人教版初中数学七年级下册第八章《二元一次方程组》全章12课时教案教材分析
- 格式:doc
- 大小:275.00 KB
- 文档页数:24
人教版七年级数学下册8.1《二元一次方程组》教案一. 教材分析《二元一次方程组》是人教版七年级数学下册第八章的第一节内容,主要介绍了二元一次方程组的概念、解法和应用。
本节内容是学生继学习一元一次方程之后,进一步研究二元一次方程,培养学生解决实际问题的能力,为后续学习更复杂的方程组打下基础。
二. 学情分析学生在之前的学习中已经掌握了一元一次方程的知识,具备了一定的数学思维能力和问题解决能力。
但七年级的学生在逻辑思维和抽象思维方面仍在发展过程中,因此,在教学过程中,需要教师引导学生逐步理解二元一次方程组的概念,并通过实际例子让学生感受方程组在解决实际问题中的作用。
三. 教学目标1.理解二元一次方程组的概念,掌握二元一次方程组的解法;2.能够运用二元一次方程组解决实际问题;3.培养学生的合作交流能力和抽象思维能力。
四. 教学重难点1.重点:二元一次方程组的概念,解法及应用;2.难点:二元一次方程组的解法,以及如何将实际问题转化为方程组问题。
五. 教学方法采用问题驱动法、合作交流法、案例教学法等,引导学生主动探究,合作解决问题,提高学生的数学思维能力和实际问题解决能力。
六. 教学准备1.准备相关案例和练习题;2.准备课件和教学素材;3.准备小组讨论的安排。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题,从而引入二元一次方程组的概念。
2.呈现(10分钟)呈现二元一次方程组的定义和性质,引导学生理解并能够描述二元一次方程组。
3.操练(10分钟)通过一些简单的例子,让学生练习解二元一次方程组,引导学生掌握解题方法。
4.巩固(10分钟)让学生分组讨论,分析并解决一些实际问题,巩固所学知识。
5.拓展(10分钟)引导学生思考如何将实际问题转化为方程组问题,提高学生的问题解决能力。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确学习目标。
7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。
人教版数学七年级下册8.1《二元一次方程组》教学设计一. 教材分析《二元一次方程组》是人教版数学七年级下册第八章第一节的内容,主要介绍二元一次方程组的概念、解法和应用。
本节内容是在学生已掌握一元一次方程的基础上进行的,是进一步学习三元一次方程组、二元二次方程组等的基础。
通过本节的学习,使学生能够掌握二元一次方程组的概念,学会用代入法、加减法等解二元一次方程组,并能够解决一些实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了一元一次方程的解法和应用,对解方程有一定的基础。
但七年级的学生逻辑思维能力和抽象思维能力还在发展中,对于二元一次方程组的概念和解法还需要通过具体的例子和实际问题来理解和掌握。
三. 教学目标1.了解二元一次方程组的概念,理解二元一次方程组的解的意义。
2.学会用加减法、代入法解二元一次方程组。
3.能够应用所学的知识解决一些实际问题。
四. 教学重难点1.重难点:二元一次方程组的概念和解法。
2.难点:如何引导学生理解二元一次方程组的解的意义,以及如何应用所学的知识解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题引导学生思考,通过案例使学生理解概念和解法,通过小组合作学习促进学生之间的交流和合作。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)通过设置一个问题情境,如“小明和小红一共有多少本书?”引发学生对二元一次方程组的思考,进而导入本节内容。
2.呈现(10分钟)用PPT呈现二元一次方程组的定义和例子,引导学生理解二元一次方程组的概念。
然后介绍二元一次方程组的解法,如加减法、代入法等,并通过具体的例子使学生理解解法的过程。
3.操练(10分钟)让学生分组合作,用加减法、代入法解给出的二元一次方程组,并在小组内交流解题过程和方法。
4.巩固(10分钟)让学生独立完成一些二元一次方程组的题目,以巩固所学的知识和解法。
人教版数学七年级下册8.1《二元一次方程组》教案3一. 教材分析《二元一次方程组》是初中数学七年级下册的教学内容,这部分知识是代数学习的重要部分,也是解决实际问题的重要工具。
通过学习二元一次方程组,学生可以掌握用数学方法解决实际问题的能力,为后续学习更高级的代数知识打下基础。
二. 学情分析学生在学习《二元一次方程组》之前,已经学习了单项式、多项式、一元一次方程等知识,具备了一定的代数基础。
但学生对二元一次方程组的理解和应用能力还有待提高,因此,在教学过程中,需要引导学生通过实际问题,发现和总结二元一次方程组的解法,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:学生能理解二元一次方程组的概念,掌握二元一次方程组的解法,能应用二元一次方程组解决实际问题。
2.过程与方法:通过实际问题的解决,学生能体验数学与生活的联系,培养学生的应用意识,提高学生解决问题的能力。
3.情感态度价值观:学生能认识数学在生活中的重要性,培养学习数学的兴趣,增强学生克服困难的信心。
四. 教学重难点1.重点:二元一次方程组的概念,二元一次方程组的解法。
2.难点:二元一次方程组的解法,应用二元一次方程组解决实际问题。
五. 教学方法采用问题驱动法,情境教学法,引导发现法,合作交流法等,充分调动学生的积极性,引导学生主动探索,发现和总结二元一次方程组的解法,提高学生的解决问题的能力。
六. 教学准备1.教师准备:备好教学用的课件,准备好相关的实际问题,准备好课堂练习题。
2.学生准备:预习相关知识,准备好笔记本,做好上课的准备。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师通过多媒体课件,展示二元一次方程组的相关知识,引导学生理解二元一次方程组的概念,明确二元一次方程组的解法。
3.操练(10分钟)教师给出一些二元一次方程组,引导学生通过合作交流,发现和总结二元一次方程组的解法。
人教版数学七年级下册教学设计8.1《二元一次方程组》一. 教材分析《二元一次方程组》是人教版数学七年级下册的教学内容,这部分内容是代数学习的重要部分,也是解决实际问题的重要工具。
本节课的主要内容是让学生掌握二元一次方程组的定义、解法及其应用。
通过本节课的学习,学生能够理解和掌握二元一次方程组的基本概念,能够运用加减消元法、代入消元法等方法解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了单项式、多项式、方程等基础知识,具备了一定的代数基础。
但是,对于二元一次方程组这种复杂的代数结构,学生可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生通过实际问题引入方程组的概念,让学生在实践中理解和掌握二元一次方程组的知识。
三. 教学目标1.让学生理解和掌握二元一次方程组的定义及其解法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的合作交流能力和思维能力。
四. 教学重难点1.重点:二元一次方程组的定义、解法及其应用。
2.难点:二元一次方程组的解法及应用。
五. 教学方法采用问题驱动法、合作交流法、案例教学法等方法,引导学生通过实际问题引入方程组的概念,让学生在实践中理解和掌握二元一次方程组的知识。
六. 教学准备1.准备相关的实际问题,用于引入方程组的概念。
2.准备二元一次方程组的解法及其应用的案例。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过呈现一个实际问题,让学生思考如何解决这个问题,从而引入方程组的概念。
2.呈现(10分钟)教师通过课件呈现二元一次方程组的定义、解法及其应用的相关知识,让学生初步了解和认识二元一次方程组。
3.操练(10分钟)教师引导学生通过实际问题,运用加减消元法、代入消元法等方法解决二元一次方程组的问题,让学生在实践中理解和掌握二元一次方程组的解法。
4.巩固(5分钟)教师通过一些练习题,让学生巩固所学的二元一次方程组的解法。
5.拓展(5分钟)教师通过一些综合性的问题,让学生运用所学的二元一次方程组的解法解决实际问题,提高学生的应用能力。
人教版七年级下册第八章《二元一次方程组》教材分析本章主要内容有二元一次方程(组)的相关概念,利用消元思想解二元一次方程组及多元一次方程组,利用一次方程组分析解决实际问题。
安排在第八章是在学生已解决了中、小学数学的衔接问题,并已掌握了有理数、整式运算、一元一次方程和平面直角坐标系的基础上进行的,是今后学习“一次函数”,“二次函数”线性方程组及平面解析几何等知识的基础。
一、课标要求:1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型.2.了解二元一次方程组及其相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系.3.了解二元一次方程组的基本目标:使方程组逐步转化为x=a,y=b的形式,体会“消元”思想,掌握解二元一次方程组的代入法和加减法,能根据二元一次方程组的具体形式选择适当的解法. 4.了解三元一次方程组及其解法,进一步体会“消元”思想,能根据三元一次方程组的具体形式选择适当的解法.5.通过探究实际问题,进一步认识利用二(三)元一次方程组解决实际问题的基本过程,体会数学应用的价值,提高分析问题、解决问题的能力.二.重点、难点和关键重点:二元一次方程组的解法、消元的思想以及列出二元一次方程组解实际问题。
难点:二元一次方程的解的不确定性,二元一次方程组解的意义,实际问题中数量关系比较多且比较隐蔽时如何列出方程组解决实际问题。
关键:消元化归思想、优化思想的逐步形成。
正确地列出方程组解实际问题的关键在于正确地找出实际问题中的两个独立的相等关系,并能把它们表示成两个方程。
三.教材分析(一)利用二(三)元一次方程组解决实际问题的基本过程(二)本章的课时安排:本章教学约需12课时,具体分配如下(仅供参考)8.1 二元一次方程组 1课时8.2 消元——解二元一次方程组 4课时8.3 实际问题与二元一次方程组 3课时8.4 三元一次方程组解法 2课时小结 2课时(三)本章的总体把握:这章内容在小学有所渗透,学生开始应该很容易接受,从数论的角度说,二元一次方程又叫不定方程。
人教版七(下)第八章《二元一次方程组》教材分析及教学建议一、本章主要内容本章主要内容包括:二元一次方程组及其相关概念,消元思想和代入法、加减法解二元一次方程组以及三元一次方程组解法举例,利用二元一次方程组分析与解决实际问题。
其中,以方程组为工具分析问题,解决含有多个未知数的问题既是本章的重点,又是难点。
本章的中心任务是:使学生经历建立二(三)元一次方程组这种数学模型并应用它们解决实际问题的过程,体会方程组的特点和作用,掌握运用方程组解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。
由于含有两(三)个以及多个未知数的实际问题中数量关系比较多,在某些问题中数量关系比较隐蔽,所以列方程组表示问题中的数量关系通常是教学中的难点。
特别要注意的是§8.4《三元一次方程组解法举例》,在《新课程标准(实验稿)》中是没有要求的,但是在《新课程标准(实验修订稿)》中补充了这方面的教学要求,具体表述是“掌握代入消元法和加减消元法,能解简单的二元一次方程组和三元一次方程组”。
二、教学课时安排本章教学时间约需12课时,具体分配如下(仅供参考)8.1 二元一次方程组1课时8.2 消元——二元一次方程组的解法3课时8.3 实际问题与二元一次方程组4课时*8.4 三元一次方程组解法举例2课时数学活动及小结2课时课时安排与《教师教学用书》的安排有所调整,主要是把§8.2的其中一个课时调整到§8.3,目的是在§8.2的教学中重点解决方程组的解法,把实际应用的例题调整到§8.3,以求把难点分散。
三、教材特点和教学建议(一)注重解法背后的算理,强调消元思想方程组中含有多个未知数,消元思想是产生具体解法的重要基础(解方程组时“化多为少,由繁至简,各个击破,逐一解决”的基本策略),而代入法和加减法则是落实消元思想的具体措施。
本章在有关方程组解法的讨论中,注意了先使学生了解消元的基本思想,然后在其指导下寻求解决问题的具体方法,从而使具体解法的合理性凸现出来。
第八章《二元一次方程组》全章教材分析一、教材内容本章主要内容包括:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程组解法举例,二元一次方程组的应用。
教材首先从一个篮球联赛中的问题入手,归纳出二元一次方程组及解的概念,并估算简单的二元一次方程(组)的解。
接着,以消元思想为基础,依次讨论了解二元一次方程组的常用方法——代入法和消元法。
然后,选择了三个具有一定综合性的问题:“牛饲料问题”“种植计划问题”“成本与产出问题”,将贯穿全章的实际问题提高到一个新的高度。
最后,通过举例介绍了三元一次方程组的解法,使消元的思想得到了充分的体现。
二、教学目标(一)知识与技能目标1、了解二元一次方程组及相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系;2、掌握二元一次方程组的代入法和消元法,能根据二元一次方程组的具体形式选择适当的解法;3、了解三元一次方程组的解法;4、学会运用二(三)元一次方程组解决实际问题,进一步提高学生分析问题和解决问题的能力。
(二)过程与方法目标1、以含有多个未知数的实际问题为背景,经历“分析数量关糸,设未知数,列方程,解方程和检验结果”,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。
2、在把二元一次方程组转化为x=a,y=b的形式的过程中,体会“消元”的思想。
(三)情感、态度与价值观〕通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能力。
三、重点、难点重点:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题;难点:以方程组为工具分析问题、解决含有多个未知数的问题。
四、课时划分建议本章共12课时:二元一次方程(组)1课时,消元思想3课时,应用方程组解决实际问题2课时,三元一次方程组2课时,复习1课时,单元检测2课时,讲评1课时。
第一课时二元一次方程(组)●教学内容:人教版七年级下册第八章二元一次方程组的第一节。
●教学目标:1、理解二元一次方程(组)及二元一次方程(组)的解的概念;2、能判断一个方程组是否是二元一次方程组3、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程(组)的解;4、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示。
●教学重点、难点:重点:二元一次方程(组)的意义及二元一次方程(组)的解的概念难点:1、二元一次方程组节含义2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
●教学过程:一、创设情境,引入新知篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得一分,某队想在全部22场比赛中得到40分,这个对胜负场数分别是多少?法一:可列一元一次方程来解(详细过程略)法二:可否设胜负场数分别为x场、y场,那么x、y应同时满足以下两个方程x+y=22 2x+y=40二、探索新知1)二元一次方程的意义这两个方程是我们学过的一元一次方程吗?由一名学生来阐述什么叫做一元一次方程,它的特征有哪些?含有一个未知数并且未知数的次数为一次的整式方程叫一元一次方程,它的特征有三个:①含有一个未知数;②未知数的次数是一次;③方程两边都是整式。
与一元一次方程的特征作比较,上述两个方程具有怎样的特征呢?①含有两个未知数;②未知项的次数是一次;③方程两边都是整式。
得出概念:含有两个未知数,并且未知项的次数都是一次的整式方程叫做二元一次方程(关键词两个未知数,未知项的次数,一次,整式方程)练习:请你判断下列式子是否为二元一次方程?(1) x-2y=8;(2) x2+y=0;(3) x=2/y+1;(4) a+1/2b;(5) xy+y=2;(6)x/3 +2y=0.2)二元一次方程的解以x+y=22为例探索满足此方程的未知数值有无数对,从而得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解同时强调二元一次方程解的书写格式⎩⎨⎧==5.215.0Y X ,⎩⎨⎧=-=242Y X ,⎩⎨⎧==157Y X … 一般地一个二元一次方程有无数解(同时探索求解方法:用含一个未知数的代数式表示另一未知数)此二元一次方程的正整数解有⎩⎨⎧==211y x ,⎩⎨⎧==202y x 。
⎩⎨⎧==121y x 共21个。
3)二元一次方程组上在一起成为⎩⎨⎧=+=+40222y x y x 述问题中,x 、y 必须同时满足两个方程x+y=22 和 2x+y=40,把这两个方程合写含有两个未知数且未知项的次数均为一两个整式方程合在一起,就组成二元一次方程组。
比如⎩⎨⎧==85y x ,⎩⎨⎧-=+=65312b a a ,⎩⎨⎧=+-=-2063372y x y x 等都是二元一次方程组,但⎩⎨⎧=+=263y x xy ,⎩⎨⎧+==+z y y x 792,⎪⎩⎪⎨⎧=-=x y y x 232 等不是二元一次方程组(你们知道为什么吗?)4)二元一次方程组的解上述问题通过解一元一次方程可知x=18 22-x=4,即⎩⎨⎧==418y x 既满足方程x+y=22又满足方程2x+y=40,所以我们就说⎩⎨⎧==418y x 是方程组⎩⎨⎧=+=+40222y x y x 的解。
使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.例题 判断下列各组未知数的知是不是二元一次方程组的解.(1)⎩⎨⎧=+=+40222y x y x (⎩⎨⎧==175y x ,⎩⎨⎧==2010y x ,⎩⎨⎧==418y x ) (2)⎩⎨⎧-==⎩⎨⎧=-=95(1925y x y x x ,⎩⎨⎧==295y x ,⎩⎨⎧==95y x ) (3)⎩⎨⎧=-=+108y x y x (⎩⎨⎧==53y x ,⎩⎨⎧==,111y x ,⎩⎨⎧-==19x x ) 一般地,一个二元一次方程组只有一个解。
三、尝试反馈,巩固知识1)写出二元一次方程5x -y=2的五个解_2)已知二元一次方程3x-y=10,用x 代数式表示y=_;当x=6时,y =_。
用含y 的代数式表示x=_;当y=2时,x=_3)3x+y=10自然数解有_4)⎩⎨⎧==53y x ,⎩⎨⎧==,111y x ,⎩⎨⎧-==19x x 中为方程组⎩⎨⎧=-=+108y x y x 的解的是_ 5)书上94页练习题6)书上95页习题8.1第1题四、课堂小结,思想升华我们今天学习了二元一次方程,二元一次方程组的概念,二元一次方程的解,二元一次方程组的解的定义和判断方法,学习了二元一次方程特殊解的求法,学会了怎样用含一个未知数的代数式表示另一未知数的方法。
但是,我们也遇到了一个困惑,那就是二元一次方程组的解我们是用尝试法来判断的,是否有更简洁的方法来求它的解呢?这就是后几节课我们要学习的内容。
五、作业;必做95页2、3、4 选作5第二课时二元一次方程组的解法——代入消元法●教学内容人教版七年级下第八章二元一次方程组第二节●教学目标1、会用代入法解二元一次方程组2、初步体会解二元一次方程组的基本思想——消元3、通过研究解决问题的方法,培养学生合作交流意识与探索精神●教学重点、难点重点:用代入法解二元一次方程组难点:探索如何用代入法将二元转化为一元的消元过程● 教学过程一、 提出问题,探究方法问题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得一分,某队想在全部22场比赛中得到40分,这个队胜负场数分别是多少?法一:可列一元一次方程来解 法二:可列二元一次方程组来解解:设这个队胜了x 场,解:设这个队胜场数分别为x 场, 则负了(22-x )场,由题意的得 负了y 场,由题意得2x+(22-x )=40(以下略)−−−←-=x y 22⎩⎨⎧=+=+40222y x y x二、代入法解二元一次方程组的一般步骤⎩⎨⎧=+=+)2(402)1(22y x y x 解:由(1)得y=22-x (3) 。
选择变形把(3)代入(2)得2x+(22-x)=40 。
代入消元解得x=18 。
解一元方程把x=18代入(3)得y=4 。
返代求值∴⎩⎨⎧==418y x 。
规范写解 师生一起归纳代入消元法的一般步骤并强调注意事项:选择一个系数较为简单的方程变形,将变形后的式子代入另一个方程得一个一元一次方程,解这个一元一次方程(不需详细步骤),将一元一次方程的解代入(3)求出另一未知数的值(代入(1)(2)也可,但代入(3)往往要简便些),然后规范写解。
三、 尝试练习(教师可示范三题,学生练习两题,然后师生共评)2、例2(书上97页例2)3、学生尝试练习书上99页3、4题四、归纳小结本节内容、方法、注意事项五、作业必做103页习题8.2第2题、4题选做6、7题第三课时二元一次方程组的解法——加减消元法●教学内容人教版七年级下第八章二元一次方程组第二节●教学目标1、会用加减法解二元一次方程组2、进一步体会解二元一次方程组的基本思想——消元3、通过研究解决问题的方法,培养学生合作交流意识与探索精神●教学重点、难点重点:用加减法解二元一次方程组难点:探索如何用加减法将二元转化为一元的消元过程● 教学过程 一、 提出问题,探究方法观察下列方程组中同一未知数系数之间的关系并思考新的消元方法(1)⎩⎨⎧=+=+)2(402)1(22y x y x 因为两个方程中y 的系数相同,故由(1)-(2)可消y (也可由(2)-(1)消y )(2)⎩⎨⎧=-=+)2(81015)1(6.3104y x y x 因为两个方程中y 的系数互为相反数,故由(1)+(2)可消y归纳:两个二元一次方程中同一未知数的系数互为相反数或相同,把这两个方程两边分别相加或相减,就可消去这个未知数,得到一个一元一次方程,这种方法叫加减消元法,简称加减法(3)⎩⎨⎧=-=+)2(325)1(1643y x y x 因为方程组中y 的系数成整数倍关系,故可由(1)+(2)×2消y(4)⎩⎨⎧=-=+)2(3365)1(1643y x y x 首先要将方程组中的同一未知数系数化成相同或互为相反数,故可由(1)×3+(2)×2消y ,也可可由(1)×5-(2)×3消x.二、加减法的一般步骤详细板书解上述5个方程组的过程,然后师生一起归纳加减法的一般步骤:观察方程组中同一未知数系数之间的关系,若有同一未知数的系数相同或互为相反数可直接把这两个方程两边分别相加或相减,就可消去一个未知数,得到一个一元一次方程,若没有同一未知数相同或互为相反数,可把方程组先变形化成有同一未知数(一般选择系数较为简单的那个未知数)相同或互为相反数的情形,再用加减法消去一个未知数化成一元一次方程,然后解一元一次方程,再返代求另一未知数的值,最后规范写解。