电压型和电流型逆变电路特点
- 格式:docx
- 大小:9.33 KB
- 文档页数:2
电子电力技术考试试题一、选择题(每题 2 分,共 40 分)1、下列不属于电力电子器件的是()A 晶闸管B 晶体管C 电阻D 场效应管2、电力电子器件一般工作在()状态。
A 导通B 截止C 开关D 放大3、晶闸管导通的条件是()A 阳极加正电压,阴极加负电压,门极加正电压B 阳极加正电压,阴极加负电压,门极加负电压C 阳极加正电压,阴极加正电压,门极加正电压D 阳极加正电压,阴极加正电压,门极加负电压4、以下哪种电力电子器件属于电流驱动型器件()A IGBTB GTOC MOSFETD SCR5、电力电子技术中,用于实现交流变直流的电路称为()A 整流电路B 逆变电路C 斩波电路D 变频电路6、在单相桥式全控整流电路中,带电阻负载,控制角α的移相范围是()A 0°~90°B 0°~180°C 90°~180°D 0°~360°7、三相桥式全控整流电路带电阻负载,当控制角α=30°时,输出电压的平均值为()A 234U₂B 117U₂C 135U₂D 217U₂8、下列属于无源逆变电路的是()A 直流斩波电路B 晶闸管相控整流电路C 交直交变频电路D 电压型逆变电路9、电流型逆变电路的特点是()A 直流侧串联大电感B 直流侧并联大电容C 交流侧电流为正弦波D 交流侧电压为正弦波10、以下哪种斩波电路的输入输出电流均连续()A 降压斩波电路B 升压斩波电路C 升降压斩波电路D Cuk 斩波电路11、绝缘栅双极型晶体管(IGBT)的特点是()A 驱动功率大B 开关速度慢C 通态压降高D 输入阻抗高12、电力电子器件在实际应用中,需要考虑的参数有()A 额定电压B 额定电流C 通态压降D 以上都是13、电力电子装置中,用于缓冲电路中电压和电流变化的元件是()A 电阻B 电容C 电感D 二极管14、软开关技术的主要目的是()A 降低开关损耗B 提高开关频率C 减小电磁干扰D 以上都是15、下列哪种控制方式常用于交流调速系统()A 恒压频比控制B 矢量控制C 直接转矩控制D 以上都是16、在电力电子系统中,用于检测电流的传感器通常是()A 电压互感器B 电流互感器C 霍尔传感器D 光电传感器17、电力电子系统中的保护电路通常包括()A 过压保护B 过流保护C 短路保护D 以上都是18、下列哪种电路可以实现直流电压的升压变换()A 降压斩波电路B 升压斩波电路C 反激式变换电路D 正激式变换电路19、对于 PWM 控制技术,以下说法错误的是()A 可以改变输出电压的幅值B 可以改变输出电压的频率C 可以改变输出电压的相位D 可以实现能量的双向流动20、电力电子技术在下列哪个领域应用广泛()A 电力系统B 交通运输C 工业控制D 以上都是二、填空题(每题 2 分,共 20 分)1、电力电子技术包括、、三个部分。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载电压型逆变器电流型逆变器的区别地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容论文摘要:在电机漏感上减小的情况下,可以相应地降低功率半导体器件的耐压要求,为了减小换流时间以提高逆变器的运行频率,也要求降低电动机的总漏感上。
下述问题涉及电流型逆变器内部结构,以串联二极管式电流型逆变器为讨论对象。
对异步电动机的从逆变器元件的选择对电机参数的要求。
串联二极管式电流型逆变器的品闸管和隔离二极管可以确定耐压值。
可以看到,在电机漏感上减小的情况下,可以相应地降低功率半导体器件的耐压要求。
另外,二极管换流阶段的持续时间可确定。
为了减小换流时间以提高逆变器的运行频率,也要求降低电动机的总漏感上。
因而,电流型逆变器要求异步电动机有尽可能小的漏感上。
这一点正好与电压型逆变器对异步电动机的要求相反。
在功率半导体器件耐压已知的情况下,应合理地选择电动机,以减小换流电容器的电容量。
从电动机运行的安全可靠性对电动机材料的要求,电动机在电流型逆变器供电的运行过程中,由干每次换流在电压波形中产生尖峰。
这个尖峰在数值上等于I,差加千正线电势波形之上。
因此,电动机在运行过程中实际承受的最高电压,于电动机额定线电压的峰值。
为了电动机安全地运行,应适当加强其绝缘。
由于电流矩形波对电动机供电在电动机内造成谐波损耗,逆变器在高于50赫的情况下运行时,电动机的损坏也有所增加。
为了不致因电机效率过低和温升过高造电动机过热而损坏,应适当降低电动机铜铁材料的电负荷。
在运行频率较高的情况下,应注意降低电动机的机械损耗和铁耗。
起动转矩和避免机振对电动机结构的要求。
电动机低频起动时,起动转矩的平均值和转矩的波动率。
第五章逆变电路一、填空题1、换流方式主要有器件换流、电网换流、负载换流、和强迫换流。
2、单相电压型逆变电路中二极管的作用是反馈和续流。
3、180。
导电方式三相电压型逆变电路中,为了防止同一相上下两桥臂的开关器件同时导通而引起直流侧电源短路,要求采用先断后通的方法。
t4、单相桥式电流型(并联谐振式)逆变电路中为了保证晶闸管可靠关断,反压时间应大t于晶闸管关断时间。
(大于、等于或小于)q5、串联二极管式晶闸管三相电流型逆变电路采用强迫换流方式。
二、选择题1、电压型逆变电路特点有(bcd)A、直流侧接大电感B、交流侧电流接正弦波C、直流侧电压无脉动D、直流侧电流有脉动2、电流型逆变电路特点有(a)A、直流侧接大电感B、交流侧电流接正弦波C、直流侧电压无脉动D、直流侧电流有脉动3、无源逆变电路中,以下半导体器件采用器件换流的有(acd),采用强迫换流和负载换流的有(b)。
A、GTOB、SCRC、IGBTD、MOSFET4、(ad)属于自然换流,(bc)属于外部换流。
A、器件换流B、电网换流C、负载换流D、强迫换流三、问答题1、无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流测接电网,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
2、换流方式各有哪几种?各有什么特点?答:换流方多有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
3、什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点答:按照逆变电路直流测电源性质分类,直流侧是电压源的逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路。
比较电压型逆变器和电流型逆变器的特点先两者都属于交-直-交变频器,由整流器和逆变器两部分组成。
由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件。
如果采用大电容器来缓冲无功功率,则构成电压源型变频器;如采用大电抗器来缓冲无功功率,则构成电流源型变频器。
电压型变频器和电流型变频器的区别仅在于中间直流环节滤波器的形式不同,但是这样一来,却造成两类变频器在性能上相当大的差异,主要表现列表比较如下:电压型变频器与电流型变频器的性能比较1、储能元件:电压型变频器——电容器;电流型——电抗器。
2、输出波形的特点:电压形电压波形为矩形波电流波形近似正弦波;电流型变频器则为电流波形为矩形波电压波形为近似正弦波3、回路构成上的特点,电压型有反馈二极管直流电源并联大容量电容(低阻抗电压源);电流型无反馈二极管直流电源串联大电感(高阻抗电流源)电动机四象限运转容易。
4、特性上的特点,电压型为负载短路时产生过电流,开环电动机也可能稳定运转;电流型为负载短路时能抑制过电流,电动机运转不稳定需要反馈控制电流型逆变器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差;高压变频器的结构特征1.1电流型变频器变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。
缺点是需要对逆变桥进行强迫换流,装置结构复杂,调整较为困难。
另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。
1.2电压型变频器由于在变频器的直流环节采用了电容元件而得名,其特点是不能进行四象限运行,当负载电动机需要制动时,需要另行安装制动电路。
功率较大时,输出还需要增设正弦波滤波器。
1.3高低高变频器;采用升降压的办法,将低压或通用变频器应用在中、高压环境中而得名。
电力电子简答题电力电子技术试题电力电子技术问答分析题1、晶闸管两端并联R、C吸收回路的主要作用有哪些?其中电阻R的作用是什么?答:(1)R、C回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。
(2)R的作用为:使L、C形成阻尼振荡,不会产生振荡过电压,减小晶闸管的开通电流上升率,降低开通损耗。
2、实现有源逆变必须满足哪两个必不可少的条件?答:(1)要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。
?(2)要求晶闸管的控制角a>π/2,使Ud为负值。
7、为使晶闸管变流装置正常工作,触发电路必须满足什么要求?3、晶闸管触发的触发脉冲要满足哪几项基本要求?答:A:触发信号应有足够的功率。
?B:触发脉冲应有一定的宽度,脉冲前沿尽可能陡,使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。
?C:触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。
5、什么是逆变失败?逆变失败后有什么后果?形成的原因是什么答:指相控有源逆变电路逆变运行时,换流失败,外接电源通过晶闸管电路短路,或使电路的输出电压和直流电动势顺向连接,由于逆变电路内阻很小,形成很大的短路电流损坏器件。
(1)触发电路不可靠(2)晶闸管故障(3)电源缺相(4)β过小6、指出下图中①~⑦各保护元件及VD、Ld的名称和作用。
答:①星形接法的硒堆过电压保护;?②三角形接法的阻容过电压保护;?③桥臂上的快速熔断器过电流保护;?④晶闸管的并联阻容过电压保护;?⑤桥臂上的晶闸管串电感抑制电流上升率保护;?⑥直流侧的压敏电阻过电压保护;?⑦直流回路上过电流快速开关保护;?VD是电感性负载的续流二极管;?Ld 是电动机回路的平波电抗器;四、问答分析题1、PWM逆变电路的控制方法主要有哪几种?简述异步调制与同步调制各有哪些优点?答:(1)PWM逆变电路的常用控制方法有两种,一是计算法;二是调制法。
第六章无源逆变电路习题与思考题解6-1.无源逆变电路和有源逆变电路的区别有哪些解:无源逆变电路就是将直流电能转换为某一固定频率或可变频率的交流电能,并且直接供给负载使用的逆变电路。
有源逆变电路就是将直流电能转换为交流电能后,又馈送回交流电网的逆变电路。
这里的“源”即指交流电网,或称交流电源。
6-2.什么是电压型逆变电路和电流型逆变电路各有什么特点解:根据逆变器直流侧电源性质的不同可分为两种,直流侧是电压源的称为电压型逆变器,直流侧是电流源的称为电流型逆变器。
电压型逆变器,其中间直流环节以电容贮能,具有稳定直流侧电压的作用。
直流侧电压无脉动、交流侧电压为矩形波,多台逆变器可以共享一套直流电源并联运行。
由于PWM(脉宽调制)技术的出现和发展,使得电压和频率的调节均可在逆变过程中由同一逆变电路完成,应用更为普遍。
电流型逆变器,中间直流环节以电感贮能,具有稳定直流侧电流的作用。
它具有直流侧电流无脉动、交流侧电流为矩形波和便于能量回馈等特点。
一般用于较大功率的调速系统中,如大功率风机、水泵等。
6-3.试说明电压型逆变电路中续流二极管的作用。
解:对于电感性负载,由于电感的储能作用,当逆变电路中的开关管关断时,负载电流不能立即改变方向,电流将保持原来的流向,必须通过与开关管反向并联的大功率二极管进行续流,来释放电感中储存的能量,这就是电压型逆变电路中续流二极管的作用。
若电路中无续流二极管,开关管关断时,由于电感中的电流将产生很大电流变化率,从而在电路中引起很高的过电压,对电路的器件或绝缘产生危害。
6-4试述180O导电型电压型逆变电路的换流顺序及每60O区间导通管号。
解:参阅教材P101中的图6-4(g)。
180 O导电型电压型逆变电路,每个开关管在每个周期中导通180 O,关断时间也是180 O,换流(换相)是在同一个桥臂的上、下两个开关管之间进行,亦称纵向换相。
换流顺序为每一次在同一桥臂上的V11和V14,V13和V16,V15和V12,每对管各自间隔180 O换相一次。
简述电流型逆变电路主要特点。
电流型逆变电路主要特点如下:
1. 输入电流控制:电流型逆变电路能够通过调节输入电流来控制输出电流和输出功率。
这使得它能够根据需要提供不同的输出功率,适应不同负载的要求。
2. 输出电流稳定性高:电流型逆变电路具有较高的输出电流稳定性,即使在负载变化或短路情况下,输出电流也能够保持相对稳定。
3. 高效率:电流型逆变电路具有较高的能量转换效率,能够将输入电能有效地转换为输出电能,减少能量损耗。
4. 输出电压可控性差:相比于电压型逆变电路,电流型逆变电路对输出电压的控制能力较弱。
输出电压通常在负载变化时会有相应的波动。
5. 复杂度较高:电流型逆变电路相对于其他逆变电路来说较为复杂。
它需要搭配复杂的控制电路和功率器件,以实现对电流的精确控制。
综上所述,电流型逆变电路具有输入电流控制、输出电流稳定性高和高效率等优点,但对输出电压的控制能力较弱,且复杂度较高。
它在需要对输出功率进行精确控制的应用中具有较大的优势。
电压型逆变电路和电流型逆变电路是两种常见的逆变电路类型,它们在不同的应用领域中具有各自的特点。
下面我将详细介绍这两种逆变电路的特点。
一、电压型逆变电路
1. 工作原理:电压型逆变电路通过将直流电压转换为交流电压输出。
其基本原理是通过控制开关管的导通和断开,使电源电压经过滤波电容和变压器转换为所需的输出交流电压。
2. 特点:
(1)输出电压稳定性高:电压型逆变电路通过反馈控制,实现对输出电压的精确调节,能够提供稳定的输出电压。
(2)负载适应性好:电压型逆变电路输出电压与负载电流无关,能够适应不同负载条件下的工作要求。
(3)输出电压范围广:电压型逆变电路可以实现从几伏到几千伏的宽范围输出电压。
(4)输出电流能力较弱:电压型逆变电路输出电流能力相对较弱,适用于对输出电流要求不高的应用场景。
(5)逆变效率较高:电压型逆变电路由于采用了高频开关技术和功率调制控制策略,能够实现较高的逆变效率。
3. 应用领域:
电压型逆变电路广泛应用于电力电子变频器、太阳能发电系统、风力发电系统、UPS电源等领域,以及需要稳定交流电源的工业控制系统中。
二、电流型逆变电路
1. 工作原理:电流型逆变电路通过将直流电流转换为交流电流输出。
其基本原理是通过控制开关管的导通和断开,使电源电流经过滤波电感和变压器转换为所需的输出交流电流。
2. 特点:
(1)输出电流稳定性高:电流型逆变电路通过反馈控制,实现对输出电流的精确调节,能够提供稳定的输出电流。
(2)负载适应性好:电流型逆变电路输出电流与负载电压无关,能够适应不同负载条件下的工作要求。
(3)输出电流范围广:电流型逆变电路可以实现从几毫安到数千安的宽范围输出电流。
(4)输出电压能力较弱:电流型逆变电路输出电压能力相对较弱,适用于对输出电压要求不高的应用场景。
(5)逆变效率较高:电流型逆变电路由于采用了高频开关技术和功率调制控制策略,能够实现较高的逆变效率。
3. 应用领域:
电流型逆变电路广泛应用于电力电子变频器、电动汽车充电桩、工业焊接设备、电源适配器等领域,以及需要稳定交流电流的工业控制系统中。
综上所述,电压型逆变电路和电流型逆变电路在工作原理、特点和应用领域上存在一定的区别。
选择适合的逆变电路类型需要根据具体的应用需求和技术要求进行综合考虑。