六年级数学百分数知识点总结
- 格式:docx
- 大小:38.35 KB
- 文档页数:7
六年级上册百分数数学知识点百分数在我们的数学学习里可有趣啦,就像一个神奇的魔法数。
百分数是什么呢?百分数其实就是表示一个数是另一个数的百分之几的数。
比如说,咱们班有50个同学,其中25个同学喜欢数学,那喜欢数学的同学占全班同学的多少呢?就是用25除以50,得到0.5,把0.5变成百分数就是50%啦。
这就像把一块蛋糕分成100份,喜欢数学的同学就占了其中的50份呢。
百分数在生活里到处都是。
就像商场里的折扣。
我和妈妈去买衣服,看到一件衣服原来要200元,现在打八折。
八折是什么意思呢?就是这件衣服现在的价格是原来价格的80%。
那现在这件衣服多少钱呢?我们就用200乘以80%,也就是200×0.8 = 160元。
这样我们就能算出打折后的价格啦。
还有啊,在学校的一次考试中。
满分是100分,我考了85分。
那我的成绩占满分的多少呢?就是85÷100 = 85%。
这就很清楚地表示出我在这次考试中的情况啦。
百分数和分数也有关系呢。
比如说1/2这个分数,把它变成百分数就是50%。
怎么变的呢?我们先把1/2算出来是0.5,再把0.5变成百分数就是50%。
不过要注意哦,百分数后面是不能带单位的,和分数有时候不太一样。
像1/2米,这里的分数可以带单位表示具体的长度,但是50%就不能带单位。
再讲讲百分数的读写吧。
读百分数的时候,先读百分号,再读前面的数字。
像35%,就读作百分之三十五。
写百分数的时候呢,先写数字,再写百分号。
在比较百分数大小的时候也很简单。
就像50%和30%,很明显50%比30%大。
这就好像是50个小糖果比30个小糖果要多一样。
我们还会遇到求一个数的百分之几是多少的问题。
就像爷爷种了100棵树,其中20%是苹果树。
那苹果树有多少棵呢?我们就用100乘以20%,100×0.2 = 20棵,这样就知道苹果树的数量啦。
百分数在统计里也很有用。
比如说我们统计学校各个年级喜欢阅读的同学的比例。
六年级上册数学百分数知识点一、概念部分1、百分数的概念:“百分数”是指用百分比表示的数值,它是一种数学量度,表示数量比值或占比的相对大小,用“%”的表示法。
2、百分数的读法:百分数的读法是把“百分之”当作“分之”,把“百分点”当作“点”。
例如:25%读作“百分之二十五”。
二、百分数计算法则1、百分比计算:百分比计算是指给定一个比例,按照给定的比例计算出百分比。
例如:给定一个事物的价格与它刚出售时的价格之比,则可得出出售后事物价格的百分比。
2、百分数改变法则:百分数改变法则就是把某个百分数的值转化成另外的百分数的值,其计算方法为:现有百分数=原来百分数+(改变量/原来基准数量)×100%。
3、等比改变法则:等比改变法则就是把某个百分数按照一个特定的比例改变成其他百分数,其计算法则为:新百分比=(原百分比)×新比例。
三、小数与百分数的换算1、小数转百分数:小数转换为百分数的方法是:将小数乘以100,在后面加上“%”号,即可把小数转成百分比。
例如:0.35转换为百分数的结果就是35% 。
2、百分数转小数:百分数转换为小数的方法是:将百分数除以100,即可把百分数转成小数。
例如:25%转换为小数的结果就是0.25 。
四、比例计算1、定比例计算:定比例计算是指在某一比例下计算其百分比,其计算公式为:新百分数=(原百分数)×(比例/原比例)。
例如:一杯水中加入15克糖,水与糖的容量之比约为4:1,那么糖的百分数就可以用定比例计算的公式求出:新百分数=(原百分数)×(比例/原比例)=(1)×(4/1)=4% 。
2、变比例计算:变比例计算是指当比例发生变化时,百分比也发生变化,其计算公式为:新百分数=(原百分数)×变比例/原比例。
例如:一杯水中已加入4%的糖,当我们把水的容量增加一倍后,糖的百分比可以用变比例计算的公式求出:新百分数=(原百分数)×(2/1)=4%×2/1=8% 。
四、百分数一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
2、千分数:表示一个数是另一个数的千分之几。
3、百分数和分数的主要联系与区别:(1)联系:都可以表示两个量的倍比关系。
(2)区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。
(二)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。
2、分数化成百分数:① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(三)常见的分数与小数、百分数之间的互化21 = 0.5 = 50% 51 = 0.2 = 20% 85 = 0.625 = 62.5% 41 = 0.25 = 25% 52 = 0.4 = 40% 81 = 0.125 = 12.5% 43 = 0.75 = 75% 53 = 0.6 = 60% 83 = 1.375 = 37.5% 161 = 0.0625 = 6.25% 54 = 0.8 = 80% 87 = 0.875 = 87.5% 251 = 0.04 = 4﹪ 252 = 0.08 = 8﹪ 253 = 0.12 = 12﹪ 254 = 0.16 = 16﹪ 三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:①合格率 = %100⨯产品总数合格产品数 ②发芽率 = %100⨯种子总数发芽种子数 ③出勤率 = %100⨯总人数出勤人数 ④达标率 = %100⨯学生总人数达标学生人数 ⑤成活率 = %100⨯总数量成活的数量 ⑥出粉率 = %100⨯出粉物的重量粉的重量 ⑦烘干率 = %100⨯烘干前的重量烘干后的重量 ⑧含水率 =%100⨯-烘干前的重量烘干后的重量烘干前的重量一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
人教版六年级数学上册百分数知识点归纳1、百分数表示一个数是另一个数的百分之几。
百分数也叫做百分比或百分率。
2、百分数通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示,读作“百分之几”。
例、13%读作百分之十三。
知识点二、百分数与分数的区别1、百分数只表示两个数的倍比关系。
但分数既可以表示具体的数,也可以表示两个数的倍比关系。
2、因此百分数后面不能带单位,分数后面可以带单位。
例、“11%升油”是错误的说法。
但3、百分数和分数都有分子和分母。
例、11%的分子是11,分母是100.4、百分数的分子可以是整数,也可以是小数。
但分数的分子只能是不为的整数。
例、3.7%是正确的写法。
但3.710011100升油是正确的说法。
是毛病的写法,因为还没化到最简,3.7100应当写成3710005、百分数不可以约分,分数可以约分。
例、18%不可以约分,但18100可以约分为。
509知识点三、百分数、分数、小数之间的转换1、百分数化分数:先写成分母是100的分数,再约分到最简。
2、分数化百分数:分子分母乘以或除以相同的数(除外),使分母化为100,再写成百分数的形式。
3、百分数化小数:小数点向左移动两位,然后去掉百分号。
4、小数化百分数:小数点向右移动两位,然后写上百分号。
知识点四、百分率公式出勤率=百分率=满足情况的数量总数实际缺勤人数总人数100%命中率=命中的次数总射击数100%成活率=成活的棵树总棵数100%100%应用以上这个公式灵活变通来做题,这样别的的率例如及格率、含盐率、出米率等都能写相干公式来。
温馨提醒:以上这些“率”都不会超过100%。
增长率和下降率的公式比较特殊:1、增长率=2、降低率=增长后的量−增长前的量增长前的量100%100%增长前的量−增长后的量增长前的量温馨提醒:增长率、下降率能够超过100%。
知识点五、百分数应用题1、求A的百分之几,就是求:A×百分之几。
2、已知A的百分之几是几何,求A?就是求:A的百分之几÷对应的百分数。
六年级百分比知识点百分比是我们在日常生活中经常会遇到的概念,它可以帮助我们衡量和比较不同数量之间的关系和变化。
在六年级学习的数学知识中,百分比也扮演着非常重要的角色。
下面是一些关于六年级百分比知识点的讨论。
一、百分数的意义和表示方法百分数是将一个数表示为100等分中的若干等分之一,用百分号“%”表示。
例如,78%表示78除以100的结果。
百分数常用于表示比例、比率、增长率、减少率等。
二、百分数与分数和小数的转换1. 百分数转换为分数:将百分数的数值除以100,并将分数化简为最简形式。
例如,25%转换为分数为1/4。
2. 分数转换为百分数:将分数转化为小数,再将小数乘以100并加上百分号。
例如,3/5转换为百分数为60%。
3. 小数转换为百分数:将小数转化为分数,并按照分数转换为百分数的方法进行转换。
例如,0.75转换为百分数为75%。
三、百分数的计算1. 百分数的增加和减少:当一个数值增加或减少一定百分比时,可以使用以下公式进行计算:增加量 = 原始数值 ×增加百分比减少量 = 原始数值 ×减少百分比最终值 = 原始数值 ±增加量/减少量2. 百分数的分配:当一个数值需要按照一定的比例进行分配时,可以使用以下公式进行计算:分配量 = 原始数值 ×百分比四、百分比问题的应用1. 找出百分数:已知一个数值是另一个数值的百分之多少,可以使用以下公式进行计算:百分数 = 已知数值 / 参照数值 × 100%2. 找出整体数值:已知一个数值占另一个数值的百分之多少,可以使用以下公式进行计算:整体数值 = 已知数值 / 百分数 × 100%五、百分比在实际生活中的应用百分比在日常生活中广泛应用于各个领域,例如商业、金融、统计和科学等。
以下是一些实际应用的例子:1. 打折:商场中的商品打折销售时,常常以百分数表示折扣的力度,例如“优惠5%”。
2. 统计分析:在统计学中,百分比可用于描述人口比例、比赛胜率、市场份额等。
六年级百分数概念总结
百分数是数学中常见的一个概念,它可以帮助我们表示一部分相对于整体的比例关系。
以下是关于百分数的一些基本概念总结:
1. 百分数的定义: 百分数是以百为基数,表示一部分相对于整体的多少的一种表示方法。
它通常用百分号“%”表示。
2. 百分数的计算方法: 百分数的计算是将某个数与总数相乘后除以100,然后加上百分号。
例如,如果某项商品的销售额是800元,而总销售额是5000元,这个商品的销售额所占的百分比为(800 / 5000) × 100% = 16%。
3. 百分数的转化: 百分数可以转化为小数或分数。
将百分数除以100就可以得到对应的小数,例如,25% = 0.25。
如果需要将百分数转化为分数,只需将百分数的数值写在分子上,分母为100,例如,75% = 75/100。
4. 百分数之间的比较: 当两个百分数进行比较时,可以比较它们所代表的数值大小,也可以将它们转化为小数进行比较。
通过比较两个百分数,我们可以判断哪个比例更大或更小。
5. 百分数与实际问题的应用: 百分数在日常生活中有着广泛的应用,例如表示考试成绩、折扣、增长率等。
通过掌握百分数的概念和计算方法,我们可以更好地理解和解决实际问题。
以上是关于六年级百分数概念的总结。
在学习过程中,我们可以通过练习和实际应用来提高对百分数的理解和运用能力。
百分数一、知识要点1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
百分数通常不写成分数形式,而采用百分号“%”,百分数后面不能带单位名称。
2、百分数和分数的主要联系与区别(1)联系:都可以表示两个量的倍比关系。
(2)区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数比如:2.5%;而分数的分子不能是小数,只能是除0以外的自然数。
③、百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分数的分母时,不能读成一百分之几,而只能读作“百分之几”3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
如:5% 20%4、百分数、分数、小数的互化(1)、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
如:0.23 5 0.026 三个数字化成百分数是:23%,500% ,2.6%(2)、百分数化成小数:把小数点向左移动两位,同时去掉百分号。
如:20% ,56%,3.7% 三个数字化成小数是:0.2 0.56 0.037(3)、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。
如:25% 40% 化成分数是:25125%1004==40240%1005==(4)、分数化成百分数:①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
如:25化成百分数形式:22204040%5520100⨯===⨯;②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
如:34化成百分数形式:3×0.75=75%4=(二)百分数应用题百分数应用题(一)求增加百分之几?减少百分之几?公式:增加百分之几=增加的部分÷单位1减少百分之几=减少的部分÷单位1例如:1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。
六年级百分数知识点总结在数学学科中,百分数是一个常见而重要的概念。
学习和掌握百分数的知识对于六年级学生来说是非常关键的。
本文将对六年级百分数的相关知识点进行总结,以帮助学生更好地理解和应用这一概念。
一、百分数的定义百分数是指以100为基数的分数。
它可以表示一个数在100个单位中所占的比例。
例如,50%表示一个数占总数的一半,75%表示一个数占总数的三四分之一。
二、百分数的转化与计算1. 读写百分数:将百分数转化为小数,将百分之后的数除以100即可,例如:30%转化为小数为0.30。
将百分数转化为分数时,将百分数除以100,并简化分数,例如:50%转化为分数为1/2。
2. 小数转化为百分数:将小数转化为百分数时,将小数乘以100,并在后面加上百分号,例如:0.75转化为百分数为75%。
3. 分数转化为百分数:将分数转化为百分数时,先将分数转化为小数,再将小数转化为百分数,例如:2/5转化为百分数为40%。
4. 计算百分数:计算百分数时,通常需要分三个步骤:先找到基数,再找到所求的比例,最后将比例转化为百分数。
例如:某班有30名男生和40名女生,求男生所占的百分比。
可以通过将男生人数除以总人数(男生人数加女生人数)来得到比例,然后将比例转化为百分数。
三、百分数的应用百分数在我们日常生活中有着广泛的应用,下面列举几个常见的应用场景。
1. 打折:商场常常会进行各种打折活动,例如某商品原价100元,标明打8折,那么实际需要支付的价格就是100乘以0.8,即80元。
2. 成绩百分比:学校的考试成绩通常以百分数的形式表示,例如某学生的数学考试成绩为85%,表示该学生在全班学生中的成绩排在前15%。
六年级百分数的知识点百分数(Percentage)是数学中的常见概念,也是六年级学生需要掌握的重要知识点。
百分数用于表示一个数相对于100的比例关系,广泛应用于各个领域。
在本文中,将详细介绍六年级学生需要了解的百分数的定义、转化、计算以及应用等知识点。
一、百分数的定义百分数指的是把一个数表示为百分之几的形式。
在百分之几中,百分号(%)表示“除以100”,可以将百分数理解为分数的一种形式。
例如,75%可以表示为75/100,简化后为3/4。
因此,百分数的定义可以总结为:百分数 = 数/100。
二、百分数的转化1. 百分数转化为小数:可以通过把百分数末尾的百分号去掉,然后除以100来得到相应的小数。
例如,75%转化为小数的计算步骤为75 ÷ 100 = 0.75。
2. 小数转化为百分数:可以通过把小数乘以100,并在末尾加上百分号来得到相应的百分数。
例如,0.75转化为百分数的计算步骤为0.75 × 100 = 75%。
3. 百分数转化为分数:可以将百分数的数值作为分子,分母为100化简得到分数形式。
例如,75%转化为分数的计算步骤为75/100,化简后为3/4。
4. 分数转化为百分数:可以将分数的数值乘以100,并在末尾加上百分号来得到相应的百分数。
例如,3/4转化为百分数的计算步骤为3/4 × 100 = 75%。
三、百分数的计算1. 百分数的加减:当对两个百分数进行加减运算时,可以先把百分数转化为小数,然后进行小数的加减运算,最后再将结果转化为百分数形式。
例子:计算 40% + 25%步骤:40% + 25% = 0.40 + 0.25 = 0.65所以,40% + 25% = 65%2. 百分数与数的乘除:当对一个百分数与一个数进行乘除运算时,可以先把百分数转化为小数,然后进行小数的乘除运算,最后再将结果转化为百分数形式。
例子:计算 60% × 80步骤:60% × 80 = 0.60 × 80 = 48所以,60% × 80 = 48四、百分数的应用1. 百分比的比较:百分数可以用来比较两个数的大小或者多个数之间的相对大小。
六年级上册数学百分数知识点
六年级上册数学百分数的知识点主要包括以下内容:
1. 百分数的概念:百分数是以100为基数的分数,用百分号(%)表示。
百分数可转
化为小数和分数形式。
2. 百分数和实数的关系:百分数可以表示实数的一部分,如75%表示75的百分之一。
3. 百分数的比较:可以通过将百分数转化为小数来比较,大小关系和小数的大小关系
一致。
4. 百分比的转化:可以将百分数转化为小数或分数形式,可以将小数或分数转化为百
分数形式。
例如将0.5转化为百分数形式为50%,将3/5转化为百分数形式为60%。
5. 百分数的运算:可以进行百分数的加减乘除运算。
如计算百分数之间的加减法时,
需要将百分数转化为小数进行运算后再转化为百分数形式。
6. 百分比的应用:百分数常用于表示比例、增减比率、折扣、利息等问题。
如计算折
扣价、计算利息等。
7. 百分数与图形:百分数可以用来表示图形中的一部分所占的比例。
如计算图形面积、计算图形上某一个区域的面积。
以上是六年级上册数学百分数的主要知识点,通过理解和掌握这些知识点,可以解决
相关的百分数问题。
六年级数学上册《百分数》知识点总结1. 百分数的概念百分数是用百分号表示的分数,其中分母为100。
百分数是一种常见的数学表示方式,用于表示一个数相对于整体数的比例关系。
百分数可以简化复杂的数值计算,便于理解和比较。
2. 百分数的转换2.1 百分数转换为小数将百分数转换为小数可以通过除以100来实现。
例如,将50%转换为小数,可以将50除以100,得到0.5。
2.2 百分数转换为分数将百分数转换为分数可以将百分数的值作为分子,分母为100。
例如,将60%转换为分数,可以将60作为分子,100作为分母,得到60/100,可以进一步简化为3/5。
2.3 小数转换为百分数将小数转换为百分数可以将小数乘以100,并在结果末尾加上百分号。
例如,将0.75转换为百分数,可以将0.75乘以100,得到75%。
2.4 分数转换为百分数将分数转换为百分数可以将分数的值乘以100,并在结果末尾加上百分号。
例如,将3/4转换为百分数,可以将3/4乘以100,得到75%。
3. 百分数与实际应用3.1 百分数的基本运算百分数在实际生活中常用于各种计算和比较。
常见的百分数运算包括百分数加减法、百分数乘除法等。
3.2 百分数的比较百分数可以用来比较两个数的大小。
比较两个百分数的大小可以将它们转换为同一单位,然后进行比较。
3.3 价格与百分比在购物和投资中,百分数经常用来表示价格的折扣和利润。
例如,商品打6折可以理解为商品价格的60%。
3.4 百分数的应用实例百分数在各个领域都有广泛的应用。
例如,在考试成绩中,学生通常会用百分数来表示自己的得分;在统计数据中,百分数可以用来表示比例和增长率等。
4. 百分数的解决问题方法4.1 百分数与整数之间的关系百分数可以看作整数的一种表示方式,通过将整数转换为百分数,可以更直观地理解整数之间的比较关系。
4.2 比例与百分数百分数可以看作比例的一种表示方式,通过将比例转换为百分数,可以更方便地计算和比较。
小学六年级数学知识点百分数知识点_知识点总结小学六年级数学知识点:百分数知识点总结百分数是我们在学习数学的过程中经常遇到的一个重要概念。
它是将分数用百分号表示的一种形式,它的出现是为了更方便地描述部分与整体之间的比例关系。
在小学六年级的数学学习中,百分数的应用非常广泛,掌握百分数的相关知识点对于解决实际问题以及日常生活中的计算非常重要。
本文将围绕小学六年级数学中的百分数知识点做一个总结,以帮助同学们更好地掌握这一内容。
一、百分数的概念百分数是以100为分母的分数,用百分号表示。
其中,百分号是由拉丁文的“per centum”演变而来,意为每一百。
比如,60%就表示60/100,意味着所占的部分是整体的60%。
二、数学中常见的百分数的表示方法百分数可以用分数形式表示,也可以用小数形式表示。
下面我们来看几个例子:1. 1/5可以表示为20%;2. 3/4可以表示为75%;3. 0.6可以表示为60%。
需要注意的是,当百分数为小数时,可以直接将小数转化为百分数形式,即将小数点向右移动两位并添加百分号。
三、百分数与分数之间的转换在实际问题中,我们常常需要将百分数和分数进行转换。
下面介绍两种常见的转换方式。
1. 将百分数转化为分数:百分数除以100并化简;例如,将75%转化为分数,可以得到75/100,即3/4。
2. 将分数转化为百分数:分数乘以100即可;例如,将2/5转化为百分数,可以得到2/5 * 100 = 40%。
四、百分数的四则运算在解决实际问题时,我们经常需要对百分数进行加减乘除的运算。
下面介绍百分数的四则运算的具体方法。
1. 加法和减法:对于百分数的加法和减法运算,我们可以先将百分数转化为小数,然后再进行运算,最后将结果转化为百分数形式。
2. 乘法:百分数的乘法可以直接通过将百分数转化为小数,然后与另一个数相乘来完成。
例如,将60%乘以150,可以先将60%转化为0.6,然后进行计算得到0.6 * 150 = 90。
数学百分数的知识点六年级百分数是数学中非常重要的一个概念,它在日常生活和学习中都有广泛的应用。
在六年级阶段,学生们需要掌握关于百分数的基本知识和运算方法。
本文将讲解数学百分数的知识点,帮助六年级的学生更好地理解和运用百分数。
一、百分数的基本概念百分数是百分数的百分数百分数是用百分号(%)表示的数百分号表示每一百个,是一个比例关系二、百分数与普通数的关系百分数可以转化为普通数,转化的方法是将百分号去掉,再除以100。
例如,50%可以转化为50/100,即0.5。
普通数也可以转化为百分数,转化的方法是将普通数乘以100,并加上百分号。
例如,0.6可以转化为0.6×100%,即60%。
三、百分数的表示方法百分数可以通过分数和小数来表示。
例如,50%可以表示为1/2或0.5。
四、百分数的意义和应用百分数在日常生活中具有广泛的应用。
例如,考试成绩、折扣、增长率等都可以用百分数来表示。
学生们要学会将实际问题转化为百分数,并进行相关的计算。
五、百分数的加减运算百分数的加减运算与普通数的加减运算类似。
将百分数转化为普通数后,进行加减运算,再转化为百分数。
例如,计算60% + 40%时,先将60%转化为0.6,40%转化为0.4,然后进行0.6 + 0.4 = 1的计算,最后将结果转化为百分数,即100%。
六、百分数的乘除运算百分数的乘除运算也比较简单。
乘法运算可以直接将百分数转化为普通数,并进行相应的乘法运算,再将结果转化为百分数。
例如,计算40% × 5时,将40%转化为0.4,然后进行0.4 × 5 = 2的计算,最后将结果转化为百分数,即200%。
除法运算则是将百分数和普通数分别转化为普通数,然后进行相应的除法运算,最后将结果转化为百分数。
例如,计算30% ÷ 2时,将30%转化为0.3,2转化为2/100=0.02,然后进行0.3 ÷ 0.02 = 15的计算,最后将结果转化为百分数,即1500%。
小学六年级数学百分数相关知识点汇总1、百分数的意义表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
4、百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是10%,则六成五就是65%。
5、纳税和利息:税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。
由银行规定按年或按月计算。
利息的计算公式:利息=本金×利率×时间6、百分数与分数的区别主要有以下三点:⑴意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
如:可以说1米是5米的20%,不可以说“一段绳子长为20%米。
”因此,百分数后面不能带单位名称。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等。
⑵应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
⑶书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化⑴小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
六年级数学下册期末总复习《2单元百分数》必记知识点如下:一、百分数的定义与理解1.百分数表示一个数是另一个数的百分之几。
2.百分数由数字和百分号(%)组成,如25%读作百分之二十五。
二、百分数的计算1.百分数转化为小数:将百分数除以100。
例如,25% = 25 ÷ 100 = 0.25。
2.小数转化为百分数:将小数乘以100,并在后面加上百分号。
例如,0.25 =0.25 × 100% = 25%。
3.分数转化为百分数:先将分数转化为小数,再将小数转化为百分数。
例如,1/4= 0.25 = 25%。
三、百分数的应用1.折扣:商品打折时,“几折”就表示十分之几或百分之几十。
例如,打九折就是按原价的90%出售。
1.现价= 原价× 折扣2.原价= 现价÷ 折扣3.折扣= 现价÷ 原价2.成数:表示一个数是另一个数的十分之几,通称“几成”。
例如,三成五就是十分之三点五(或35%)。
1.实际应用时,需将成数转化成百分数。
3.税率:1.应纳税额= 应纳税部分× 税率2.应纳税部分= 应纳税额÷ 税率3.税率= 应纳税额÷ 应纳税部分× 100%4.本金、利率、存期与利息:1.利息= 本金× 利率× 存期2.利率= (利息÷ 存期) ÷ 本金× 100%3.本金= (利息÷ 存期) ÷ 利率四、百分数常考题型1.折扣问题:涉及现价、原价和折扣之间的关系。
2.税率问题:涉及应纳税额、税率和应纳税部分之间的关系。
3.利息问题:涉及本金、利率、存期和利息之间的关系。
4.利润问题:涉及售价、成本和利润之间的关系。
五、百分数应用题解题策略1.理解题意:仔细阅读题目,理解题目的要求和条件。
2.确定关系:根据题意,确定已知条件和未知量之间的数学关系。
3.列出方程:根据确定的关系,列出相应的数学方程。
六年级上册数学百分比知识点一、百分数的意义。
1. 百分数表示一个数是另一个数的百分之几。
百分数也叫百分率或百分比。
例如,14%表示一个数占另一个数的(14)/(100)。
2. 百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
例如:百分之九十写作90%。
二、百分数与分数、小数的互化。
1. 百分数与小数的互化。
- 小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
例如:0.25 = 25%。
- 百分数化成小数:把百分号去掉,同时把小数点向左移动两位。
例如:36% = 0.36。
2. 百分数与分数的互化。
- 分数化成百分数。
- 通常先把分数化成小数(除不尽时,一般保留三位小数),再把小数化成百分数。
例如:(3)/(4)=0.75 = 75%;(1)/(3)≈0.333 = 33.3%。
- 百分数化成分数:先把百分数改写成分数,能约分的要约成最简分数。
例如:80%=(80)/(100)=(4)/(5)。
三、用百分数解决问题。
1. 求一个数是另一个数的百分之几。
- 公式:一个数÷另一个数×100%。
例如:求2是5的百分之几,列式为2÷5×100% = 0.4×100% = 40%。
2. 求一个数比另一个数多(少)百分之几。
- 公式:(大数 - 小数)÷单位“1”的数×100%。
- 例如:5比4多百分之几?(5 - 4)÷4×100% = 25%;4比5少百分之几?(5 - 4)÷5×100% = 20%。
这里要注意确定单位“1”,一般“比”后面的量是单位“1”。
3. 求比一个数多(少)百分之几的数是多少。
- 单位“1”已知:用乘法。
- 例如:已知一个数是50,求比它多20%的数是多少。
先求出多的部分:50×20% = 10,再求这个数:50+10 = 60(或者用50×(1 + 20%)=50×1.2 = 60)。
六年级数学百分数知识点总结
百分数是以分母是100的特殊分数,其分子可不是整数。
百分数也是六年级数学的一个重点知识。
以下是本人为你整理的六年级数学百分数知识点总结,希望能帮到你。
百分数知识点:百分数的基本概念
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
分子部分可为小数、整数,可以大于100,
小于100或等于100。
4.小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
5.百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽
的保留三位小数),再把小数化成百分数;
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
百分数知识点:百分数应用题
百分数应用题(一)
求增加百分之几?减少百分之几?
公式:增加百分之几=增加的部分÷单位1
减少百分之几=减少的部分÷单位1
例如:1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单
位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的
45就等于增加百分之几。
计算步骤:第一步:单位1:水:45立方厘米
第二步:增加的部分:50—45=5立方厘米
第三步:增加百分之几:5÷45=11.1%
2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单
位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分
之几。
计算步骤:第一步:单位1:水:45立方厘米
第二步:增加的部分: 5立方厘米
第三步:增加百分之几:5÷45=11.1%
3、水结成冰后,体积增加了5立方厘米,冰的体积
为50立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单
位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。
加的部分是5立方厘米;;
最后用增加的部分5÷单位1水的45就等于增加百分之几。
计算步骤:第一步:单位1:水:50—5=45立方厘米
第二步:增加的部分: 5立方厘米
第三步:增加百分之几:5÷45=11.1%
4、“减少百分之几与增加百分之几”的解题方法完
全相同。
5、与增加百分之几相同的还有“多百分之几”“提
高百分之几”
“增长百分之几“等。
与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分之几”等。
比一个数增加百分之几的数,比一个数减少百分之几的数。
例如1、矣得小学去年有80名学生,今年的学生人
数比去年增加了25%,今年有多少名学生?
解题思路:单位1去年已经知道用乘法,增加用
(1+25%)
算式:80×(1+25%)
2、矣得小学去年有80名学生,今年的学生人数比去年减少了25%,今年有多少名学生?
解题思路:单位1去年已经知道用乘法,减少用(1-25%)
算式:80×(1-25%)
3、矣得小学今年有100名学生,比去年增加了25%,去年有多少名学生?
解题思路:单位1去年不知道用除法,增加用(1+25%)
算式:100÷(1+25%)
4、矣得小学今年有100名学生,比去年减少了25%,去年有多少名学生?
解题思路:单位1去年不知道用除法,增加用(1-25%)
算式:100÷(1-25%)
百分数知识点:列方程解百分数应用题
1、小明看一本书,第一天看了全书的25%,第二天
看了全书的20%,第一天比第二天多看20页,这本书一共有
多少页?
解题思路:单位1一本书不知道,可以选用方程或除法来解答。
根据“第一天比第二天多看20页”可以知道第一天
是多的,第二天是少的,第一天减去第二天等于多出的20页。
等量关系式:第一天—第二天=20页
方法1:解:设这本书一共有X页。
由“第一天看了全书的25%”可以知道第一天等于全
书乘以25%,用X可以表示为25%X,由“第二天看了全书的20%”可以知道第二天等于全书乘以20%,用X可以表示为
20%X.依据等量关系式“第一天—第二天=20页”可以列方程为:25%X—20%X=20
方法2:“第一天比第二天多看20页”可以知道20
页是第一天和第二天的差。
要求单位1只要用20页除以20页的对于分率。
列算式为:20÷(25%—20%)
2、小明看一本书,第一天看了全书的25%,第二天
看了全书的20%,两天共看了20页,这本书一共有多少页?
等量关系式:由“两天共看了20页”可以知道第一
天+等二天=20页。
方程法:解:设这本书共有X页,则第一天为25%X,第二天为20%X。
方程列为:25%X+20%X=20
算术法:由“两天共看了20页”可以知道20页是第一天和第二天的和,要求单位1只要用20页除以20页的对于分率。
列算式为:20÷(25%+20%)
3、小明看一本书,第一天看了全书的25%,第二天
看了全书的20%,还剩20页,这本书一共有多少页?
等量关系式:一本书—第一天—第二天=20页
方程法:解设这本书一共有X页,则第一天为25%X,第二天为20%X。
列方程为:X—25%X—20%X=20
算术法:20÷(1- 25%X- 20%)
4、小明看一本书,第一天看了全书的25%,第二天
比第一天多看10页,还剩20页,这本书一共有多少页?
方程法:解设这本书一共有X页,则第一天为25%X,第二天为(25%X+10)页。
列方程为:X—25%X—(25%X+10)=20
百分数知识点:利息的计算
1.本金:存入银行的钱叫做本金。
2.利息:取款时银行多支付的钱叫做利息。
利息=本金×利率×时间
3.2008年10月9日以前国家规定,存款的利息要按20%的税率纳税。
国债的利息不纳税。
2008年10月9日以后
免收利息税。
所以如无特殊说明,就不在计算利息税。
4.利率:利息与本金的比值叫做利率。
5.银行存款税后利息的计算公式:税后利息=利息
×(1-20%)
6.国债利息的计算公式:利息=本金×利率×时间
7.本息:本金与利息的总和叫做本息。
8.应纳税额:缴纳的税款叫应纳税额。
9.税率:应纳税额与各种收入的比率叫做税率。
10.应纳税额的计算:应纳税额=各种收入×税率
例如:李老师把2000元钱存入银行,整存整取五年,年利率按4.14%计算,到期时,李老师的本金和利息共有多少元?
解题思路:要求“本金和利息共有多少元”应该用本金的2000元加上利息的。
解题步骤:第一步:根据“利息=本金×利率×时间”算利息
利息:2000×4.14%×5=414元
第二步:本金+利息:2000+414=2414元。
例如:李老师把2000元钱存入银行,整存整取五年,年利率按4.14%计算,到期时,李老师的本金和利息共有多少元?(如果利息按20%来上税)
解题思路:要求“本金和利息共有多少元”应该用本金的2000元加上利息的。
解题步骤:第一步:根据“利息=本金×利率×时间”算利息
利息:2000×4.14%×5=414元
第二步:算税后利息:414×(1—20%)=331.2元
本金+利息:2000+331.2=233.2元。
看了“六年级数学百分数知识点总结”的人还看了:
1.小学数学知识点总复习资料
2.数学百分数应用教学反思百分数应用教学反思
3.数学百分数应用教学反思百分数应用教学反思
4.百分数的意义和写法教学设计
5.六年级数学上册复习计划
;。