩展,主要内容包括代数、几何、概率与统计等。
下面将初中数学的各年级知识点进行总结。
六年级:1.自然数与整数:-自然数的认识与运算;-整数的认识与运算。
2.小数与分数:-小数的认识、读法和数轴位置;-分数的认识、读法和数轴位置;-小数与分数的相互转化。
3.几何:-线段和角的认识;-相交线、平行线和垂直线的关系;-三角形、四边形和多边形的认识。
4.推理与综合:-数字规律的发现与总结;-数字排列的智力游戏;-数据的收集与整理。
七年级:1.有理数:-有理数的认识与运算;-分数的运算与应用;-小数的运算与应用。
2.代数与方程:-代数式的认识与运算;-一元一次方程的认识与解法;-一元一次方程的应用问题。
3.几何:-角的分类与性质;-平行线与夹角;-相似与全等。
4.统计与概率:-统计数据的收集与整理;-数据的图表表示与分析;-概率的认识与计算。
八年级:1.平方根与立方根:-平方根的认识与计算;-立方根的认识与计算;-无理数的认识与应用。
2.二次根式与方程:-二次根式的性质与运算;-二次根式的化简与应用;-二次方程的认识与解法。
3.几何:-平面与空间图形的认识与性质;-勾股定理与平面直角三角形的计算;-圆的认识与计算。
4.统计与概率:-抽样调查与统计;-折线图、条形图和饼图的绘制与分析;-概率的计算与应用。
九年级:1.平面直角坐标系:-平面直角坐标系的认识与应用;-点与直线的坐标表示与性质;-图形的运动与变换。
2.函数与方程:-函数的认识与应用;-一元二次方程与一元二次函数的性质与关系。
3.三角函数:-三角函数的认识与计算;-三角函数的图像与性质;-三角函数的应用。
4.空间图形与立体几何:-空间图形的认识与性质;-空间图形的投影与旋转;-空间图形的计算与应用。
总结:初中数学的知识点包括自然数与整数、小数与分数、代数与方程、几何、概率与统计等各个方面。
六年级主要学习自然数与整数的运算、小数与分数的认识与运算、几何的基本概念。
(完整版)初中数学知识点归纳总结(精华版)【完整版】初中数学知识点归纳总结(精华版)一、数的性质与运算1. 自然数与整数自然数是大于等于0的整数,而整数包括正整数、负整数和0。
2. 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。
3. 实数实数包括有理数和无理数,可以用数轴表示。
4. 数的分类与运算规律数可以分为正数、负数和零,对于加法、减法、乘法和除法,都有相应的运算法则和运算规律。
二、代数表达式与简单方程1. 代数表达式代数表达式是用数、字母和运算符号表示的数学式子。
2. 同类项与合并同类项同类项具有相同的字母部分和相同的指数,可以合并同类项简化代数表达式。
3. 方程与解方程方程是含有未知数的等式,解方程就是求出使等式成立的未知数的值。
三、平面图形与坐标系1. 点、直线、线段与射线点是没有长度、宽度和高度的,直线是由无穷多个点连在一起的路径,线段是在两个点之间的部分,射线是一个起点固定的直线段。
2. 角与三角形角是由两条射线共享一个公共起点形成的,三角形是由三条线段相交形成的,有等边三角形、等腰三角形和直角三角形等。
3. 坐标系与坐标坐标系由横纵两条相互垂直的线段组成,坐标是表示一个点在坐标系中位置的数对。
四、比例与相似1. 比例和比例的性质比例是两个等式之间的比较关系,其中有比的前项和比的后项,比例具有相等的比值。
2. 类比与相似类比是指两个或多个比例关系相同的比,相似是指形状相似,但尺寸不同的图形。
3. 相似三角形与比例定理相似三角形的对应角相等,对应边成比例,有相似三角形的比例定理可以解决各种相关问题。
五、数与代数1. 分式与整式分式是由分子和分母构成的,整式则不包含分式。
2. 一元二次方程与解方程一元二次方程是最高次项的次数为2的一元方程,可以使用求根公式求解。
六、函数与图象1. 函数的概念与函数的图象函数是一个将定义域中的每个元素映射到值域中唯一元素的关系,函数的图象可以表示函数各点的对应关系。
初中各年级数学知识点总结大全大家都知道,初中数学学习是对学生逻辑计算能力的培养,想要学好初中数学,就要多总结所学知识。
下面是小编为大家整理的关于初三数学知识点大全,希望对您有所帮助!初一数学知识点第一章有理数1.1 正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。
(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
mì求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。
在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章一元一次方程2.1 从算式到方程方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)把等式一边的`某项变号后移到另一边,叫做移项。
第三章图形认识初步3.1 多姿多彩的图形几何体也简称体(solid)。
包围着体的是面(surface)。
3.2 直线、射线、线段线段公理:两点的所有连线中,线段最短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量1度=60分 1分=60秒 1周角=360度 1平角=180度3.4 角的比较与运算如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章数据的收集与整理收集、整理、描述和分析数据是数据处理的基本过程。
第五章相交线与平行线5.1 相交线对顶角(vertical angles)相等。
过一点有且只有一条直线与已知直线垂直(perpendicular)。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5.2 平行线经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
5.3 平行线的性质两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。
第六章平面直角坐标系6.1 平面直角坐标系含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。
第七章三角形7.1 与三角形有关的线段三角形(triangle)具有稳定性。
7.2 与三角形有关的角三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角7.3 多边形及其内角和n边形内角和等于:(n-2)?180度多边形(polygon)的外角和等于360度。
第八章二元一次方程组8.1 二元一次方程组方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。
把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2 消元将未知数的个数由多化少、逐一解决的想法,叫做消元思想。
第九章不等式与不等式组9.1 不等式用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
9.3 一元一次不等式组把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。
第十章实数10.1 平方根如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。
求一个数a的平方根的运算,叫做开平方(extraction of square root)。
10.2 立方根如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。
求一个数的立方根的运算,叫做开立方(extraction of cube root)。
10.3 实数无限不循环小数又叫做无理数(irrational number)。
有理数和无理数统称实数(real number)。
初二数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。
定义:满足a +b =c 的三个正整数,称为勾股数。
第二章实数定义:任何有限小数或无限循环小数都是有理数。
无限不循环小数叫做无理数 (有理数总可以用有限小数或无限循环小数表示) 一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a 的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章图形的平移与旋转定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。
旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
平行四边形:两组对边分别平行的四边形.。
对边相等,对角相等,对角线互相平分。
两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形菱形:一组邻边相等的平行四边形……(平行四边形的性质)。
四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。
矩形:有一个内角是直角的平行四边形……(平行四边形的性质)。
对角线相等,四个角都是直角。