操作系统精髓与设计原理-第5章 并发性_互斥和同步
- 格式:doc
- 大小:140.50 KB
- 文档页数:12
操作系统同步和互斥操作系统中的进程之间的关系只有两种:同步与互斥。
下面由店铺为大家整理了操作系统的同步和互斥的相关知识,希望对大家有帮助!操作系统同步和互斥1.进程同步进程同步也是进程之间直接的制约关系,是为完成某种任务而建立的两个或多个线程,这个线程需要在某些位置上协调他们的工作次序而等待、传递信息所产生的制约关系。
进程间的直接制约关系来源于他们之间的合作。
比如说进程A需要从缓冲区读取进程B产生的信息,当缓冲区为空时,进程B因为读取不到信息而被阻塞。
而当进程A产生信息放入缓冲区时,进程B才会被唤醒。
2.进程互斥进程互斥是进程之间的间接制约关系。
当一个进程进入临界区使用临界资源时,另一个进程必须等待。
只有当使用临界资源的进程退出临界区后,这个进程才会解除阻塞状态。
比如进程B需要访问打印机,但此时进程A占有了打印机,进程B会被阻塞,直到进程A释放了打印机资源,进程B才可以继续执行。
扩展:临界资源在操作系统中,进程是占有资源的最小单位(线程可以访问其所在进程内的所有资源,但线程本身并不占有资源或仅仅占有一点必须资源)。
但对于某些资源来说,其在同一时间只能被一个进程所占用。
这些一次只能被一个进程所占用的资源就是所谓的临界资源。
典型的临界资源比如物理上的打印机,或是存在硬盘或内存中被多个进程所共享的一些变量和数据等(如果这类资源不被看成临界资源加以保护,那么很有可能造成丢数据的问题)。
对于临界资源的访问,必须是互诉进行。
也就是当临界资源被占用时,另一个申请临界资源的进程会被阻塞,直到其所申请的临界资源被释放。
而进程内访问临界资源的代码被成为临界区。
对于临界区的访问过程分为四个部分:1.进入区:查看临界区是否可访问,如果可以访问,则转到步骤二,否则进程会被阻塞2.临界区:在临界区做操作3.退出区:清除临界区被占用的标志4.剩余区:进程与临界区不相关部分的代码临界资源使用规则:忙则等待、优先等待、空闲让进、让权等待(在临界区的进程,不能在临界区内长时间处于事件等待,必须在一定时间退出临界区)。
互斥与同步互斥与同步是计算机科学中两个重要的概念,它们是多线程编程中必须掌握的知识点。
本文将介绍互斥与同步的概念、原理、实现方式以及应用场景。
一、互斥1.1 概念互斥是指在多线程并发执行时,对于共享资源的访问需要保证线程之间的排他性,即在任意时刻只有一个线程能够访问共享资源。
1.2 原理互斥的实现基于锁机制,即在访问共享资源前获取锁,在使用完毕后释放锁。
这样可以保证在任意时刻只有一个线程能够获得锁,从而避免了多个线程同时访问共享资源造成的数据竞争问题。
1.3 实现方式常见的实现方式包括:(1)临界区:将对共享资源的访问限制在一个代码块内,在进入临界区前获取锁,在离开临界区后释放锁。
(2)信号量:通过计数器来控制同时进入临界区的线程数量,当计数器为0时表示当前没有进入临界区的线程,当计数器大于0时表示当前有进入临界区的线程。
(3)互斥量:是一种特殊的信号量,只能被一个线程获取,其他线程需要等待该线程释放互斥量后才能获取。
1.4 应用场景互斥常用于对共享资源的访问控制,例如多个线程同时访问同一个文件、数据库或网络连接等。
二、同步2.1 概念同步是指在多线程并发执行时,保证线程之间的协调和顺序性,使得程序按照预期的顺序执行。
2.2 原理同步的实现基于信号机制,即在某个条件满足时通知其他线程进行操作。
例如,在生产者-消费者模型中,当生产者生产了数据后需要通知消费者进行消费。
2.3 实现方式常见的实现方式包括:(1)条件变量:通过等待和唤醒操作来实现对某个条件的等待和通知。
(2)事件对象:是一种特殊的条件变量,可以通过事件对象来设置和清除事件状态,并在事件状态发生改变时通知其他线程进行操作。
(3)屏障:是一种同步原语,在多个线程到达屏障点时会被阻塞,直到所有线程都到达后才会继续执行。
2.4 应用场景同步常用于对线程之间的协调和顺序性控制,例如在多个线程之间进行任务分配、消息传递等。
三、互斥与同步的关系互斥和同步是两个相互依存的概念。
进程之间同步和互斥的区别和联系
进程之间同步和互斥是操作系统中常见的概念,它们之间有一定的区别和联系。
同步是指多个进程之间的协调,以便它们能够有序地执行。
同步的目的是保证数据的一致性,避免出现数据竞争的情况。
同步可通过共享变量、信号量等方式实现,实现同步的方法包括互斥、条件变量等。
互斥是一种同步机制,用于保护共享资源,防止多个进程同时访问同一资源。
互斥的实现通常是通过临界区实现的,即对于一段代码,只允许一个进程访问,其他进程需要等待。
互斥能够避免多个进程同时写入共享资源,保证了数据的正确性。
同步和互斥的联系在于它们都是为了保证多个进程之间的协调
和数据的正确性。
同步和互斥都是通过对共享资源进行限制来实现的,区别在于同步是为了保证进程的顺序执行,而互斥是为了保证共享资源的安全性。
总的来说,同步和互斥都是操作系统中非常重要的概念,它们的合理运用可以提高操作系统的性能和稳定性。
- 1 -。
操作系统的并发控制机制在计算机科学中,操作系统是管理计算机硬件和软件资源的系统软件。
它负责协调和控制计算机上多个程序的执行,以及提供用户与计算机硬件的接口。
在多道程序设计中,多个程序可以同时运行,这就引发了并发控制的问题。
为了确保多个程序在同时访问共享资源时能够正确地协同工作,操作系统采用了各种并发控制机制。
本文将介绍几种常见的操作系统并发控制机制。
一、互斥锁互斥锁是一种最常用的并发控制机制,它通过对共享资源进行加锁和解锁的方式来保证同一时间只有一个程序可以访问该资源。
当一个程序需要访问共享资源时,它会尝试获取互斥锁。
如果锁已经被其他程序获取,则当前程序会被阻塞,直到锁被释放。
这种机制有效地防止了多个程序同时写入共享资源,从而避免了数据的不一致性。
二、信号量信号量是另一种常见的并发控制机制,它可以用来限制对共享资源的访问数量。
信号量有一个初始值,并且可以在不同程序之间进行增加和减少操作。
当一个程序需要访问共享资源时,它会尝试对信号量进行减少操作。
如果信号量的值为负数,则该程序会被阻塞,直到信号量的值变为非负数。
而当一个程序释放了共享资源时,它会对信号量进行增加操作,以允许其他程序继续访问共享资源。
三、读写锁读写锁是一种针对读写操作的并发控制机制。
它允许多个程序同时读取共享资源,但只允许一个程序进行写入操作。
读写锁可以提高并发性能,因为多个程序可以同时读取共享资源而无需互斥锁的开销。
当一个程序需要写入共享资源时,它必须获取写入锁,并且在写入期间阻塞其他程序对该资源的读取和写入操作。
读写锁适用于读操作频繁、写操作较少的场景。
四、轮询轮询是一种简单直接的并发控制机制,它也被称为忙等待。
当多个程序需要同时访问共享资源时,它们会通过不断轮询的方式来检查资源是否可用。
如果资源已经被其他程序占用,当前程序会不断重试直到资源可用。
尽管轮询简单易实现,但它会消耗大量的处理器时间,降低了系统的整体性能,因此通常在资源竞争较低的情况下使用。
操作系统实验进程同步与互斥操作系统实验进程同步与互斥实验目的1.掌握进程同步和互斥原理,理解生产者-消费者模型;2.学习Windows2000/xp中的多线程并发执行机制;3.学习使用Windows SDK解决读者-写者问题。
试验内容1依据生产者-消费者模型,在Windows 2000/xp环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥,分析、熟悉生产者消费者问题仿真的原理和实现技术。
(见附件2)试验内容2参考实验内容1和附件2伪码,编程解决读者-写者问题的程序。
(具体要求和读写者问题原始伪码内容见附件1)相关知识Windows 2000/XP的线程控制CreateThread完成线程创建,在调用进程的地址空间上创建一个线程,以执行指定的函数;它的返回值为所创建线程的句柄。
ExitThread用于结束当前线程。
SuspendThread可挂起指定的线程。
ResumeThread可激活指定线程,它的对应操作是递减指定线程的挂起计数,当挂起计数减为0时,线程恢复执行。
Windows 2000/XP的进程互斥和同步在Windows 2000/XP中提供了临界区、互斥对象、信号量对象同步对象和相应的系统调用,用于进程和线程同步。
临界区对象(Critical Section)只能用于在同一进程内使用的临界区,同一进程内各线程对它的访问是互斥进行的。
相关API包括:InitializeCriticalSection对临界区对象进行初始化;EnterCriticalSection等待占用临界区的使用权,得到使用权时返回;TryEnterCriticalSection非等待方式申请临界区的使用权;申请失败时,返回0;LeaveCriticalSection释放临界区的使用权;DeleteCriticalSection释放与临界区对象相关的所有系统资源。
互斥对象(Mutex)互斥对象相当于互斥信号量,在一个时刻只能被一个线程使用。
第1章计算机系统概述1.1、图1.3中的理想机器还有两条I/O指令:0011 = 从I/O中载入AC0111 = 把AC保存到I/O中在这种情况下,12位地址标识一个特殊的外部设备。
请给出以下程序的执行过程(按照图1.4的格式):1.从设备5中载入AC。
2.加上存储器单元940的内容。
3.把AC保存到设备6中。
假设从设备5中取到的下一个值为3940单元中的值为2。
答案:存储器(16进制内容):300:3005;301:5940;302:7006步骤1:3005->IR;步骤2:3->AC步骤3:5940->IR;步骤4:3+2=5->AC步骤5:7006->IR:步骤6:AC->设备61.2、本章中用6步来描述图1.4中的程序执行情况,请使用MAR和MBR扩充这个描述。
答案:1. a. PC中包含第一条指令的地址300,该指令的内容被送入MAR中。
b. 地址为300的指令的内容(值为十六进制数1940)被送入MBR,并且PC增1。
这两个步骤是并行完成的。
c. MBR中的值被送入指令寄存器IR中。
2. a. 指令寄存器IR中的地址部分(940)被送入MAR中。
b. 地址940中的值被送入MBR中。
c. MBR中的值被送入AC中。
3. a. PC中的值(301)被送入MAR中。
b. 地址为301的指令的内容(值为十六进制数5941)被送入MBR,并且PC增1。
c. MBR中的值被送入指令寄存器IR中。
4. a. 指令寄存器IR中的地址部分(941)被送入MAR中。
b. 地址941中的值被送入MBR中。
c. AC中以前的内容和地址为941的存储单元中的内容相加,结果保存到AC中。
5. a. PC中的值(302)被送入MAR中。
b. 地址为302的指令的内容(值为十六进制数2941)被送入MBR,并且PC增1。
c. MBR中的值被送入指令寄存器IR中。
6. a. 指令寄存器IR中的地址部分(941)被送入MAR中。
同步与互斥实现方法一、同步与互斥的概念同步是指多个线程或进程之间按照一定的顺序执行,以达到其中一种约定或要求。
在同步的过程中,程序等待其他线程或进程完成一些操作后再继续执行。
互斥是指多个线程或进程之间访问共享资源时,要互相排斥,避免冲突和竞争。
互斥的目的是保证多个线程或进程对共享资源的操作是互斥的,即同一时刻只有一个线程或进程可以访问共享资源。
二、实现同步的方法1. 互斥锁(Mutex)互斥锁是一种最常用的同步机制,通过对一些代码块或函数的访问加上互斥锁的操作,可以保证只有一个线程能够执行该代码块或函数。
当一些线程获得互斥锁时,其他线程在获得该锁之前会被阻塞。
2. 信号量(Semaphore)信号量是一种更为复杂的同步机制,用于实现一些资源的访问控制。
一个信号量有一个整型值和两个原子操作:P和V。
P操作(也称为wait或down)会使信号量的值减1,如果值小于0,当前线程或进程就会被阻塞。
V操作(也称为signal或up)会使信号量的值加1,如果值小于等于0,就会唤醒等待的线程或进程。
信号量可以用于解决生产者-消费者问题、读者-写者问题等并发编程中的资源竞争问题。
3. 条件变量(Condition Variable)条件变量是一种同步机制,用于在多个线程或进程之间同步共享资源的状态。
条件变量对应一个条件,并提供了等待和通知的机制。
等待操作可以使一个线程或进程等待一些条件成立,直到其他线程或进程通知条件变量,使得等待的线程或进程被唤醒。
通知操作可以使等待中的线程或进程被唤醒,继续执行。
条件变量常和互斥锁一起使用,互斥锁用于保护共享资源,条件变量用于同步共享资源的状态。
三、实现互斥的方法1. Peterson算法Peterson算法是一种经典的软件方法,用于解决两个进程之间的互斥访问问题。
该算法使用了两个布尔型变量flag和turn,通过交替使用这两个变量,实现了两个进程之间的互斥。
2. 印章(Semaphores)信号量也可以用于实现互斥操作。
线程与并发控制:处理多线程的同步和互斥线程和并发控制是计算机科学领域中非常重要的概念,特别是在多核处理器和分布式系统中。
线程是程序执行的基本单位,而并发控制则是指有效地管理多个线程之间的同步和互斥,以保证数据的一致性和程序的正确执行。
在多线程编程中,线程之间的并发控制是一个关键问题。
当多个线程同时访问共享资源时,如果没有适当的同步和互斥机制,就会出现数据竞争和不一致的问题。
因此,了解如何处理线程的同步和互斥是非常重要的。
同步指的是多个线程之间按照一定的顺序执行,以保证数据的一致性。
常见的同步机制包括互斥锁、条件变量、信号量等。
互斥锁是最基本的同步机制,它可以确保同时只有一个线程能访问共享资源,从而避免数据竞争。
条件变量可以在多个线程之间传递信号,以协调它们的执行流程。
信号量可以用来控制并发访问资源的数量,避免资源的过度竞争。
除了同步机制外,还有一些高级的并发控制技术,如读写锁、原子操作、事务内存等。
读写锁可以提高多线程读取共享资源的效率,因为读取操作不涉及数据一致性问题,可以同时进行。
原子操作可以确保某些操作的原子性,即要么全部执行成功,要么全部不执行。
事务内存是一种基于硬件的并发控制技术,可以提供更高的性能和可靠性。
在处理多线程的同步和互斥时,需要遵循一些基本原则。
首先,避免死锁,即当多个线程互相等待对方释放资源时,就会陷入死锁状态。
其次,避免资源泄漏,即确保每个线程在完成任务后释放所有的资源。
最后,避免竞争条件,即多个线程对共享资源的访问顺序可能影响程序的正确执行,需要避免这种情况的发生。
为了提高多线程程序的性能和可靠性,在设计和实现上需要注意一些细节。
首先,尽量减少共享资源的数量,因为共享资源越多,就越容易引发数据竞争和并发控制问题。
其次,合理设计线程的通信和同步机制,避免不必要的等待和阻塞。
最后,尽量避免线程间频繁地切换和竞争,提高程序的并发执行效率。
总的来说,线程和并发控制是计算机科学中非常重要的概念,能够有效地提高程序的性能和可靠性。
操作系统精髓与设计原理课后答案第1章计算机系统概述1.1 列出并简要地定义计算机的四个主要组成部分。
主存储器,存储数据和程序;算术逻辑单元,能处理二进制数据;控制单元,解读存储器中的指令并且使他们得到执行;输入/输出设备,由控制单元管理。
1.2 定义处理器寄存器的两种主要类别。
用户可见寄存器:优先使用这些寄存器,可以使机器语言或者汇编语言的程序员减少对主存储器的访问次数。
对高级语言而言,由优化编译器负责决定把哪些变量应该分配给主存储器。
一些高级语言,如C语言,允许程序言建议编译器把哪些变量保存在寄存器中。
控制和状态寄存器:用以控制处理器的操作,且主要被具有特权的操作系统例程使用,以控制程序的执行。
1.3 一般而言,一条机器指令能指定的四种不同操作是什么?处理器-寄存器:数据可以从处理器传送到存储器,或者从存储器传送到处理器。
处理器-I/O:通过处理器和I/O模块间的数据传送,数据可以输出到外部设备,或者从外部设备输入数据。
数据处理:处理器可以执行很多关于数据的算术操作或逻辑操作。
控制:某些指令可以改变执行顺序。
1.4 什么是中断?中断:其他模块(I/O,存储器)中断处理器正常处理过程的机制。
1.5 多中断的处理方式是什么?处理多中断有两种方法。
第一种方法是当正在处理一个中断时,禁止再发生中断。
第二种方法是定义中断优先级,允许高优先级的中断打断低优先级的中断处理器的运行。
1.6 内存层次的各个元素间的特征是什么?存储器的三个重要特性是:价格,容量和访问时间。
1.7 什么是高速缓冲存储器?高速缓冲存储器是比主存小而快的存储器,用以协调主存跟处理器,作为最近储存地址的缓冲区。
1.8 列出并简要地定义I/O操作的三种技术。
可编程I/O:当处理器正在执行程序并遇到与I/O相关的指令时,它给相应的I/O模块发布命令(用以执行这个指令);在进一步的动作之前,处理器处于繁忙的等待中,直到该操作已经完成。
中断驱动I/O:当处理器正在执行程序并遇到与I/O相关的指令时,它给相应的I/O模块发布命令,并继续执行后续指令,直到后者完成,它将被I/O模块中断。
答案:程序段、数据段、pcb操作系统练习题一、填空题:1.在多道程序设计中,进程之间有两种不同的约束:互斥和同步。
答案:互斥同步2.只有使用动态重定位技术,程序才能在内存中浮动。
答案:动态3.在分页和分段存储管理中,当访问指令或数据时,需要访问一次内存。
为了加快这个访问过程,需要引入它。
答案:2快表4.可在数据到达和离开速度不匹配的情况下使用。
答案:缓冲5.活动头盘的访问时间包括时间和时间。
答案:寻道、旋转延迟、数据传输6.如果单个CPU系统中有n个进程,就绪队列中的最大进程数可能为。
答案:n-17.假脱机系统由、和三部分组成。
答案:输入井和输出井、输入缓冲区和输出缓冲区、输入进程和输出进程8.根据物理结构,文件可分为文件、文件和文件。
答案:顺序、链接、索引9•如果信号量s的初始值为1,当前值为-4,则表示存在;阻塞的进程。
答案:410.虚拟内存的应用要求如下。
答案:对物理内存实现逻辑扩充。
11.该过程由三部分组成。
12.存储管理的四个功能是、、和。
答案:_内存的分配与回收、地址转换、内存共享与保护和内存扩充。
13.在分区分配算法中,第一种自适应算法倾向于优先使用内存,因此保留了部分大的空闲区域。
答案:低地址、高地址14.根据信息交换单位,设备可分为和,打印机属于设备。
答案:字符、块、字符15、这是文件存在的标志。
它记录了系统管理文件所需的所有信息。
答案:文件控制模块(fcb)16.文件系统最基本的目标是实现文件的完整性,主要通过文件系统的管理功能来实现。
答案:按名存取、目录17.在单处理器系统中,如果有五个用户进程,并且假设当前时间处于用户状态,则最多有;个用户进程处于就绪状态,至少有一个。
答案:4、018.____ 在真正的分页存储管理系统中,页面大小是2K。
现在有三个进程需要进入内存。
它们的地址空间大小分别为3.5kb、9KB和4.3kb。
系统为它们分配内存的总大小为;kb;如果页面大小为4KB,则这三个进程生成的片段的总大小为答案:20、7.219•常用的I/O控制模式包括程序直接控制模式、控制模式、控制模式和控制模式。
操作系统的并发控制操作系统是计算机系统中管理和控制计算机硬件与软件资源的核心程序。
在多任务操作系统中,多个进程同时运行,需要操作系统提供并发控制机制来确保进程间的正常协调和资源的合理分配。
本文将介绍操作系统的并发控制的概念、分类以及常见的并发控制机制。
一、概述并发是指多个进程同时执行的状态,是多任务操作系统中的基本特性。
并发控制是指对并发操作进行管理和协调的一种机制,目的是保证资源的正确使用和进程的正常运行。
二、分类根据并发控制机制的不同,可以将并发控制分为两大类,即互斥操作和同步操作。
1. 互斥操作互斥操作是指对能被多个进程访问的共享资源进行互斥访问,以防止并发操作导致数据不一致或冲突。
常见的互斥操作机制有互斥锁、信号量和读写锁等。
- 互斥锁:通过设置一个标志位来控制共享资源的访问,一次只允许一个进程对资源进行操作,其他进程需要等待当前进程释放锁才能继续执行。
- 信号量:通过一个计数器来控制对共享资源的访问,根据计数器的值来判断资源是否可用,通过对计数器的增减来实现进程间的同步和互斥。
- 读写锁:在读操作和写操作之间进行协调,允许多个进程同时进行读操作,但是只允许一个进程进行写操作。
2. 同步操作同步操作是指对进程的执行进行协调与同步,保证进程按照一定的顺序执行。
常见的同步操作机制有信号量、条件变量和屏障等。
- 条件变量:用于在进程间传递信息和进行同步操作,进程可以等待某个特定条件满足后再继续执行。
- 屏障:用于同步多个并发进程的执行,在所有进程到达屏障之前进行等待,待所有进程都到达后才能一起继续执行。
三、实现方式实现并发控制可以采用硬件支持和软件支持的方式。
1. 硬件支持硬件支持是指通过硬件设备来实现并发控制。
常见的硬件支持有自旋锁和多处理器系统。
- 自旋锁:使用忙等待的方式,即进程一直占用处理器不进行调度,直到获取到锁才能继续执行。
适用于锁竞争较小的情况。
- 多处理器系统:在多处理器系统中,每个处理器都可以独立执行不同的任务,从而提高系统的并发性能。
同步和互斥的概念
同步和互斥是并发编程中的两个重要概念。
同步:同步是指在多个线程或进程之间协调其执行顺序的过程。
当多个线程或进程需要共享资源或相互依赖时,需要进行同步操作,以确保它们按照预定的顺序执行,避免出现竞态条件(Race Condition)或其他并发问题。
常见的同步机制有互斥量、信号量、条件变量等。
互斥:互斥是指一次只允许一个线程或进程访问共享资源的机制。
当某个线程或进程获得了对共享资源的访问权限时,其他线程或进程必须等待其释放资源后才能访问。
互斥机制通过加锁和解锁来控制资源的访问。
常见的互斥机制有互斥量(Mutex)和临界区(Critical Section)。
在并发编程中,同步和互斥通常是配合使用的。
通过同步机制确保线程或进程的执行顺序,避免数据竞争和并发问题的发生;而互斥机制则用于保护共享资源,确保同时只有一个线程或进程能够访问共享资源,避免多个线程或进程同时修改资源导致的数据一致性问题。
进程间的互斥和同步问题(一)进程间的互斥和同步问题在多进程编程中,进程间的互斥和同步问题是一个重要的概念。
下面列举了相关的问题,并对其进行解释说明。
1. 互斥问题•定义:互斥指的是多个进程或线程对同一共享资源的访问是否有序的问题。
•问题描述:当多个进程同时竞争一个共享资源时,可能会出现资源竞争和数据不一致的情况。
•解决方案:使用互斥锁(Mutex)来实现对共享资源的互斥访问,保证每一次只有一个进程或线程能够访问该资源。
2. 同步问题•定义:同步指的是多个进程或线程之间如何进行有序的合作和协调。
•问题描述:当多个进程之间存在依赖关系,需要按照特定的顺序执行时,可能会出现数据不一致或死锁的情况。
•解决方案:使用同步机制(如信号量、条件变量等)来实现进程间的同步,保证各个进程按照特定的顺序执行。
3. 死锁问题•定义:死锁是指在多进程或多线程系统中,彼此因争夺资源而陷入无限等待的状态。
•问题描述:当多个进程互相持有对方所需的资源并等待对方释放资源时,可能会导致死锁的发生。
•解决方案:通过合理的资源分配和调度策略,避免进程之间出现相互依赖的情况,从而避免死锁的发生。
4. 临界区问题•定义:临界区是指在多进程或多线程环境中访问共享资源的一段代码区域。
•问题描述:当多个进程同时访问临界区时,可能会出现数据不一致或竞态条件的问题。
•解决方案:使用互斥锁或其他同步机制来保护临界区的访问,只有获得锁的进程才能够执行临界区的代码,其他进程必须等待。
5. 进程间通信问题•定义:进程间通信(IPC,Inter-Process Communication)指的是实现不同进程之间的信息交换和数据传输。
•问题描述:当多个进程之间需要共享数据或进行协作时,需要有效的通信机制来实现数据的传递。
•解决方案:使用各种IPC机制(如管道、消息队列、共享内存等)来实现进程间的通信,保证数据的正确传输和共享。
综上所述,进程间的互斥和同步问题是多进程编程中不可忽视的重要问题,通过合理的设计和使用适当的同步机制,可以有效解决这些问题,提高程序的并发性和可靠性。
第五章并发性:互斥和同步复习题:5.1列出与并发相关的四种设计问题答:进程间的交互,共享资源之间的竞争,多个进程的同步问题,对进程的处理器时间分配问题5.2列出并发的三种上下文答:多个应用程序,结构化应用程序,操作系统结构5.3执行并发进程的最基本要求是什么?答:加强互斥的能力5.4列出进程间的三种互相知道的程度,并简单地给出各自的定义。
答:进程间互相不知道对方:这是一些独立的进程,他们不会一起工作。
进程间间接知道对方:这些进程并不需要知道对方的进程ID号,但他们共享访问某些对象,如一个I/O缓冲区。
进程间直接知道对方:这些进程可以通过进程ID号互相通信,用于合作完成某些活动。
5.5竞争进程和合作进程进程间有什么区别。
答:竞争进程需要同时访问相同的资源,像磁盘,文件或打印机。
合作进程要么共享访问一个共有的资源,像一个内存访问区,要么就与其他进程相互通信,在一些应用程序或活动上进行合作。
5.6列出与竞争进程相关的三种控制问题,并简单地给出各自的定义。
答:互斥:竞争进程仅可以访问一个临界资源(一次仅有一个进程可以访问临界资源),并发机制必须满足一次只有一个进程可以访问临界资源这个规则。
死锁:如果竞争进程需要唯一的访问多于一个资源,并且当一个进程控制着一个进程,且在等待另一个进程,死锁可能发生。
饥饿:一组进程的一个可能会无限期地拒绝进入到一个需要资源,因为其他成员组成垄断这个资源。
5.7列出对互斥的要求。
答:1.必须强制实施互斥:在具有关于相同资源或共享对象的临界区的所有进程中,一次只允许一个进程进入临界区。
2.一个在临界区停止的进程必须不干涉其他进程。
3.绝不允许出现一个需要访问临界区的进程被无限延迟的情况,即不会饿死或饥饿。
4.当没有进程在临界区中时,任何需要进入临界区的进程必须能够立即进入。
5.对相关进程的速度和处理器的数目没有任何要求和限制。
6.一个进程驻留在临界区中的时间是有限的。
5.8在信号量上可以执行什么操作。
答:1.一个信号量可以初始化成非负数。
2.wait操作使信号量减1,如果值为负数,那么进程执行wait就会受阻。
3signal操作使信号量增加1,如果小于或等于0,则被wait操作阻塞的进程被解除阻塞。
5.9.二元信号量与一般信号量有什么区别。
答:二元信号量只能取0或1,而一般信号量可以取任何整数。
5.10强信号量与弱信号量有什么区别。
答:强信号量要求在信号量上等待的进程按照先进先出的规则从队列中移出。
弱信号量没有此规则。
5.11.什么是管程。
答:管程是由一个或多个过程,一个初始化序列和局部数据组成的软件模块。
5.12对于消息,有阻塞和无阻塞有什么区别?答:5.13.通常与读者-写者问题相关联的有哪些条件?答:1.任意多的读进程可以同时读这个文件,2.一次只有一个写进程可以往文件中写,3.如果一个写进程正在往文件中写时,则禁止任何读进程读文件。
习题:5.1答:b.协同程序read读卡片,将字符赋给一个只有一个字大小的缓冲区rs然后在赋给squash 协同程。
协同程序Read在每副卡片图像的后面插入一个额外的空白。
协同程序squash不需要知道任何关于输入的八十个字符的结构,它简单的查找成对出现的星号,然后将更改够的字符串经由只有一个字符大小的缓冲sp,传递给协同程序print。
最后协同程序print简单的接受到来的字符串,并将他们打印在包含125个字符的行中。
5.2.考虑一个并发程序,它有两个进程p和q,定义如下。
A.B.C.D和E是任意的原子语句。
假设住程序执行两个进程的parbeginVoid p() void q(){ A; { D;B; E;C; }}答:ABCDE;ABDCE;ABDEC;ADBCE;ADBEC;ADEBC;DEABC;DAEBC;DABEC;DABCE; 5.3考虑下面的程序const int n=50;int tally;void total(){ int count;for(count =1;count <=n;count ++){tally++;}}void main(){tally =0;parbegin(total(),total();write(tally);}答:a.随意一看,tally值的范围好像是落在[50,100]这个区间里,因为当没有互斥时可以从0直接增加到50.这一基本论点是当并发的运行这两进程时,我们不可能得到一个比连续执行单一某进程所得tally值还低的一个最终tally值.但是考虑下面由这两进程按交替顺序执行载入,增加,存储的情况,同时变更这个共享变量的取值:1.进程A载入tally值,tally值加到1,在此时失去处理器(它已经增加寄存器的值到1,但是还没有存储这个值).2.进程B载入tally值(仍然是0),然后运行完成49次增加操作,在它已经将49这个值存储给共享变量tally后,失去处理器控制权.3.进程A重新获得处理器控制权去完成它的第一次存储操作(用1去代替先前的49这个tally值),此时被迫立即放弃处理器.4.进程B重新开始,将1(当前的tally值)载入到它自己的寄存器中,但此时被迫放弃处理器(注意这是B的最后一次载入).5.进程A被重新安排开始,但这次没有被中断,直到运行完成它剩余的49次载入,增加和存储操作,结果是此时tally值已经是50.6.进程B在它终止前完成仅有的最后一次增加和存储操作.它的寄存器值增至2,同时存储这个值做为这个共享变量的最终结果.一些认为会出现低于2这个值的结果,这种情况不会出现.这样tally值的正确范围是[2,100].b.对一般有N个进程的情况下,tally值的最终范围是[2,N*50],因为对其他所有进程来说,从最初开始运行到在第五步完成.但最后都被进程B破坏掉它们的最终结果.5.4.忙等待是否总是比阻塞等待效率低(根据处理器的使用时间)?请解释。
答:就一般情况来说是对的,因为忙等待消耗无用的指令周期.然而,有一种特殊情况,当进程执行到程序的某一点处,在此处要等待直到条件满足,而正好条件已满足,此时忙等待会立即有结果,然而阻塞等待会消耗操作系统资源在换出与换入进程上.5.5考虑下面的程序boolean blocked[2];int rurn;void P(int id){While (true){While(turn!=id);{While(blocked[1-!id]/*do nothing*/;Turn =id;}}Void main (){Blocked[0]=false;Blocked[1]=false;Turn=0;Parbegin(P(0),P(1));}这是【HYMA66】中提出的解决互斥问题的一种方法。
请举出证明该方法不正确的一个反例。
答:考虑这种情况:此时turn=0,进程P(1)使布尔变量blocked[1]的值为true,在这时发现布尔变量blocked[0]的值为false,然后P(0)会将true值赋予blocked[0],此时turn=0,P(0)进入临界区,P(1)在将1赋值给turn后,也进入了临界区.5.6解决互斥的另一种软件方法是lamport的面包店(bakery)算法,之所以起这个名字,是因为它的思想来自于面包店或其他商店中,每个顾客在到达时都得到一个有编号的票,并按票号依次得到服务,算法如下:Boolean choosing[n];Int number[n];While (true){Choosing[i]=true;Number[i]=1+getmax(number[],n);Choosing[i]=false;For(int j=0;j<n;j++){While (choosing[j]){}While ((number[j]!=0)&&(number[j],j)<(number[i],i){}}/*critical section*/Number[i]=0;/*remainder*/;}数组choosing和number分别被初始化成false和0,每个数组的第i个元素可以由进程i读或写,但其他进程只能读。
符号(a,b)<(c,d)被定义成(a,c)或(a=c且b<d)A.用文字描述这个算法。
B.说明这个算法避免了死锁。
C.说明它实施了互斥。
答:a.当一个进程希望进入临界区时,它被分配一个票号.分配的票号是通过在目前那些等待进入临界区的进程所持票号和已经在临界区的进程所持票号比较,所得最大票号再加1得到的.有最小票号的进程有最高的优先级进入临界区.当有多个进程拥有同样的票号时,拥有最小数字号进入临界区.当一个进程退出临界区时,重新设置它的票号为0.b.如果每个进程被分配唯一的一个进程号,那么总会有一个唯一的,严格的进程顺序.因此,死锁可以避免.c.为了说明互斥,我们首先需要证明下面的定理:如果Pi在它的临界区,Pk已经计算出来它的number[k],并试图进入临界区,此时就有下面的关系式: ( number[i], i ) < ( number[k], k ).为证明定理,定义下面一些时间量:Tw1:Pi最后一次读choosing[k], 当j=k,在它的第一次等待时,因此我们在Tw1处有choosing[k] = false.Tw2:Pi开始它的最后执行, 当j=k,在它的第二次while循环时,因此我们有Tw1 < Tw2.Tk1:Pk在开始repeat循环时;Tk2:Pk完成number[k]的计算;Tk3: Pk设置choosing[k]为false时.我们有Tk1<Tk2<Tk3.因为在Tw1处,choosing[k]=false,我们要么有Tw1<Tk1,要么有Tk3<Tw1.在第一种情况中,我们有number[i]<number[k],因为Pi在Pk之前被分配号码;这个满足定理条件.在第二种情况中,我们有Tk2 < Tk3 < Tw1 < Tw2,因此有Tk2<Tw2.这意味着在Tw2时,Pi已经读了当前number[k]的值.而且,因为Tw2是当j=k第二次while循环执行发生的时刻,我们有(number[i], i ) < ( number[k], k),这样完成了定理的证明.现在就很容易说明实施了互斥.假定Pi在临界区,Pk 正试图进入临界区.Pk将不能进入临界区,因为它会发现number[i]不等于0,并且( number[i], i ) < ( number[k], k ).5.7当按图5.2的形式使用一个专门机器指令提供互斥时,对进程在允许访问临界区之前必须等待多久没有控制。