天津市河西区2019年中考一模数学试题及答案
- 格式:doc
- 大小:888.78 KB
- 文档页数:12
2019年天津市河西区中考数学一模试卷一、选择题(本大题共12小题,每小题3分共36分,在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确的答案填在表格里).3.实数的算术平方根等于()..5.据《2019中国可持续发展战略报告》提出,中国发展中的人口压力依然巨大,按2011年提高后的贫困标准(农村居民家庭人均纯收入2300元人民币/年),中国还有128000000的贫困人口,将6.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是().8.如图,CD是⊙O的弦,直径AB过CD的中点,若∠BOC=40°,则∠ABD的度数为()9.如图,平面直角坐标系,A、B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则A1B1的中点为()10.如图,已知∠ABC=90°,AB=πr,AB=2BC,半径为r的⊙O从点A出发,沿A→B→C方向滚动到点C时停止.则在此运动过程中,圆心O运动的总路程为().11.如图,在△ABC中,∠C=90°,点D在CB上,DE⊥AB,若DE=2,CA=4,则=()..12.下列函数中:①y=﹣2x;②y=x﹣1;③y=﹣;④y=﹣x2+2x+3(x>2)二、填空题(本大题共6个小题,每题3分,共18分)13.点P(﹣3,4)关于原点对称的点的坐标是_________.14.已知一次函数的图象经过(﹣1,2)和(﹣3,4),则这个一次函数的解析式为_________.15.方程=1的解为_________.16.如图,平行四边形ABCD的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.17.如图,△ABC为等边三角形,P为BC上一点,△APQ为等边三角形.有下列结论:①AB∥CQ;②AQ与CQ互相垂直;③△APC∽△QCP;④△APQ≌△ACQ.其中正确的有_________.18.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E、F为边OA上的两个动点,且EF=2,当四边形CDEF 的周长最小时,求点E、F的坐标分别为_________,并在图中画出示意图.三、解答题(本大题共7小题,解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组.20.(8分)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)21.(10分)如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.22.(10分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.23.(10分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2019年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时时,电费是_________元;(2)第二档的用电量范围是_________;(3)“基本电价”是_________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?24.(10分)如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.(1)如图1,当n=1时,求正三角形的边长a1;(2)如图2,当n=2时,求正三角形的边长a2;(3)如题图,求正三角形的边长a n(用含n的代数式表示)25.(10分)已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S△ABM=3,求点M的坐标;(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.。
2019年天津市河西区中考数学模拟试卷(3月份)一.选择题(3×12=36)1.(3分)计算(﹣3)2的结果等于()A.9B.﹣9C.8D.﹣82.(3分)cos60°的值等于()A.B.C.D.3.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.4.(3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A.3.12×105B.3.12×106C.31.2×105D.0.312×1075.(3分)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.6.(3分)估计的值在()A.3到4之间B.4到5之间C.5到6之间D.3到4之间或﹣4到﹣3之间7.(3分)计算的结果为()A.B.C.D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,Rt△ABC中,∠C=90°,BC=10,∠A=30°,则AC的长度为()A.8B.12C.10D.1010.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=﹣的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x3<x1<x2 C.x2<x3<x1D.x2<x1<x311.(3分)如图,AC、BD是菱形ABCD的对角线,E、F分别是边AB、AD的中点,连接EF,EO,FO,则下列结论错误的是()A.EF=DO B.EF⊥AOC.四边形EOF A是菱形D.四边形EBOF是菱形12.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)且开口向下,则下列结论:①抛物线经过点(3,0);②3a+b<0;③关于x的方程ax2+bx+c﹣1=n有两个不相等的实数根;④对于任意实数m,a+b≤am2+bm总成立.其中结论正确的个数为()A.1 个B.2 个C.3 个D.4 个三.填空题(3×6=18)13.(3分)计算(﹣2y3)2的结果等于.14.(3分)计算(2﹣3)2的结果等于.15.(3分)甲盒装有3个乒乓球,分别标号为1,2,3;乙盒装有2个乒乓球,分别标号为1,2.现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是.16.(3分)将直线y=3x+1向下平移1个单位长度,平移后直线的解析式为.17.(3分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AB的长度等于(Ⅱ)请你在图中找到一个点P,使得AB是∠P AC的角平分线请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)三、解答题(本大题共7小题,共66分)19.(8分)解不等式组请结合题意填空,完成本题的解答、(Ⅰ)解不等式①,得(Ⅱ)解不等式②,得(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为20.(8分)某养鸡场有5000只鸡准备对外出售,从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的旋计图①和图②.请根据相关信息,解答下列问题;(Ⅰ)图①中m的值为(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这5000只鸡中,质量为1.0kg的约有多少只?21.(10分)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C (Ⅰ)若∠ADE=25°,求∠C的度数(Ⅱ)若AB=AC,求∠D的度数.22.(10分)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至AC′的位置时,AC′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ 前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).23.(10分)某品牌笔记本电脑的售价是5000元/台.最近,该商家对此型号笔记本电脑举行促销活动,有两种优惠方案:方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.设公司一次性购买此型号笔记本电脑x台.(Ⅰ)根据题意,填写如表:(Ⅱ)设选择方案一的费用为y1元,选择方案二的费用为为y2元,分别写出y1,y2关于x的函数关系式;(Ⅲ)当x>15时,该公司采用哪种方案购买更合算?并说明理由24.(10分)已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上(Ⅰ)如图①,当EP⊥BC时,①求证CE=CN;②求CN的长;(Ⅱ)请写出线段CP的长的取值范围,及当CP的长最大时MN的长.25.(10分)在平面直角坐标系中,已如抛物线y=﹣x2+3x+m,其中m为常数.(Ⅰ)当抛物线经过点(3,5)时,求该抛物线的解析式.(Ⅱ)当抛物线与直线y=x+3m只有一个交点时,求该抛物线的解析式.(Ⅲ)当0≤x≤4时,试通过m的取值范围讨论抛物线与直线y=x+2的公共点的个数的情况.2019年天津市河西区中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(3×12=36)1.(3分)计算(﹣3)2的结果等于()A.9B.﹣9C.8D.﹣8【解答】解:(﹣3)2=(﹣3)×(﹣3)=9,故选:A.2.(3分)cos60°的值等于()A.B.C.D.【解答】解:cos60°=,故选:D.3.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.4.(3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A.3.12×105B.3.12×106C.31.2×105D.0.312×107【解答】解:将3120000用科学记数法表示为:3.12×106.故选:B.5.(3分)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【解答】解:从左边看竖直叠放2个正方形.故选:C.6.(3分)估计的值在()A.3到4之间B.4到5之间C.5到6之间D.3到4之间或﹣4到﹣3之间【解答】解:∵25<31<36,∴,故选:C.7.(3分)计算的结果为()A.B.C.D.【解答】解:原式=••=,故选:A.8.(3分)方程组的解是()A.B.C.D.【解答】解:,①×3+②得:5x=22,解得:x=,把x=代入①得:y=﹣,则方程组的解为,故选:D.9.(3分)如图,Rt△ABC中,∠C=90°,BC=10,∠A=30°,则AC的长度为()A.8B.12C.10D.10【解答】解:∵∠C=90°,∠A=30°,∴AB=2BC=2×10=20,由勾股定理得:AC===10,故选:D.10.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=﹣的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x3<x1<x2 C.x2<x3<x1D.x2<x1<x3【解答】解:∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=﹣的图象上,∴x1=,x2=2,x3=﹣2∴x3<x1<x2,故选:B.11.(3分)如图,AC、BD是菱形ABCD的对角线,E、F分别是边AB、AD的中点,连接EF,EO,FO,则下列结论错误的是()A.EF=DO B.EF⊥AOC.四边形EOF A是菱形D.四边形EBOF是菱形【解答】解:∵菱形ABCD,∴BO=OD,BD⊥AC,∵E、F分别是边AB、AD的中点,∴2EF=BD=BO+OD,EF∥BD,∴EF=DO,EF⊥AO,∵E是AB的中点,O是BD的中点,∴2EO=AD,同理可得:2FO=AB,∵AB=AD,∴AE=OE=OF=AF,∴四边形EOF A是菱形,∵AB≠BD,∴四边形EBOF是平行四边形,不是菱形,故选:D.12.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)且开口向下,则下列结论:①抛物线经过点(3,0);②3a+b<0;③关于x的方程ax2+bx+c﹣1=n有两个不相等的实数根;④对于任意实数m,a+b≤am2+bm总成立.其中结论正确的个数为()A.1 个B.2 个C.3 个D.4 个【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴抛物线经过点(3,0),故①正确;②根据图象知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②正确;③当y=n时,此时直线y=n与抛物线y=ax2+bx+c只有一交点,当y=n+1时,此时直线y=n+1与抛物线y=ax2+bx+c没有交点,∴关于x的方程ax2+bx+c﹣1=n没有实数根,故③错误;④∵顶点坐标为(1,n),∴当x=1时,函数有最大值n,∴a+b+c≥am2+bm+c,∴a+b≥am2+bm,故④错误.故选:B.三.填空题(3×6=18)13.(3分)计算(﹣2y3)2的结果等于4y6.【解答】解:(﹣2y3)2=(﹣2y3)•(﹣2y3)=4y6.故答案为:4y6.14.(3分)计算(2﹣3)2的结果等于17﹣12.【解答】解:原式=(2)2﹣2×2×3+32=8﹣12+9=17﹣12,故答案为:17﹣12.15.(3分)甲盒装有3个乒乓球,分别标号为1,2,3;乙盒装有2个乒乓球,分别标号为1,2.现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是.【解答】解:画树状图得:∵共有6种等可能的结果,取出的两球标号之和为4的有2种情况,∴取出的两球标号之和为4的概率是:=.故答案为:.16.(3分)将直线y=3x+1向下平移1个单位长度,平移后直线的解析式为y=3x.【解答】解:原直线的k=3,b=1;向下平移1个单位长度得到了新直线,那么新直线的k=3,b=1﹣1=0.∴新直线的解析式为y=3x.故答案为:y=3x17.(3分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=﹣1.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AB的长度等于2(Ⅱ)请你在图中找到一个点P,使得AB是∠P AC的角平分线请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)【解答】解:(I)AB==2;故答案为:2;(II)如图所示:AP即为所求.三、解答题(本大题共7小题,共66分)19.(8分)解不等式组请结合题意填空,完成本题的解答、(Ⅰ)解不等式①,得x<5(Ⅱ)解不等式②,得x≤1(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为x≤1【解答】解:解不等式①,得x<5,解不等式②,得x≤1,把不等式①和②的解集在数轴上表示出来为:∴原不等式组的解集为:x≤1,故答案为:x<5,x≤1,x≤1.20.(8分)某养鸡场有5000只鸡准备对外出售,从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的旋计图①和图②.请根据相关信息,解答下列问题;(Ⅰ)图①中m的值为28(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这5000只鸡中,质量为1.0kg的约有多少只?【解答】解:(I)图①中m的值为100﹣(32+8+10+22)=28,故答案为:28;(II)这组数据的平均数为=1.52(kg),众数为1.8kg,中位数为=1.5(kg);(Ⅲ)估计这5000只鸡中,质量为1.0kg的约有5000×=500(只).21.(10分)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C (Ⅰ)若∠ADE=25°,求∠C的度数(Ⅱ)若AB=AC,求∠D的度数.【解答】解:(Ⅰ)连接OA,∵∠ADE=25°,∴由圆周角定理得:∠AOC=2∠ADE=50°,∵AC切⊙O于A,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣50°﹣90°=40°;(Ⅱ)∵AB=AC,∴∠B=∠C.∵=,∴∠AOC=2∠B.∴∠AOC=2∠C.∵∠OAC=90°,∴∠AOC+∠C=90°.∴3∠C=90°.∴∠AOC=2∠C=60°.∴∠D=∠AOC=30°.22.(10分)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至AC′的位置时,AC′的长为23.5m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ 前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).【解答】解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ =,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.23.(10分)某品牌笔记本电脑的售价是5000元/台.最近,该商家对此型号笔记本电脑举行促销活动,有两种优惠方案:方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.设公司一次性购买此型号笔记本电脑x台.(Ⅰ)根据题意,填写如表:(Ⅱ)设选择方案一的费用为y1元,选择方案二的费用为为y2元,分别写出y1,y2关于x的函数关系式;(Ⅲ)当x>15时,该公司采用哪种方案购买更合算?并说明理由【解答】解:(Ⅰ)根据题意得:按照方案二购买,当购买的台数为10台时,总费用为:5000×5+5000×0.8×(10﹣5)=45000(元),当购买的台数为20台时,总费用为:5000×5+5000×0.8×(20﹣5)=85000(元),故答案为:45000,85000,(Ⅱ)根据题意得:y1=0.9×5000,即y1=4500x,(x≥0),当0≤x≤5时,y2=5000x,当x>5时,y2=5000×5+0.8(x﹣5)×5000,即y2=5000+4000x,(Ⅲ)y1﹣y2=4500x﹣4000x﹣5000=500x﹣5000,记y=500x﹣5000,当x=15时,y>0,由500>0,有y随x的增大而增大,故当x>15时,y>0,∴y1>y2,故应选择方案二节省费用,答:当x>15时,该公司采用方案二购买更合算.24.(10分)已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上(Ⅰ)如图①,当EP⊥BC时,①求证CE=CN;②求CN的长;(Ⅱ)请写出线段CP的长的取值范围,及当CP的长最大时MN的长.【解答】(Ⅰ)①证明:∵△AME沿直线MN翻折,点A落在点P处,∴△AME≌△PME,∴∠AEM=∠PEM,AE=PE,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,ABC⊥BC,∵EP⊥BC,∴AB∥EP,∴∠AME=∠PEM,∴∠AEM=∠AME,∴AM=AE,∵AB∥CD,∴=,∴CN=CE;②解:设CN=CE=x,∵四边形ABCD是矩形,AB=4,BC=3,∠ABC=90°,∴AC==5,∴PE=AE=5﹣x,∵AB∥EP,∴==,即=,解得:x=,∴CN=;(Ⅱ)解:由折叠的性质得:AE=PE,由三角形的三边关系得,PE+CE>PC,∴AC>PC,∴PC<5,∴点E是AC中点时,PC最小为0,当点E和点C重合时,PC最大为AC=5,即CP的长的取值范围是:0≤CP≤5,如图所示:当点C,N,E重合时,PC=BC+BP=5,∴BP=2,由折叠知,PM=AM,在Rt△PBM中,PM=4﹣BM,根据勾股定理得,PM2﹣BM2=BP2,∴(4﹣BM)2﹣BM2=4,解得:BM=,在Rt△BCM中,根据勾股定理得,MN==;即当CP的长最大时MN的长为.25.(10分)在平面直角坐标系中,已如抛物线y=﹣x2+3x+m,其中m为常数.(Ⅰ)当抛物线经过点(3,5)时,求该抛物线的解析式.(Ⅱ)当抛物线与直线y=x+3m只有一个交点时,求该抛物线的解析式.(Ⅲ)当0≤x≤4时,试通过m的取值范围讨论抛物线与直线y=x+2的公共点的个数的情况.【解答】解:(I)∵过点(3,5),∴﹣9+9+m=5,∴m=5,∴抛物线的解析式为y=﹣x2+3x+5;(II)∵抛物线与直线y=x+3只有一个交点,∴可得x2﹣2x+2m=0,由△=0,可得m=,∴抛物线代解析式为y=﹣x2+3x+;(III)由可得x2﹣2x+2﹣m=0,由△=0,可得m=1,此时有1个公共点,在直线y=x+2上,当x=0时,y=2;当x=4时,y=6;把(0,2)代入y=﹣x2+3x+m得m=2,把(4,6)代入y=﹣x2+3x+m得m=10,①当m<1时,没有公共点;②当1<m≤2时,有两个公共点;③当2<m≤10时,有一个公共点;④当m>10时,没有公共点;∴综上,当m<1或m>10时,没有公共点;当1<m≤2时,有两个公共点;当2<m≤10或m=1时,有一个公共点.第21页(共21页)。
2019年天津市河西区中考数学一模试卷一、选择题(本大题共12小题,共36.0分) 1. 计算(−10)−5的结果等于( )A. 15B. −15C. −5D. 52. sin45°的值是( )A. 12B. 1C. √32D. √223. 下列标志中,可以看作是轴对称图形的是( )A.B.C.D.4. 据报道,截止至2018年12月,天津轨道交通运营线路共有6条,线网覆盖10个市辖区,运营里程215000米,共设车站154座.将215000用科学记数法表示应为( )A. 215×103B. 21.5×104C. 2.15×105D. 0.215×1065. 将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是( )A.B.C.D.6. 估计√21的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间7. 分式方程13x =2x−2的解为( )A. x =−25B. x =−1C. x =1D. x =258. 二元一次方程组{4x +y =52x −y =1的解是( )A. {x =1y =1B. {x =−2y =1C. {x =−3y =2D. {x =2y =−19. 要组织一次羽毛球邀请赛,参赛的两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排6天,每天安排6场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A. 12x(x +1)=36B. 12x(x −1)=36 C. x(x +1)=36D. x(x −1)=3610. 已知反比例函数y =6x ,当1<x <3时,y 的取值范围是( )A. 0<y <lB. 1<y <2C. y >6D. 2<y <611. 如图,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是( )12. 已知抛物线y =(x +a)(x −a −1)(a 为常数,a ≠0).有下列结论(1)抛物线的对称轴为x =12;(2)(x +a)(x −a −1)=1有两个不相等的实数根;(3)抛物线上有两点P(x 0,m),Q(1,n),若m <n ,则0<x 0<1. 其中,正确结论的个数为( ) A. 0 B. 1 C. 2 D. 3 二、填空题(本大题共6小题,共18.0分) 13. 计算a 6÷a 3的结果等于______.14. 已知反比例函数y =kx (k 是常数,k ≠0)的图象在第二、四象限,请写出符合上述条件的k 的一个值:______.15. 不透明袋子中装有7个球,其中有2个红球,2个绿球和3个黑球,这些球出颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是______. 16.如图,点P 是边长为1的菱形ABCD 对角线AC 上一个动点,点M 、N 分别是AB 、BC 边上的中点,则MP +NP 的最小值是______.17.如图,在四边形ABCD 中,BD 平分∠ABC ,∠BAD =∠BDC =90°,E 为BC 的中点,AE 与BD 相交于点F.若BC =6,∠CBD =30°,则DF 的长为______.18.在每个小正方形边长为1的网格中,有等腰三角形ABC ,点A ,B ,C 都在格点上,点D 为线段BC 上的动点. (I)AC 的长度等于______.(Ⅱ)当AD 最短时,请用无刻度的直尺,画出点D ,并简要说明点D 的位置是如何找到的______.(不要求证明)三、解答题(本大题共7小题,共66.0分) 19. 解不等式组{x +1≤5, ①3x −1>x, ②请结合题意填空,完成本题的解答;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为______.20.为了了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为______,图①中的m的值为______;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该校九年级共有学生300人,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的人数.21.已知A,B,C是半径为2的⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(I)如图①,求∠ADC的大小;(Ⅱ)如图②,取AB⏜的中点F,连接OF,与AB交于点E,求四边形EOCD的面积.22.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为49°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan49°≈1.15,tan58°≈1.60.23.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?24.在平面直角坐标系中,四边形OABC是矩形,点O(0,0),点A(3,0),点C(0,4),连接OB,以点A为中心,顺时针旋转矩形AOCB,旋转角为α(0°<α<360°),得到矩形ADEF,点O,C,B的对应点分别为D,E,F.(Ⅰ)如图,当点D落在对角线OB上时,求点D的坐标;(Ⅱ)在(Ⅰ)的情况下,AB与DE交于点H.①求证△BDE≌△DBA;②求点H的坐标.(Ⅲ)α为何值时,FB=FA.(直接写出结果即可)25.如图,抛物线y=−(x−1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(−1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.答案和解析1.【答案】B【解析】解:(−10)−5=(−10)+(−5)=−(10+5)=−15,故选:B.根据减去一个数等于加上这个数的相反数进行计算即可得解.本题考查了有理数的减法,减去一个数等于加上这个数的相反数是解题关键.2.【答案】D.【解析】解:由特殊角的三角函数值可知,sin45°=√22故选:D.直接根据特殊角的三角函数值进行解答即可.本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.3.【答案】C【解析】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.【答案】C【解析】解:将215000用科学记数法表示应为2.15×105,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】C【解析】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选:C.根据左视图的定义,画出左视图即可判断.本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.6.【答案】C【解析】解:∵16<21<25, ∴4<√21<5,则√21的值在4和5之间, 故选:C .估算确定出范围即可.此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.7.【答案】A【解析】解:去分母得:x −2=6x , 解得:x =−25,经检验x =−25是分式方程的解,故选:A .分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.【答案】A【解析】解:{4x +y =5 ①2x −y =1 ②①+②的:6x =6 ∴x =1把x =1代入①得:4+y =5 解得:y =1∴原方程组的解为{x =1y =1故选:A .观察方程组,用加减消元法解方程组即得到答案. 本题考查了解二元一次方程组,熟练运用代入消元法或加减消元法解方程组是解题关键.9.【答案】B【解析】 【分析】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.根据题意可以列出相应的方程,本题得以解决. 【解答】解:由题意可得,12x(x −1)=6×6, 即:12x(x −1)=36, 故选:B .10.【答案】D【解析】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选:D.利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.11.【答案】C【解析】【分析】该题主要考查了旋转变换的性质及其应用问题;解题的关键是抓住旋转变换过程中不变量,灵活运用全等三角形的性质来分析、判断、推理或解答.如图,证明OA=OC,∠AOB=∠COD;求出∠OCA=70°;求出∠BOC=10°;运用外角性质求出∠B即可解决问题.【解答】解:由题意得:△AOB≌△COD,∴OA=OC,∠AOB=∠COD,∴∠A=∠OCA,∠AOC=∠BOD=40°,=70°;∴∠OCA=180°−40°2∵∠AOB=90°,∴∠BOC=10°;∵∠OCA=∠B+∠BOC,∴∠B=70°−10°=60°,故选:C.12.【答案】D【解析】【分析】本题考查了二次函数图象上点的坐标特征、二次函数的性质、二次函数与一元二次方程的关系及一元二次方程根的判别式,灵活应用这些性质是解题的关键.(1)先把二次函数化为一般式y=x2−x−a2−a,即可求出对称轴为x=1;2(2)令y=1,即x2−x−a2−a=1,计算判别式即可判断方程根的情况;(3)利用二次函数的增减性即可判断抛物线上两点P(x0,m),Q(1,n),若函数值m<n时,则自变量0<x0<1.【解答】解:抛物线y=(x+a)(x−a−1)=x2−x−a2−a,(1)抛物线的对称轴为x=−−1=1,所以此答案正确;∵△=1−4(−a2−a−1)=4a2+4a+5=2(a+1)2+3>0,∴(x+a)(x−a−1)=1有两个不相等的实数根,所以此答案正确;(3)∵抛物线开口向上,当x<12时,y随x的增大而减小,当x>12时,y随x的增大而增大,∴若m<n,则0<x0<1,所以此答案正确.(1)(2)(3)均正确,故选:D.13.【答案】a3【解析】解:a6÷a3=a3.故答案为:a3.直接利用同底数幂的除法运算法则求出答案.此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.14.【答案】−1【解析】解:∵反比例函数的图象在二、四象限,∴k<0,只要是小于0的所有实数都可以.例如:−1.故答案为−1.反比例函数y=kx(k是常数,k≠0)的图象在第二、四象限,则k<0,符合上述条件的k的一个值可以是−1.(负数即可,答案不唯一)此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.【答案】27【解析】解:∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,∴从袋子中随机取出1个球,则它是绿球的概率是:27.故答案为:27.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn,难度适中.16.【答案】1【解析】解:作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.又N是BC边上的中点,∴AM′//BN,AM′=BN,∴四边形AM′NB是平行四边形,∴PN//AB,连接PM,又∵N是BC边上的中点,∴P是AC中点,∴PM//BN,PM=BN,∴四边形PMBN是平行四边形,∵BM=BN,∴平行四边形PMBN是菱形.∴MP+NP=BM+BN=BC=1.故答案为1.首先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形PMBN为菱形,即可求出MP+NP=BM+BN=BC=1.考查菱形的性质和轴对称,判断当PMBN为菱形时,MP+NP有最小值,是关键.17.【答案】6√35【解析】【分析】本题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE//AB是解本题的关键.先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE//AB,再求出AB=3,即可得出结论.【解答】解:如图,在Rt△BDC中,BC=6,∠DBC=30°,∴BD=3√3,∵∠BDC=90°,点E是BC中点,∴DE=BE=CE=12BC=3,∵∠CBD=30°,∴∠BDE=∠CBD=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE//AB,∴△DEF∽△BAF,∴DFBF =DEAB,在Rt△ABD中,∠ABD=30°,BD=3√3,∴AB=92,∴DFBD =25,∴DF=25BD=25×3√3=6√35,故答案是:6√35.18.【答案】5 根据垂线段最短即可解决问题【解析】解:(I)AC=√32+42=5,故答案为5.(Ⅱ)如图线段AD即为所求.理由:根据垂线段最短即可解决问题.故答案为:根据垂线段最短即可解决问题.(I)利用勾股定理计算即可.(Ⅱ)根据垂线段最短即可解决问题.本题考查作图−复杂作图,等腰三角形的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.【答案】x≤4x>1212<x≤4【解析】解:(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得:x>12;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:12<x≤4,故答案为:x≤4,x>12,12<x≤4.分别求出每一个不等式的解集,在数轴上分别表示出每个不等式的解集,即可确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20.【答案】(I)5024 ;(II)∵数据中28出现的次数最多,∴本次抽样调查获取的样本数据的众数为28,∵排序后,处于最中间的两个数为28和28,(28+28)=28,∴中位数为12∵x−=1(9×26+12×27+14×28+10×29+5×30)=27.8,50∴平均数为27.8;=174(人).(III)该校九年级学生体育成绩达到优秀的人数约为300×14+10+550【解析】解:(I)本次随机抽样调查的学生人数为5÷10%=50;m=100−18−10−20−28=24,故答案为:50,24;(II)见答案;(III)见答案;【分析】本题考查了条形统计图、中位数、众数以及用样本来估计总体.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.21.【答案】解:(Ⅰ)如图1,∵CD为切线,∴OC⊥CD,∵四边形OABC为平行四边形,∴AB//OC,∴AD⊥CD,∴∠ADC=90°;(Ⅱ)∵F点为AB⏜的中点,∴OF⊥AB,∴四边形EOCD为矩形,连接OB,如图②,∵四边形OABC为平行四边形,∴AB=OC,而OA=OB,∴OA=OB=AB,∴△ABO为等边三角形,∴∠A=60°,OA=1,OE=√3AE=√3,在Rt△AOE中,AE=12∴四边形EOCD的面积=OE⋅OC=√3×2=2√3.【解析】(Ⅰ)如图1,利用切线的性质得到OC⊥CD,再根据平行四边形的性质得到AB//OC,所以AD⊥CD,从而得到∠ADC的度数;(Ⅱ)利用垂径定理得到OF⊥AB,则可判断四边形EOCD为矩形,连接OB,如图②,证明△ABO为等边三角形得到∠A=60°,则可计算出OE,然后利用矩形的面积公式计算.本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了平行四边形的性质.22.【答案】解:作DE ⊥AB 于E ,由题意得,∠ADE =49°,∠ACB =58°,DE =BC =78,在Rt △ACB 中,tan∠ACB =AB BC , 则AB =BC ⋅tan∠ACB =78×1.60=124.8≈125,在Rt △ADE 中,tan∠ADE =AE DE ,则AE =BC ⋅tan∠ADE =78×1.15=89.7,DC =BE =AB −AE =124.8−89.7=35.1≈35,答:甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为35m .【解析】作DE ⊥AB 于E ,根据正切的定义分别求出AB 、AE ,计算即可.本题考查的是解直角三角形的应用−俯角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.【答案】解:(1)设该一次函数解析式为y =kx +b ,将(150,45)、(0,60)代入y =kx +b 中,{150k +b =45b =60,解得:{k =−110b =60, ∴该一次函数解析式为y =−110x +60.(2)当y =−110x +60=8时,解得x =520.即行驶520千米时,油箱中的剩余油量为8升.530−520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,此题得解.本题考查一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.24.【答案】解:(I)如图1,过D 作DG ⊥OA 于G ,∵点A(3,0),点C(0,4),∴OC =4,OA =3,∵四边形OABC 是矩形,∴∠OAB =90°,AB =OC =4,∴DG//AB ,∴△ODG∽△OBA ,∴OGDG =OAAB=34,设OG=3x,DG=4x,∴AG=3−3x,由旋转得:AD=OA=3,由勾股定理得:AD2=DG2+AG2,32=(4x)2+(3−3x)2,解得:x1=0(舍),x2=1825,∴OG=3x=5425,DG=4x=7225,∴D(5425,7225);(II)①由旋转得:DE=OC=AB,∵AD=OA,∴∠ADO=∠AOD,∵BC//OA,∴∠AOD=∠CBD,∴∠CBD=∠ADO,∴∠DBE=∠ADB,∵∠ADH=∠HBE=90°,∠AHD=∠BHE,∴∠DAB=∠BED,在△BDE和△DBA中,∵{∠BED=∠DAB ∠DBE=∠ADB DE=AB,∴△BDE≌△DBA(AAS);②∵△BDE≌△DBA,∴∠DBH=∠BDH,∴BH=DH,设BH=x,则DH=x,AH=4−x,在Rt△ADH中,由勾股定理得:AD2+DH2=AH2,x2+32=(4−x)2,x=78,∴AH=4−78=258,∴H(3,258);(III)分两种情况:①当F在AB的右侧时,如图2,过F作FM⊥AB于M,∵FB=FA,∴AM=BM=12AB=12AF,∴∠AFM=30°,∴∠MAF=60°,即α=60°时,FA=FB;②当F在AB的左侧时,如图3,过F作FM⊥AB于M,同理得:∠FAM=60°,此时α=360°−60°=300°,综上,α为60°或300°时,FB=FA.【解析】(Ⅰ)如图1,作辅助线,证明△ODG∽△OBA,OGDG =OAAB=34,设OG=3x,DG=4x,根据勾股定理列方程得:32=(4x)2+(3−3x)2,解出可得结论;(Ⅱ)①根据AAS证明即可;②设BH=x,则DH=x,AH=4−x,在Rt△ADH中,由勾股定理列方程可得结论;(Ⅲ)当FB=FA时,F在AB的垂直平分线上,分两种情况:F在AB的左侧和右侧时,根据直角三角形直角边与斜边的关系可得角的大小,从而计算旋转角α的值.本题考查四边形综合题、矩形的性质、勾股定理、全等、相似三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.【答案】解:(1)∵点A(−1,0)在抛物线y=−(x−1)2+c上,∴0=−(−1−1)2+c,得c=4,∴抛物线解析式为:y=−(x−1)2+4,令x=0,得y=3,∴C(0,3);令y=0,得x=−1或x=3,∴B(3,0).(2)△CDB 为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为(1,4).如答图1所示,过点D 作DM ⊥x 轴于点M ,则OM =1,DM =4,BM =OB −OM =2. 过点C 作CN ⊥DM 于点N ,则CN =1,DN =DM −MN =DM −OC =1. 在Rt △OBC 中,由勾股定理得:BC =√OB 2+OC 2=√32+32=3√2;在Rt △CND 中,由勾股定理得:CD =√CN 2+DN 2=√12+12=√2;在Rt △BMD 中,由勾股定理得:BD =√BM 2+DM 2=√22+42=2√5.∵BC 2+CD 2=BD 2,∴△CDB 为直角三角形(勾股定理的逆定理).(3)设直线BC 的解析式为y =kx +b ,∵B(3,0),C(0,3),∴{3k +b =0b =3, 解得k =−1,b =3,∴y =−x +3,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:y =−(x −t)+3=−x +3+t ;设直线BD 的解析式为y =mx +n ,∵B(3,0),D(1,4),∴{3m +n =0m +n =4, 解得:m =−2,n =6,∴y =−2x +6.连接CQ 并延长,射线CQ 交BD 于点G ,则G(32,3).在△COB 向右平移的过程中:(I)当0<t ≤32时,如答图2所示:设PQ 与BC 交于点K ,可得QK =CQ =t ,PB =PK =3−t .设QE 与BD 的交点为F ,则:{y =−2x +6y =−x +3+t,解得{x =3−t y =2t ,∴F(3−t,2t).S =S △QPE −S △PBK −S △FBE =12PE ⋅PQ −12PB ⋅PK −12BE ⋅y F =12×3×3−12(3−t)2−12t ⋅2t =−32t 2+3t ; (II)当32<t <3时,如答图3所示:设PQ 分别与BC 、BD 交于点K 、点J .∵CQ =t ,∴KQ =t ,PK =PB =3−t .直线BD 解析式为y =−2x +6,令x =t ,得y =6−2t ,∴J(t,6−2t).S =S △PBJ −S △PBK =12PB ⋅PJ −12PB ⋅PK =12(3−t)(6−2t)−12(3−t)2=12t 2−3t +92.综上所述,S 与t 的函数关系式为:S ={−32t 2+3t(0<t ≤32)12t 2−3t +92(32<t <3).【解析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标;(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形;(3)△COB 沿x 轴向右平移过程中,分两个阶段:(I)当0<t ≤32时,如答图2所示,此时重叠部分为一个四边形;(II)当32<t <3时,如答图3所示,此时重叠部分为一个三角形.本题是运动型二次函数综合题,考查了二次函数的图象与性质、待定系数法、一次函数的图象与性质、勾股定理及其逆定理、图形面积计算等知识点.难点在于第(3)问,弄清图形运动过程是解题的先决条件,在计算图形面积时,要充分利用各种图形面积的和差关系.。
天津市河西区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( ) A .5 B .4 C .3 D .22.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )A .B . C. D .3.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是( ) A . B . C . D .4.函数y kx 1=+与k y x=-在同一坐标系中的大致图象是( ) A 、 B 、 C 、 D 、 5.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18, 1.5OE =,则四边形EFCD 的周长为( )A.14 B.13 C.12 D.106.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a7.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1078.计算(-ab2)3÷(-ab)2的结果是()A.ab4B.-ab4C.ab3D.-ab39.八边形的内角和为()A.180°B.360°C.1 080°D.1 440°10.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥11.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.412.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中5 个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1000 5000 10000 50000 100000摸出黑球次数 46 487 2506 5008 24996 50007 根据列表,可以估计出 m 的值是( )A .5B .10C .15D .20二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图1,点P 从扇形AOB 的O 点出发,沿O→A→B→0以1cm/s 的速度匀速运动,图2是点P 运动时,线段OP 的长度y 随时间x 变化的关系图象,则扇形AOB 中弦AB 的长度为______cm .14.如图,△ABC 中,AB =17,BC =10,CA =21,AM 平分∠BAC ,点D 、E 分别为AM 、AB 上的动点,则BD+DE 的最小值是_____.15.正五边形的内角和等于______度.16.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP uuu r 可以用点P 的坐标表示为OP uuu r=(m ,n ),已知:OA u u u r =(x 1,y 1),OB uuu r =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r 互相垂直,下列四组向量:①OC u u u r =(2,1),OD uuu r =(﹣1,2);②OE uuu r =(cos30°,tan45°),OF uuu r =(﹣1,sin60°);③OG u u u r =(3﹣2,﹣2),OH u u u r =(3+2,12);④OC u u u r =(π0,2),u u u r ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).17.如图所示,直线y=x+1(记为l 1)与直线y=mx+n(记为l 2)相交于点P(a,2),则关于x 的不等式x+1≥mx+n 的解集为__________.18.如图,点A 1,B 1,C 1,D 1,E 1,F 1分别是正六边形ABCDEF 六条边的中点,连接AB 1,BC 1,CD 1,DE 1,EF 1,FA 1后得到六边形GHIJKL ,则S 六边形GHIJKI :S 六边形ABCDEF 的值为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知一次函数的图象与反比例函数的图象交于A,B 两点,点A 的横坐标是2,点B 的纵坐标是-2。
天津市河西区2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A .0.96×107B .9.6×106C .96×105D .9.6×1022.如图所示的几何体的俯视图是( )A .B .C .D .3.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )A .B .C .D .4.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70° 5.若不等式组236x m x x <⎧⎨-<-⎩无解,那么m 的取值范围是( ) A .m≤2 B .m≥2 C .m <2 D .m >26.下列计算正确的是( )A .a 3•a 3=a 9B .(a+b )2=a 2+b 2C .a 2÷a 2=0D .(a 2)3=a 67.在,90ABC C ∆∠=o中,2AC BC =,则tan A 的值为( )A .12B .2C .5D .25 8.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A .110B .19C .16D .159.下面调查方式中,合适的是( )A .调查你所在班级同学的体重,采用抽样调查方式B .调查乌金塘水库的水质情况,采用抽样调査的方式C .调查《CBA 联赛》栏目在我市的收视率,采用普查的方式D .要了解全市初中学生的业余爱好,采用普查的方式10.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( )A .±3B .3C .5D .911.如图图形中是中心对称图形的是( )A .B .C .D .12.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ACB 中,∠ACB =90°,点D 为AB 的中点,将△ACB 绕点C 按顺时针方向旋转,当CB 经过点D 时得到△A 1CB 1.若AC =6,BC =8,则DB 1的长为________.14.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AC 与BD 相交于点E ,AC=BC ,DE=3,AD=5,则⊙O 的半径为___________.15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.16.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .17.要使分式51x -有意义,则x 的取值范围为_________. 18.方程1121x x =+的解是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,平面直角坐标系中,O 为坐标原点,二次函数2(0)y x bx c b =-+>的图象与x轴交于(1,0)A -、B 两点,与y 轴交于点C ;(1)求c 与b 的函数关系式;(2)点D 为抛物线顶点,作抛物线对称轴DE 交x 轴于点E ,连接BC 交DE 于F ,若AE =DF ,求此二次函数解析式;(3)在(2)的条件下,点P 为第四象限抛物线上一点,过P 作DE 的垂线交抛物线于点M ,交DE 于H ,点Q 为第三象限抛物线上一点,作QN ED ⊥于N ,连接MN ,且180QMN QMP ∠+∠=︒,当:15:16QN DH =时,连接PC ,求tan PCF ∠的值.20.(6分)已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①若x =﹣1是方程①的一个根,求m 的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.21.(6分)先化简222211(1)11x x xxx x-+-÷-+--,然后从﹣5<x<3的范围内选取一个合适的整数作为x的值代入求值.22.(8分)已知△ABC 中,AD 是∠BAC 的平分线,且AD=AB,过点C 作AD 的垂线,交AD 的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B 和∠ACB 的度数;②若AB=2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB+AC 之间的数量关系,并证明.23.(8分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB 于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).24.(10分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.(1)如图①,求∠ODE的大小;(2)如图②,连接OC 交DE 于点F ,若OF=CF ,求∠A 的大小.25.(10分)如图,在△ABC 中,AB=AC ,点D ,E 在BC 边上,AD AE =.求证:BD CE =.26.(12分)如图,AB=16,O 为AB 中点,点C 在线段OB 上(不与点O,B 重合),将OC 绕点O 逆时针旋转 270°后得到扇形COD,AP,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP.求证:AP=BQ ;当BQ= 43时,求»QD的长(结果保留 π);若△APO 的外心在扇形COD 的内部,求OC 的取值范围.27.(12分)如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD .(1)求证:四边形CDBF 是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=42,求DF 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.2.B【解析】【分析】根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线3.A【解析】【分析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P(奇数)= = .故此题选A.【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键.4.C【解析】【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A ,D ,E 在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC 中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C .【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.5.A【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】236x m x x <⎧⎨-<-⎩①②由①得,x <m ,由②得,x >1,又因为不等式组无解,所以m≤1.故选A .【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.6.D.【解析】试题分析:A 、原式=a 6,不符合题意;B 、原式=a 2+2ab+b 2,不符合题意;C 、原式=1,不符合题意;D 、原式=a 6,符合题意,故选D考点:整式的混合运算7.A【解析】【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:tanA=BC AC,∵AC=2BC,∴tanA=12.故选:A.【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键.8.A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.9.B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.B【解析】【分析】由已知可得:2,(11m n mn +==+-=-【详解】由已知可得:2,(11m n mn +==+-=-,原式3===故选:B【点睛】考核知识点:二次根式运算.配方是关键.11.B【解析】【分析】把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:根据中心对称图形的定义可知只有B 选项是中心对称图形,故选择B.【点睛】本题考察了中心对称图形的含义.12.D【解析】【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】根据勾股定理可以得出AB 的长度,从而得知CD 的长度,再根据旋转的性质可知BC=B 1C ,从而可以得出答案.【详解】∵在△ACB 中,∠ACB =90°,AC =6,BC =8,∴22226810 AB BC AC=+=+=,∵点D为AB的中点,∴152CD AB==,∵将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案为:2.【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB的长是解题的关键.14.15 2【解析】【分析】如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.【详解】如图,连接CO并延长,交AB于点F;∵AC=BC,∴CF⊥AB(垂径定理的推论);∵BD是⊙O的直径,∴AD⊥AB;设⊙O的半径为r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=152,故答案为152. 【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.15.1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=1.故答案为1.点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.16.13【解析】试题解析:因为正方形AECF 的面积为50cm 2,所以10AC cm ==,因为菱形ABCD 的面积为120cm 2, 所以21202410BD cm ⨯==,所以菱形的边长13.cm == 故答案为13.17.x≠1【解析】由题意得x-1≠0,∴x≠1.故答案为x≠1.18.1【解析】1121x x =+, 12x x +=,∴x=1,代入最简公分母,x=1是方程的解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1c b =--;(2)223y x x =--;(3)12【解析】【分析】(1)把A (-1,0)代入y=x 2-bx+c ,即可得到结论;(2)由(1)得,y=x 2-bx-1-b ,求得EO=b 2,AE=b 2+1=BE ,于是得到OB=EO+BE=b 2+b 2+1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D (b 2,-b-2),将D (b 2,-b-2)代入y=x 2-bx-1-b 解方程即可得到结论;(3)连接QM ,DM ,根据平行线的判定得到QN ∥MH ,根据平行线的性质得到∠NMH=∠QNM ,根据已知条件得到∠QMN=∠MQN ,设QN=MN=t ,求得Q (1-t ,t 2-4),得到DN=t 2-4-(-4)=t 2,同理,设MH=s ,求得NH=t 2-s 2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH 推出∠NMD=90°;根据三角函数的定义列方程得到t 1=53,t 2=-35(舍去),求得MN=53,根据三角函数的定义即可得到结论.【详解】(1)把A (﹣1,0)代入2y x bx c =-+,∴1b c 0++=,∴c 1b =--;(2)由(1)得,2y x bx 1b =---,∵点D 为抛物线顶点, ∴b b EO AE 1BE 22==+=,, ∴b b OB EO BE 1b 122=+=++=+, 当x 0=时,y b 1=--,∴CO b 1BO =+=,∴OBC 45∠=︒,∴EFB 904545EBF ∠∠=︒-︒=︒=,∴EF BE AE DF ===,∴DE AB b 2==+, ∴b D ,b 22⎛⎫-- ⎪⎝⎭, 将b D ,b 22⎛⎫-- ⎪⎝⎭代入2y x bx 1b =---得,22b b b 2b 122⎛⎫--=--- ⎪⎝⎭, 解得:1b 2=,2b 2=-(舍去),∴二次函数解析式为:2y x 2x 3=--;(3)连接QM ,DM ,∵QN ED ⊥,MP ED ⊥,∴QNH MHD 90∠∠==︒,∴QN //MH ,∴NMH QNM ∠∠=,∵QMN QMP 180∠∠+=︒,∴QMN QMN NMH 180∠∠∠++=︒,∵QMN MQN NMH 180∠∠∠++=︒,∴QMN MQN ∠∠=,设QN MN t ==,则()2Q 1t,t 4--,∴()22DN t 44t =---=,同理, 设MN s =,则2HD s =,∴22NH t s =-,在Rt ΔMNH 中,222NH MN MH =-,∴()22222t s t s -=-,∴22t s 1-=,∴NH 1=, ∴NH 1tan NMH MH t∠==, ∵2MH t 1tan MDH DH t t ∠===, ∴NMH MDH ∠∠=,∵NMH MNH 90∠∠+=︒,∴MDH MNH 90∠∠+=︒,∴NMD 90∠=︒;∵QN :DH 15:16=, ∴16DH t 15=,16DN t 115=+, ∵sin NMH sin MDN ∠∠=, ∴NH MN MN DN =,即1t 16t t 115=+, 解得:15t 3=,23t 5=-(舍去), ∴5MN 3=, ∵222NH MN MH =-, ∴4MH PH 3==, ∴47PK PH KH 133=+=+=, 当7x 3=时,20y 9=-, ∴720P ,39⎛⎫- ⎪⎝⎭, ∴207CK 399=-=, ∴719tan KPC 733∠==, ∵PKC BOC 90∠∠==︒,∴KGC OBC 45∠∠==︒, ∴7KG CK 9==,CG =7714PG 399=-=, 过P 作PT BC ⊥于T ,∴27PT GT PG2CG29====,∴CT2PT=,∴PT PT1 tan PCFCT2PT2∠===.【点睛】本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.20.(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根21.1 2【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣5<x<3的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.【详解】解:÷(﹣x+1)====,当x=﹣2时,原式=1122-=-.【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.22.(1)①45°,②3+3;(2)线段AH 与AB+AC 之间的数量关系:2AH=AB+AC.证明见解析.【解析】【分析】(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE 中,由∠DAC=30°,AB=AD=2 可得DE=1,AE=3,在Rt△CDE 中,由∠ACD=45°,DE=1,可得EC=1,AC= 3+1,同理可得AH 的长;(2)如图2,延长AB 和CH 交于点F,取BF 的中点G,连接GH,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【详解】(1)①∵AD 平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B=180302︒︒-=75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图1,过D 作DE⊥AC 交AC 于点E,在Rt△ADE 中,∵∠DAC=30°,AB=AD=2,∴DE=1,3,在Rt△CDE 中,∵∠ACD=45°,DE=1,∴EC=1,∴3,在Rt△ACH 中,∵∠DAC=30°,∴CH=12AC=3+1∴AH=222231(31)2AC CH⎛⎫+-=+- ⎪⎝⎭=33+;(2)线段AH 与AB+AC 之间的数量关系:2AH=AB+AC.证明:如图2,延长AB 和CH 交于点F,取BF 的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.23.(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS 证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD 中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.24.(1)∠ODE=90°;(2)∠A=45°.【解析】分析:(Ⅰ)连接OE,BD,利用全等三角形的判定和性质解答即可;(Ⅱ)利用中位线的判定和定理解答即可.详解:(Ⅰ)连接OE,BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°.∵E点是BC的中点,∴DE=12BC=BE.∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD,∴∠A=∠ADO=18090452︒-︒=︒.点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.25.见解析【解析】试题分析:证明△ABE≌△ACD 即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD ,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF -DF=CF -EF,即BD=CE.26.(1)详见解析;(2)143π;(3)4<OC<1. 【解析】【分析】 (1) 连接OQ ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL 得Rt △APO ≌Rt △BQO ,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ ,从而可得P 、O 、Q 三点共线,在Rt △BOQ 中,根据余弦定义可得cosB=QB OB, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD 度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO 的外心是OA 的中点 ,结合题意可得OC 取值范围.【详解】(1)证明:连接OQ.∵AP 、BQ 是⊙O 的切线,∴OP ⊥AP ,OQ ⊥BQ ,∴∠APO=∠BQO=90∘,在Rt △APO 和Rt △BQO 中,OP OQ OA OB =⎧⎨=⎩, ∴Rt △APO ≌Rt △BQO ,∴AP=BQ.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP=∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cosB=82QB OB ==, ∴∠B=30∘,∠BOQ= 60° ,∴OQ=12OB=4, ∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°,∴优弧QD 的长=2104141803ππ⋅⋅=, (3)解:设点M 为Rt △APO 的外心,则M 为OA 的中点,∵OA=1,∴OM=4,∴当△APO 的外心在扇形COD 的内部时,OM <OC ,∴OC 的取值范围为4<OC <1.【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL 证出Rt △APO ≌Rt △BQO ;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.27.(1)证明见解析;(2)1.【解析】【分析】(1)先证明出△CEF ≌△BED ,得出CF=BD 即可证明四边形CDBF 是平行四边形;(2)作EM ⊥DB 于点M ,根据平行四边形的性质求出BE ,DF 的值,再根据三角函数值求出EM 的值,∠EDM=30°,由此可得出结论.【详解】解:(1)证明:∵CF ∥AB ,∴∠ECF=∠EBD .∵E 是BC 中点,∴CE=BE .∵∠CEF=∠BED ,∴△CEF ≌△BED .∴CF=BD .∴四边形CDBF 是平行四边形.(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF是平行四边形,BC=42∴1222BE BC==DF=2DE.在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
天津市河西区中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
)1.(3分)(•天津)2sin30°的值等于()A.1B.C.D.2考点:特殊角的三角函数值.分析:sin30°=,代入计算即可.解答:解:2sin30°=2×=1.故选A.点评:解答此题的关键是熟记特殊角的三角函数值.2.(3分)(•河西区一模)下列标志中,可以看作是中心对称图形的有()A.1个B.2个C.3个D.4个考点:中心对称图形.分析:根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行解答.解答:解:第一个图形,第三个图形,都是中心对称图形,故选:B.点评:此题主要考查了中心对称图形的概念:关键是中心对称图形要寻找对称中心,旋转180度后与原图重合.3.(3分)(•河西区一模)据《中国可持续发展报告》提出,中展中的人口压力依然巨大,按提高后的贫困标准(农村居民家庭人均纯收入2300元人民币/年),中国还有128000000的贫困人口,将128000000用科学记数法表示应为()A.128×105B.12.8×105C.1.28×108D.0.128×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:128000000用科学记数法表示应为1.28×108.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•河西区一模)估计的值在()A.5到6之间B.6到7之间C.7到8之间D.8到9之间考点:估算无理数的大小专题:计算题.分析:由于64<77<81,然后根据算术平方根的定义得到8<<9.解答:解:∵64<77<81,∴8<<9.故选D.点评:本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.5.(3分)(•长沙)甲、乙两学生在训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定考点:方差.分析:方差越小,表示这个样本或总体的波动越小,即越稳定.根据方差的意义判断.解答:解:根据方差的意义知,射击成绩比较稳定,则方差较小,∵甲的成绩比乙的成绩稳定,∴有:S甲2<S乙2.故选A.点评:本题考查了方差的意义,方差反映的是数据的稳定情况,方差越小,表示这个样本或总体的波动越小,即越稳定;反之,表示数据越不稳定.6.(3分)(•河西区一模)下列命题中真命题是()A.任意两个等边三角形必相似B.对角线相等的四边形是矩形C.以40°角为内角的两个等腰三角形必相似D.一组对边平行,另一组对边相等的四边形是平行四边形考点:命题与定理.分析:根据相似三角形的判定、矩形和平行四边形的判定即可作出判断.解答:解:A,正确;B,错误,等腰梯形的对角线相等,但不是矩形;C,错误,没有说明这个40度角是顶角还是底角;D,错误,等腰梯形也满足此条件,但不是平行四边形.故选A.点评:本题考查了特殊四边形的判定和全等三角形的判定和性质.7.(3分)(•临沂)如图是一个用于防震的L形的包装用泡沫塑料,当俯视它时看到的图形形状是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到两个左右相邻的矩形,故选B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.(3分)(•河西区一模)△ABC三个顶点的坐标分别为A(4,1),B(4,5),C(﹣1,2),则△ABC的面积为()A.10 B.20 C.12D.6考点:三角形的面积;坐标与图形性质.分析:根据点A、B的坐标求出AB的长度并得到AB∥y轴,再求出点C到AB的距离,然后根据三角形的面积公式列式进行计算即可得解.解答:解:如图,∵A(4,1),B(4,5),C(﹣1,2),∴AB=5﹣1=4,AB∥y轴,点C到AB的距离为4﹣(﹣1)=5,∴△ABC的面积=×4×5=10.故选A.点评:本题考查了三角形的面积,坐标与图形性质,根据点A、B的横坐标相同求出AB的长度并得到AB∥y轴是解题的关键,作出图形更形象直观.9.(3分)(•河西区一模)将抛物线y=2x2向上平移5个单位,再向右平移3个单位,所得到的新抛物线的解析式为()A.y=2(x﹣5)2+3 B.y=2(x+5)2+3 C.y=2(x﹣3)2+5 D.y=2(x+3)2+5考点:二次函数图象与几何变换.分析:求出平移后的抛物线的顶点坐标,然后根据顶点式形式写出即可.解答:解:∵抛物线y=2x2的顶点坐标为(0,0),∴向上平移5个单位,向右平移3个单位后的抛物线的顶点坐标为(3,5),∴新抛物线的解析式为=2(x﹣3)2+5.故选C.点评:本题考查了二次函数图象与几何变换,此类题目利用顶点的变化确定抛物线的解析式可以使求解更加简单.10.(3分)(•河西区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象;相似三角形的应用.专题:动点型.分析:分点Q在AC上和BC上两种情况进行讨论即可.解答:解:当点Q在AC上时,y=×AP×PQ=×x ×=x2;当点Q在BC上时,如下图所示,∵AP=x,AB=5,∴BP=5﹣x,又cosB=,∵△ABC∽QBP,∴PQ=BP=∴S△APQ=AP•PQ=x •=﹣x2+x,∴该函数图象前半部分是抛物线开口朝上,后半部分也为抛物线开口抽下.故选C.点评:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(•河西区一模)计算:a﹣2•a3=a.考点:同底数幂的乘法;负整数指数幂.分析:利用同底数幂的乘法:底数不变,指数相加,进行计算即可.解答:解:a﹣2•a3=a﹣2+3=a.故答案为:a.点评:此题主要考查了同底数幂的乘法计算,关键是熟练掌握计算法则.12.(3分)(•河西区一模)化简的结果是a﹣b.考点:分式的加减法.专题:计算题.分析:由于分母相同,直接相减,因式分解后通分即可.解答:解:原式===a﹣b.故答案为a﹣b.点评:本题考查了分式的加减,熟悉因式分解是解题的关键.13.(3分)(•河西区一模)如图所示,A、B、C为⊙O上点,A点坐标(﹣1,﹣1),B点坐标(1,﹣1),则∠ACB的度数为45°.考点:圆周角定理;坐标与图形性质;等腰直角三角形.专题:探究型.分析:先根据A、B两点的坐标求出∠AOB的度数,再由圆周角定理即可得出结论.解答:解:∵A点坐标(﹣1,﹣1),B点坐标(1,﹣1),∴∠AOD=∠BOD=45°,∴∠AOB=∠AOD+∠BOD=90°,∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∴∠ACB=∠AOB=×90°=45°.故答案为:45°.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.14.(3分)(•河西区一模)正比例函数y=x与反比例函数y=有一个交点的纵坐标是2,当﹣3<x<﹣1时,反比例函数y的取值范围是﹣4<x<﹣.考点:反比例函数与一次函数的交点问题.分析:求出交点坐标,求出反比例函数的解析式,把x=﹣3,x=﹣1代入反比例函数的解析式求出对应的y值,即可得出答案.解答:解:把y=2代入y=x得:x=2,即两函数的一个交点的坐标是(2,2),把点的坐标代入y=得:k=4,即反比例函数的解析式是y=,把x=﹣3代入反比例函数的解析式得:y=﹣,把x=﹣1代入反比例函数的解析式得:y=﹣4,∵k=4>0,∴y随x的增大而减小,∴当﹣3<x<﹣1时,反比例函数y的取值范围是﹣4<y<﹣,故答案为:﹣4<y<﹣.点评:本题考查了用待定系数法求出反比例函数的解析式,反比例函数的图象和性质的应用,关键是求出反比例函数的解析式.15.(3分)(•天津)同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为.考点:列表法与树状图法.专题:计算题.分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.解答:解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,∴两个骰子的点数相同的概率为:=.故答案为:.点评:此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(•南京)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α( 0°<α<180°),则∠α=90°.考点:旋转的性质;全等三角形的判定与性质;正方形的性质.专题:压轴题.分析:首先作出旋转中心,根据多边形的性质即可求解.解答:解:∵四边形ABCD是正方形.∴∠AOB=90°,故α=90°.故答案是:90°.点评:本题主要考查了旋转的性质,以及正多边形的性质,正确理解正多边形的性质以及旋转角是解题的关键.17.(3分)(•河西区一模)如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,则∠F=134度.考点:平行线的性质.专题:计算题.分析:通过分析条件可知,连接AD,构造四边形ABCD,利用内角和求出∠BAD+∠ADC=146°,再利用四边形ADEF中的内角和关系求出∠F=134°.解答:解:连接AD,在四边形ABCD中,∠BAD+∠ADC+∠B+∠C=360°∵AB⊥BC,∴∠B=90°,又∵∠C=124°,∴∠BAD+∠ADC=360°﹣124°﹣90°=146°,∵CD∥AF,∴∠CDA=∠DAF,在四边形ADEF中,∵∠ADE+∠DAF=360°﹣∠C﹣∠B=360°﹣(124°﹣90°)=146,∠DAF+∠EDA+∠F+∠E=360°,∴∠F+∠E=214°,又∵∠E=80°,∴∠F=134°.故答案为134°.点评:本题主要考查了平行线的性质得四边形的内角和是360度.解题关键是构造四边形利用已知条件结合四边形内角和求解.18.(3分)(•河西区一模)我们知道,将一条线段AB分割成大小两条线段AP、PB,若小段PB与大段AP的长度之比等于大段AP与全段AB的长度之比,此时线段AP叫做线段AB、PB的比例中项,这种分割叫做黄金分割,点P叫做线段AB的黄金分割点.那么,一条线段的黄金分割点的个数是2个;如图,已知线段AB,要求利用尺规作图的方法,在图中作出线段AB的一个黄金分割点,并简要说明作法(不要求证明)过点B作BD⊥AB,使BD=AB,连接AD,在AD上截取DE=DB,在线段AB上截取AP=AE,则点P是线段AB的一个黄金分割点.考点:黄金分割.分析:根据黄金分割点的概念,则一条线段的黄金分割点有2个;过点B作BD⊥AB,使BD=AB,连接AD,在AD上截取DE=DB,在线段AB上截取AP=AE,则点P是线段AB的一个黄金分割点.解答:解:一条线段的黄金分割点有2个;如图,点P是线段AB的一个黄金分割点.故答案为2个;过点B作BD⊥AB,使BD=AB,连接AD,在AD上截取DE=DB,在线段AB上截取AP=AE,则点P是线段AB的一个黄金分割点.点评:本题考查了黄金分割点的定义及作法,难度中等.三、解答题(本大题共8小题,共66分,解答时应写出文字说明、演算步骤或推理过程))19.(6分)(•河西区一模)解下列不等式组,并把其解集在所给的数轴上表示出来..考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:,∵解不等式①得:x>1,解不等式②得:x≥2,∴不等式组的解集为:x≥2,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式组的解集,解一元一次不等式组的应用,关键是能根据不等式的解集找出不等式组的解集.20.(8分)(•河西区一模)直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处.(Ⅰ)线段AB的长度为10;(Ⅱ)△B′OM的周长为12;(Ⅲ)求点M的坐标.考点:一次函数综合题.分析:(Ⅰ)首先求出直线与坐标轴交点坐标,进而得出BO,AO的长,再利用勾股定理求出AB 的长;(Ⅱ)根据翻折变换的性质得出BM=B′M,AB=AB′=10,进而求出△B′OM的周长为:MB′+MO+OB′;(Ⅲ)根据勾股定理直接求出MO的长,即可得出答案.解答:解:(Ⅰ)∵直线y=﹣x+8与x轴、y轴分别交于点A和点B,∴y=0时,x=6,则A点坐标为:(6,0),x=0时,y=8,则B点坐标为:(0,8);∴BO=8,AO=6,∴AB==10;(Ⅱ)∵将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,∴BM=B′M,AB=AB′=10,∴B′M+OM=BO=8,OB′=AB′﹣OA=10﹣6=4,∴△B′OM的周长为:MB′+MO+OB′=8+4=12;(Ⅲ)设MO=x,则MB=MB′=8﹣x,在Rt△OMB′中,OM2+OB′2=B′M2,∴x2+42=(8﹣x)2,解得:x=3,故M点坐标为:(0,3).故答案为:10;12.点评:此题主要考查了翻折变换的性质以及勾股定理的应用和一次函数与坐标轴交点求法等知识,根据已知得出A,B两点坐标以及利用翻折变换的性质得出BM=B′M,AB=AB′是解题关键.21.(8分)(•南通)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有300人,在扇形图中,表示“其他球类”的扇形的圆心角为36度;(2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有800人.考点:条形统计图;用样本估计总体;扇形统计图.专题:压轴题.分析:(1)本题需根据喜欢乒乓球的人数和所占的百分比即可求出参加调查的学生总数,用360°乘以喜欢“其他球类”的学生所占的百分比即可得出圆心角的度数.(2)本题需先求出喜欢足球的学生人数即可将条形图补充完整.(3)本题需先求出喜欢“篮球”的学生所占的百分比即可得出该校喜欢“篮球”的学生人数.解答:解:(1)参加调查的学生共有60÷20%=300人表示“其他球类”的扇形的圆心角为:360×=36°(2)如图.(3)喜欢“篮球”的学生共有:2000×=800(人)故答案为:300,36°,800点评:本题主要考查了条形图和扇形图,在解题时要注意灵活应用条形图和扇形图之间的关系是本题的关键.22.(8分)(•衡阳)如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B作直线BF∥CD交AD的延长线于点F,若AB=10cm.(1)求证:BF是⊙O的切线.(2)若AD=8cm,求BE的长.(3)若四边形CBFD为平行四边形,则四边形ACBD为何种四边形?并说明理由.考点:切线的判定;勾股定理;垂径定理;圆周角定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)欲证明BF是⊙O的切线,只需证明AB⊥BF即可;(2)连接BD,在直角三角形ABD中,利用射影定理可以求得AE的长度,最后结合图形知BE=AB﹣AE;(3)连接BC.四边形CBFD为平行四边形,则四边形ACBD是正方形.根据平行四边形的对边平行、平行线的性质、圆周角定理以及同弧所对的圆周角相等可以推知∠CAD=∠BDA=90°,即CD是⊙O的直径,然后由全等三角形的判定与性质推知AC=BD;根据正方形的判定定理证得四边形ACBD是正方形.解答:解:(1)∵AB是⊙O的直径,CD⊥AB,BF∥CD,∴BF⊥AB,∵点B在圆上,∴BF是⊙O的切线;(2)如图1,连接BD.∵AB是⊙O的直径,∴∠ADB=90°(直径所对的圆周角是直角);又∵DE⊥AB∴AD2=AE•AB;∵AD=8cm,AB=10cm,AE=6.4cm,∴BE=AB﹣AE=3.6cm;(3)连接BC.四边形CBFD为平行四边形,则四边形ACBD是正方形.理由如下:∵四边形CBFD为平行四边形,∴BC∥FD,即BC∥AD;∴∠BCD=∠ADC(两直线平行,内错角相等),∵∠BCD=∠BAD,∠CAB=∠CDB,(同弧所对的圆周角相等),∴∠CAB+∠BAD=∠CDB+∠ADC,即∠CAD=∠BDA;又∵∠BDA=90°(直径所对的圆周角是直角),∴∠CAD=∠BDA=90°,∴CD是⊙O的直径,即点E与点O重合(或线段CD过圆心O),如图2,在△OBC和△ODA中,∵,∴△OBC≌△ODA(SAS),∴BC=DA(全等三角形的对应边相等),∴四边形ACBD是平行四边形(对边平行且相等的四边形是平行四边形);∵∠ACB=90°(直径所对的圆周角是直角),AC=AD,∴四边形ACBD是正方形.点评:本题综合考查了切线的判定、全等三角形的判定与性质、圆周角定理、垂径定理等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.(8分)(•珠海)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B (不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:)考点:解直角三角形的应用-仰角俯角问题.专题:压轴题;探究型.分析:设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故OB=OC•tan30°=x,再根据AB=OA﹣OB=2即可得出结论.解答:解:设OC=x,在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x,在Rt△BOC中,∵∠BCO=30°,∴OB=OC•tan30°=x,∵AB=OA﹣OB=x﹣x=2,解得x=3+≈3+1.73=4.73≈5米,∴OC=5米.答:C处到树干DO的距离CO为5米.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题,先设出OC的长,利用锐角三角函数的定义及直角三角形的性质用x表示出OA、OB的长是解答此题的关键.24.(8分)(•河西区一模)如图,线段AB,CD分别是一辆轿车和一辆客车在行驶过程中油箱内的剩余油量y1(升)、y2(升)关于行驶时间x(小时)的函数图象.(1)分别求y1、y2关于x的函数解析式,并写出定义域;(2)如果两车同时从相距300千米的甲、乙两地出发,相向而行,匀速行驶,已知轿车的行驶速度比客车的行驶速度快30千米/小时,且当两车在途中相遇时,它们油箱中所剩余的油量恰好相等,求两车的行驶速度.考点:一次函数的应用.分析:(1)直接运用待定系数法就可以求出y1、y2关于x的函数解析式;(2)设客车的速度为xkm/时,则小轿车的速度为(x+30)km/时,先根据相遇问题表示出相遇时间,再由图象可以求出客车和小轿车每小时的耗油量,再根据剩余的油相等建立方程求出其解就可以了.解答:解:(1)设线段AB,CD的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象得,,解得:,,∴y1=﹣15x+60(0≤x≤4),y2=﹣30x+90(0≤x≤3)(2)设客车的速度为xkm/时,则小轿车的速度为(x+30)km/时,所以两车的相遇时间为:,轿车每小时的耗油量为60÷4=15升,客车每小时耗油量为90÷3=30升.∵相遇时,它们油箱中所剩余的油量恰好相等,∴90﹣30×=60﹣15×,解得:x=60,经检验,x=60是原方程的解,轿车的速度为:60+30=90千米/时.答:客车60千米/小时,轿车90千米/小时.点评:本题考查了运用待定系数法求一次函数的解析式的运用,相遇问题的解法的运用,解答本题时先表示出两车相遇的时间利用剩余的油量相等建立分式方程是关键,分式方程要检验是解答的必要过程,学生容易忘记.25.(10分)(•河西区一模)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E在AC上(点E与A、C都不重合),点F在斜边AB上(点F与A、B都不重合).(Ⅰ)若EF平分Rt△ABC的周长,设AE=x,△AEF的面积为y,写出y与x之间的函数关系式,并指出x的取值范围;(Ⅱ)试问:是否存在直线EF将Rt△ABC的周长和面积同时平分?若存在,求出AE的长;若不存在,说明理由.考点:一元二次方程的应用;根据实际问题列二次函数关系式;解直角三角形.分析:(Ⅰ)根据AE=x得到AF,然后表示出DF,利用三角形的面积列出两个变量之间的关系式即可;(Ⅱ)根据EF平分三角形ABC的面积列出有关x的一元二次方程,解得有意义即可判定存在.解答:解:(Ⅰ)在直角三角形ABC中,AC=3,BC=4,所以AB=5∴三角形ABC的周长为12,又因EF平方三角形ABC的周长,∴AE+AF=6,而AE=x,∴AF=6﹣x过点F作FD⊥AC于D则∴∴DF=所以y=AE•DF=x•=﹣x2+x(0<x<3)(Ⅱ)这样的EF存在,S△ABC=BC•AC=×4×3=6∵EF平分△ABC的面积,所以﹣x2+x=3解得:x=∵0<x<3∴x取∴6﹣x=<5符合题意,所以这样的EF存在,此时AE=.点评:本题考查了一元二次方程的应用及根据实际问题列出二次函数关系式,解题的关键是根据已知条件表示出有关的线段的长.26.(10分)(•河西区一模)如图1,抛物线y=x2+x﹣4与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线y=x+b与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图2),求△ABE与△ACE的面积.(3)当b>﹣4时,△ABE与△ACE的面积大小关系如何?为什么?(4)是否存在这样的b,使得△BOC是以BC为斜边的直角三角形?若存在,求出b;若不存在,说明理由.考点:二次函数综合题;解二元一次方程组;二次函数图象上点的坐标特征;三角形的面积;全等三角形的判定与性质;直角三角形的性质.专题:计算题.分析:(1)将x=0,代入抛物线的解析式即可;(2)当b=0时,直线为y=x,解由y=x和y=x2+x﹣4组成的方程组即可求出B、C的坐标,再利用三角形的面积公式即可求出面积;(3)当b>﹣4时,△ABE与△ACE的面积相等,理由是解由直线和抛物线组成的方程组,即可求出交点的坐标,作BF⊥y轴,CG⊥y轴,垂足分别为F、G,根据点的坐标得到△ABE和△ACE是同底的两个三角形,即可得出答案;(4)存在这样的b,根据全等三角形的判定证△BEF≌△CEG,推出BE=CE,根据直角三角形的性质,当OE=CE时,△OBC为直角三角形,代入即可求出b的值.解答:解:(1)将x=0,代入抛物线的解析式得:y=﹣4,得点A的坐标为(0,﹣4),答:点A的坐标为(0,﹣4).(2)当b=0时,直线为y=x,由,解得,,∴B、C的坐标分别为B(﹣2,﹣2),C(2,2),,,答:△ABE的面积是4,△ACE的面积是4.(3)当b>﹣4时,S△ABE=S△ACE,理由是:由,解得,,∴B、C的坐标分别为:B(﹣,﹣+b),C(,+b),作BF⊥y轴,CG⊥y轴,垂足分别为F、G,则,而△ABE和△ACE是同底的两个三角形,∴S△ABE=S△ACE.答:当b>﹣4时,△ABE与△ACE的面积大小关系是相等.(4)存在这样的b,∵BF=CG,∠BEF=∠CEG,∠BFE=∠CGE=90°,∴△BEF≌△CEG,∴BE=CE,即E为BC的中点,所以当OE=CE时,△OBC为直角三角形,∵B(﹣,﹣+b),E(0,b),∴GE=EF=|﹣(+b)+b|==CGGE=GC=,∴,而OE=|b|,∴,解得b1=4,b2=﹣2,∴当b=4或﹣2时,△OBC为直角三角形,答:存在这样的b,使得△BOC是以BC为斜边的直角三角形,b的值是4或﹣2.点评:本题主要考查对二次函数图象上点的坐标特征,解二元一次方程组,三角形的面积,全等三角形的性质和判定,直角三角形的性质等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键,题型较好,综合性强.。
天津市河西区2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,经过测量,C 地在A 地北偏东46°方向上,同时C 地在B 地北偏西63°方向上,则∠C 的度数为( )A .99°B .109°C .119°D .129°2.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+313.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 4.已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36°,则该圆锥的母线长为( ) A .100cm B .10cm C .10cm D .10cm 5.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是»AC 上的点,若∠BOC=40°,则∠D 的度数为( )A .100°B .110°C .120°D .130°6.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D .7.已知3x+y =6,则xy 的最大值为( )A .2B .3C .4D .68.一个多边形的每个内角均为120°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形9.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A .方差B .中位数C .众数D .平均数10.数据3、6、7、1、7、2、9的中位数和众数分别是( )A .1和7B .1和9C .6和7D .6和9 11.反比例函数y =m x的图象如图所示,以下结论:①常数m <﹣1;②在每个象限内,y 随x 的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h <k ;④若点P(x ,y)在上,则点P′(﹣x ,﹣y)也在图象.其中正确结论的个数是( )A .1B .2C .3D .412.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算1x x +﹣11x +的结果为_____.14.分解因式:2-+=_______a a28815.在数学课上,老师提出如下问题:尺规作图:确定图1中»CD所在圆的圆心.已知:»CD.求作:»CD所在圆的圆心O.曈曈的作法如下:如图2,(1)在»CD上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是»CD所在圆的圆心.老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是_____.16.圆锥的底面半径为4cm,高为5cm,则它的表面积为______ cm1.17.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.18.从正n边形一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:3,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)20.(6分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.21.(6分)计算22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭22.(8分)先化简,再求值:22111()211x x x x x --÷-+-,其中x=﹣1. 23.(8分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y (台)与销售单价x (元)的关系为y =﹣2x+1.(1)该公司每月的利润为w 元,写出利润w 与销售单价x 的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?24.(10分)如图,在平面直角坐标系中,点O 为坐标原点,已知△ABC 三个定点坐标分别为A (﹣4,1),B (﹣3,3),C (﹣1,2).画出△ABC 关于x 轴对称的△A 1B 1C 1,点A ,B ,C 的对称点分别是点A 1、B 1、C 1,直接写出点A 1,B 1,C 1的坐标:A 1( , ),B 1( , ),C 1( , );画出点C 关于y 轴的对称点C 2,连接C 1C 2,CC 2,C 1C ,并直接写出△CC 1C 2的面积是 .25.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求△ABC 的面积. 26.(12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?27.(12分)如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(3,n)两点.求一次函数关系式;根据图象直接写出kx+b﹣6x>0的x的取值范围;求△AOB的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF 的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B .【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.2.C【解析】【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.3.C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误;C .22a b a b++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.4.C【解析】【分析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.【详解】设母线长为R ,则圆锥的侧面积=236360R π=10π, ∴R=10cm ,故选C .【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.5.B【解析】【分析】根据同弧所对的圆周角是圆心角度数的一半即可解题.【详解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所对的圆周角是圆心角度数的一半),故选B.【点睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.6.C【解析】试题分析:由题意可得BQ=x .①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x-;故D选项错误.故选C.考点:动点问题的函数图象.7.B【解析】【分析】根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值.【详解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值为1.故选B.【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值.8.C【解析】由题意得,180°(n-2)=120°n⨯,解得n=6.故选C.9.A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差【分析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数.【详解】解:∵7出现了2次,出现的次数最多,∴众数是7;∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,∴中位数是6故选C .【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.11.B【解析】【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:∵反比例函数的图象位于一三象限,∴m >0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y =x m ,得到h =﹣m ,2k =m , ∵m >0∴h <k故③正确;将P(x ,y)代入y =x m 得到m =xy ,将P′(﹣x ,﹣y)代入y =xm 得到m =xy , 故P(x ,y)在图象上,则P′(﹣x ,﹣y)也在图象上故④正确,故选:B .【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.分析:根据翻折的性质得出∠A=∠DOE ,∠B=∠FOE ,进而得出∠DOF=∠A+∠B ,利用三角形内角和解答即可.详解:∵将△ABC 沿DE ,EF 翻折,∴∠A=∠DOE ,∠B=∠FOE ,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A ﹣∠B=180°﹣142°=38°.故选A .点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.11x x -+. 【解析】【分析】根据同分母分式加减运算法则化简即可.【详解】 原式=11x x -+, 故答案为11x x -+. 【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键.14.22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-.15.①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)【解析】【分析】 (1)在»CD上任意取一点M ,分别连接CM ,DM ; (2)分别作弦CM ,DM 的垂直平分线,两条垂直平分线交于点O .点O 就是»CD所在圆的圆心. 【详解】解:根据线段的垂直平分线的性质定理可知:OC OM OD ==,。
天津市河西区2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)25 26 2728天数 11 2 3则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,272.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B 的度数是()A.30°B.45°C.50°D.60°3.如图所示的几何体的俯视图是()A.B.C.D.4.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO 与∠DCO的度数和是()A.60°B.45°C.35°D.30°5.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-6.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )A .31B .35C .40D .507.如图,圆O 是等边三角形内切圆,则∠BOC 的度数是( )A .60°B .100°C .110°D .120°8.一元二次方程x 2﹣2x =0的根是( )A .x =2B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=﹣29.下列计算正确的是( )A .326⨯=B .3+25=C .()222-=-D .2+2=210.实数a ,b ,c 在数轴上对应点的位置如图所示,则下列结论中正确的是( )A .a+c >0B .b+c >0C .ac >bcD .a ﹣c >b ﹣c11.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 12.不等式组1240x x >⎧⎨-≤⎩的解集在数轴上可表示为( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.14.如图,在菱形纸片ABCD 中,2AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为________.15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).16.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.17.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.18.Rt△ABC中,AD为斜边BC上的高,若, 则ABBC.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.20.(6分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元时,每天可销售______ 件,每件盈利______ 元;(用x 的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.21.(6分)如图所示,在Rt ABC △中,90ACB ∠=︒,用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)连接AP 当B Ð为多少度时,AP 平分CAB ∠.22.(8分)解方程组:113311x x y x x y ⎧+=⎪+⎪⎨⎪-=⎪+⎩23.(8分)如图,已知反比例函数y =k x的图象与一次函数y =x+b 的图象交于点A(1,4),点B(﹣4,n).求n 和b 的值;求△OAB 的面积;直接写出一次函数值大于反比例函数值的自变量x 的取值范围.24.(10分)在平面直角坐标系中,已知直线y =﹣x+4和点M(3,2)(1)判断点M 是否在直线y =﹣x+4上,并说明理由;(2)将直线y =﹣x+4沿y 轴平移,当它经过M 关于坐标轴的对称点时,求平移的距离;(3)另一条直线y =kx+b 经过点M 且与直线y =﹣x+4交点的横坐标为n ,当y =kx+b 随x 的增大而增大时,则n 取值范围是_____.25.(10分)解不等式组2102323x xx +>⎧⎪-+⎨≥⎪⎩并在数轴上表示解集. 26.(12分)如图,直线y 1=﹣x+4,y 2=34x+b 都与双曲线y=k x 交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x+b >k x 的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.27.(12分)如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =55,求BD 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.2.D【解析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.在直角三角形ACD中求出∠D.则sinD=∠D=60°∠B=∠D=60°.故选D.“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.3.D【解析】【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【详解】从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.4.A【解析】试题解析:连接OD,∵四边形ABCO 为平行四边形,∴∠B=∠AOC ,∵点A. B. C.D 在⊙O 上,180B ADC ∴∠+∠=o ,由圆周角定理得, 12ADC AOC ∠=∠, 2180ADC ADC ∴∠+∠=o ,解得, 60ADC ∠=o ,∵OA=OD ,OD=OC ,∴∠DAO=∠ODA ,∠ODC=∠DCO ,60.DAO DCO ∴∠+∠=o 故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.5.B【解析】试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误;B 、y=﹣3x ,y 随着x 的增大而减小,正确;C 、3y x=,每个象限内,y 随着x 的增大而减小,故此选项错误; D 、3y x=-,每个象限内,y 随着x 的增大而增大,故此选项错误; 故选B . 考点:反比例函数的性质;正比例函数的性质.6.C【解析】【分析】根据题意得出第n 个图形中棋子数为1+2+3+…+n+1+2n ,据此可得.【详解】解:∵图1中棋子有5=1+2+1×2个, 图2中棋子有10=1+2+3+2×2个, 图3中棋子有16=1+2+3+4+3×2个, …∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C .本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.D【解析】【分析】由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=1 2(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.【详解】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵圆O是等边三角形内切圆,∴OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故选D.【点睛】此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=1 2(∠ABC+∠ACB).8.C【解析】【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故选C.【点睛】考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.9.A【解析】原式各项计算得到结果,即可做出判断.【详解】A、原式,正确;B、原式不能合并,错误;=,错误;C、原式2D、原式故选A.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.D【解析】>>,据此逐项判定即可.分析:根据图示,可得:c<b<0<a,c a b详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.11.C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b ++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.12.A【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:1240x x >⎧⎨-≤⎩①② ∵不等式①得:x >1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:, 故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y >0时,x 的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y >0时,x 的取值范围是﹣3<x <1.故答案为﹣3<x <1.考点:二次函数的图象.14.217【解析】【分析】过点A 作AP CD ⊥,交CD 延长线于P ,连接AE ,交FG 于O ,根据折叠的性质可得AFG EFG ∠=∠,FG AE ⊥,根据同角的余角相等可得PAE AFG ∠=∠,可得EFG APE ∠=∠,由平行线的性质可得PDA 60∠=︒,根据PDA ∠的三角函数值可求出PD 、AP 的长,根据E 为CD 中点即可求出PE 的长,根据余弦的定义cos APE ∠的值即可得答案.【详解】过点A 作AP CD ⊥,交CD 延长线于P ,连接AE ,交FG 于O ,∵四边形ABCD 是菱形,∴AD AB 2==,∵将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,∴AFG EFG ∠=∠,FG AE ⊥,∵CD //AB ,AP CD ⊥,∴AP AB ⊥,∴PAE EAF 90∠+=︒∠,∵EAF AFG 90∠+=︒∠,∴PAE AFG ∠=∠,∴EFG APE ∠=∠,∵CD //AB ,DAB 60∠=︒,∴PDA 60∠=︒,∴3AP AD sin 6023=⋅︒==1PD AD cos60212=⋅︒=⨯=, ∵E 为CD 中点,∴1DE AD 12==,∴PE DE PD 2=+=, ∴22AE AP PE 7=+=, ∴AP 3cos EFG cos PAE AE 7====∠∠217. 故答案为217【点睛】 本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.15.43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC 中,tan ∠ACB=AB BC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=0tan 30x , ∵两次测量的影长相差8米,∴00tan 30tan 60x x -=8, ∴3故答案为3.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.16.1【解析】【分析】根据七巧板的性质可得BI=IC=CH=HE ,因为S △BIC =1,∠BIC=90°,可求得2,BC=1,在求得点G到EF sin45°,根据平行四边形的面积即可求解. 【详解】由七巧板性质可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴12BI•IC=1,∴,∴,∵EF=BC=1,,∴点G到EF2,∴平行四边形EFGH的面积×2=1.故答案为1【点睛】本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.17.x1=1,x2=﹣1.【解析】【分析】直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.【详解】解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一交点坐标为(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.故本题答案为:x1=1,x2=﹣1.【点睛】本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c 与x轴交点的横坐标的值.18.1 2【解析】【分析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.【详解】如图,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,∴AB:BC=1:1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=x2+2x﹣3;(2)点P坐标为(﹣1,﹣2);(3)点M坐标为(﹣1,3)或(﹣1,2).【解析】【分析】(1)设平移后抛物线的表达式为y=a(x+3)(x-1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当DM ODDO OB=或DM OBDO OD=时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.【详解】(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1),∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,∴平移后抛物线的二次项系数与原抛物线的二次项系数相同,∴平移后抛物线的二次项系数为1,即a=1,∴平移后抛物线的表达式为y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),如图1,连接B,C′,与直线x=﹣1的交点即为所求点P,由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,则1 {1y xx=-=-,解得12 xy=-⎧⎨=-⎩,所以点P坐标为(﹣1,﹣2);(3)如图2,由2{1y xx==-得11xy=-=⎧⎨⎩,即D(﹣1,1),则DE=OD=1,∴△DOE 为等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,,∵BO=1,∴∵∠BOD=135°,∴点M 只能在点D 上方,∵∠BOD=∠ODM=135°, ∴当DM OD DO OB =或DM OB DO OD=时,以M 、O 、D 为顶点的三角形△BOD 相似,①若DM ODDO OB =1=,解得DM=2, 此时点M 坐标为(﹣1,3); ②若DM OBDO OD==,解得DM=1, 此时点M 坐标为(﹣1,2);综上,点M 坐标为(﹣1,3)或(﹣1,2).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD=135°是解题的关键.20.(1)(20+2x ),(40﹣x );(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x 元时,每天可销售20+2x 件,每件盈利40-x 元,故答案为(20+2x ),(40-x );(2)、根据题意可得:(20+2x)(40-x)=1200,解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.21.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.22.10.5 xy=⎧⎨=-⎩【解析】【分析】设1x=a,1x y+=b,则原方程组化为331a ba b+=⎧⎨-=⎩①②,求出方程组的解,再求出原方程组的解即可.【详解】设1x=a,1x y+=b,则原方程组化为:331a ba b+=⎧⎨-=⎩①②,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即1112 xx y⎧=⎪⎪⎨⎪=+⎪⎩,解得:10.5 xy=⎧⎨=-⎩,经检验10.5xy=⎧⎨=-⎩是原方程组的解,所以原方程组的解是10.5 xy=⎧⎨=-⎩.【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.23.(1)-1;(2)52;(3)x>1或﹣4<x<0.【解析】【分析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y=kx,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=4x的图象上,∴n=44=﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=kx中k的几何意义,这里体现了数形结合的思想.24.(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.【解析】【分析】(1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x 轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;(1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=23nn-+-.根据y=kx+b随x的增大而增大,得到k>0,即23nn-+->0,那么①2030nn-+⎧⎨-⎩>>,或②2030nn-+⎧⎨-⎩<<,分别解不等式组即可求出n的取值范围.【详解】(1)点M不在直线y=﹣x+4上,理由如下:∵当x=1时,y=﹣1+4=1≠2,∴点M(1,2)不在直线y=﹣x+4上;(2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.①点M(1,2)关于x轴的对称点为点M1(1,﹣2),∵点M1(1,﹣2)在直线y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距离为1;②点M(1,2)关于y轴的对称点为点M2(﹣1,2),∵点M2(﹣1,2)在直线y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距离为2.综上所述,平移的距离为1或2;(1)∵直线y=kx+b经过点M(1,2),∴2=1k+b,b=2﹣1k.∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=23nn-+-.∵y=kx+b随x的增大而增大,∴k>0,即23 nn-+->0,∴①2030nn-+⎧⎨-⎩>>,或②2030nn-+⎧⎨-⎩<<,不等式组①无解,不等式组②的解集为2<n<1.∴n的取值范围是2<n<1.故答案为2<n<1.【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.25.﹣12<x≤0,不等式组的解集表示在数轴上见解析.【解析】【分析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式2x+1>0,得:x>﹣12,解不等式2323x x-+≥,得:x≤0,则不等式组的解集为﹣12<x≤0,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.26.(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.27.BD=.【解析】【分析】作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【详解】作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM =90°,∵∠ABC =90°,AB =3,BC =4,∴AC 2=AB 2+BC 2=25,∵CD =10,AD =55 , ∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∠ACD =90°,∴∠ACB+∠DCM =90°,∴∠ACB =∠CDM ,∵∠ABC =∠M =90°,∴△ABC ∽△CMD ,∴12AB CM =, ∴CM =2AB =6,DM =2BC =8,∴BM =BC+CM =10,∴BD =22BM DM +=22108+=241,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD 是直角三角形是解决问题的关键.。
2019届天津市河西区初三数学中考模拟九年级数学试卷一、选择题1、若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y=-x -1图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 1 2、如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:4B .1:3C .1:2D .1:1 3、用配方法解方程3x 2﹣6x+1=0,则方程可变形为( )A .B .C .D .4、使得有意义的a 有( )A .0个B .1个C .无数个D .以上都不对 5、如图所示,水杯的俯视图是( )A .B .C .D .6、地球七大洲的总面积约是149 480 000km 2,对这个数据保留3个有效数字可表示为( )A .149km 2B .1.5×108km 2C .1.49×108km 2D .1.50×108km 27、已知∠A 为锐角,且sinA ≤0.5,则( )A .0°≤A ≤60°B .60°≤A <90°C .0°<A ≤30°D .30°≤A ≤90° 8、下列各计算题中,结果是零的是( )A .(+3)﹣|﹣3|B .|+3|+|﹣3|C .(﹣3)﹣3D .+(-)9、要使式子有意义,则x 的取值范围是( )A .x>0B .x ≥-2C .x ≥2D .x ≤2 10、下列汉字或字母中既是中心对称图形又是轴对称图形的是( )A .B .C .D .11、如图,已知A 、B 是反比例函数上的两点,BC ∥x 轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O →A →B →C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )A .B .C .D .12、下列运算错误的是)( )A .=1B .C .D .二、填空题13、甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m ,再由乙猜甲刚才所选的数字,记为n .若m 、n 满足|m ﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是 。
天津市河西区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A .第24天的销售量为200件B .第10天销售一件产品的利润是15元C .第12天与第30天这两天的日销售利润相等D .第27天的日销售利润是875元2.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A .0个B .1个C .2个D .3个3.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④4.已知点1(,3)A x 、2(,6)B x 都在反比例函数3y x =-的图象上,则下列关系式一定正确的是( ) A .120x x << B .120x x << C .210x x <<D .210x x << 5.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A .20,20B .30,20C .30,30D .20,30 6.不等式组的解集在数轴上表示正确的是( )A .B .C .D .7.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22 圆,则⊙O 的“整点直线”共有( )条A .7B .8C .9D .108.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )A .6B .2C .-2D .-69.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为( )A .2B .2C .2D .210.如图,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(﹣2,3),先把△ABC 向右平移6个单位得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2,则顶点A 2的坐标是( )A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)11.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次根式1a 中的字母a的取值范围是_____.14.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.15.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.16.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n=_____.17.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.18.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段线段DO的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 的函数关系最恰当的是( )A .B .C .D .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)29的910除以20与18的差,商是多少? 20.(6分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班 (用A ,B ,C ,D 表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请 根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.21.(6分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?22.(8分)如图,一次函数y=kx+b 的图象分别与反比例函数y=a x 的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA=OB .(1)求函数y=kx+b 和y=a x的表达式; (2)已知点C (0,8),试在该一次函数图象上确定一点M ,使得MB=MC ,求此时点M 的坐标.23.(8分)如图,抛物线y=ax 2+bx(a <0)过点E(10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.24.(10分)(1)计算:2201801()(1)4sin60(π1)2-------o(2)化简:221a 4a 2a 1a 2a 1a 1---÷++++ 25.(10分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A 书法、B 阅读,C 足球,D 器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?26.(12分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍. (1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?27.(12分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:25205 bk b⎧⎨+⎩==,解得:125kb-⎧⎨⎩==,∴z=-x+25,当x=10时,y=-10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:11110024200b k b ⎧⎨+⎩==, 解得:11256100k b ⎧⎪⎨⎪⎩==,∴y=256t+100, 当t=12时,y=150,z=-12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元), 750≠1950,故C 错误;D 、第30天的日销售利润为;150×5=750(元),故正确.故选C2.B【解析】【分析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;②a ,b 看y 2=x+a ,y 1=kx+b 与y 轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y 1=kx+b 的图象从左向右呈下降趋势,∴k <0正确;②∵y 2=x+a ,与y 轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y 1>y 2错误;故正确的判断是①.故选B .【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y 随x 的变化趋势:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.3.C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.41.9,考点:实数与数轴的关系4.A【解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.5.C【解析】【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.6.D【解析】试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.7.D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.9.A【解析】【分析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=22×4=82,所以侧面积之和为82×2+4×4= 16+162,所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.10.A【解析】【分析】直接利用平移的性质结合轴对称变换得出对应点位置.【详解】如图所示:顶点A 2的坐标是(4,-3).故选A .【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.11.D【解析】【分析】先根据第一象限内的点的坐标特征判断出a 、b 的符号,进而判断点B 所在的象限即可.【详解】∵点A(a ,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a ,b)在第四象限,故选D .【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.12.B【解析】【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a≥﹣1.【解析】【分析】根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围.【详解】由分析可得,a+1≥0,解得:a≥﹣1.【点睛】熟练掌握二次根式被开方数为非负数是解答本题的关键.14.y=﹣x+1【解析】【分析】根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.【详解】∵一次函数y随x的增大而减小,∴k<0,∵一次函数的解析式,过点(1,0),∴满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.15.1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解.详解:设这栋建筑物的高度为xm,由题意得,2=19x,解得x=1,即这栋建筑物的高度为1m.故答案为1.点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.16.1【解析】【分析】根据白球的概率公式44n+=13列出方程求解即可.【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=44n+=13.解得:n=1,故答案为1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.17.【解析】【分析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.【详解】解:根据题意得2π×PA=3×2π×1,所以PA=3,所以圆锥的高OP=故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.C.【解析】分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO 上运动时,∠APB逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1 10【解析】【分析】根据题意可用29乘910的积除以20与18的差,所得的商就是所求的数,列式解答即可.【详解】解:29×910÷(20﹣18)11112.55210=÷=⨯=【点睛】考查有理数的混合运算,列出式子是解题的关键.20.(1)图形见解析,216件;(2)1 2【解析】【分析】(1)由B班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得.【详解】(1)4个班作品总数为:1201236360÷=件,所以D班级作品数量为:36-6-12-10=8;∴估计全校共征集作品364×36=324件.条形图如图所示,(2)男生有3名,分别记为A1,A2,A3,女生记为B,列表如下:A1A2A3 B由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种. 所以选取的两名学生恰好是一男一女的概率为61122=. 【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.21.20.24y x =﹣;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】 【分析】(1)根据函数图象中的数据可以求得2y 关于x 的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题. 【详解】解:(1)设2y 关于x 的函数解析式是2y kx b +=,200404k b k b +=⎧⎨+=⎩,得0.24k b =⎧⎨=-⎩, 即2y 关于x 的函数解析式是20.24y x=﹣; (2)由图象可知,步行的学生的速度为:4400.1÷=千米/分钟,∴步行同学到达百花公园的时间为:60.160÷=(分钟), 当28y =时, 60.24x =﹣,得50x =,605010﹣=,答:骑自行车的学生先到达百花公园,先到了10分钟. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 22.(1)12y x =,y=2x ﹣1;(2)133,42M ⎛⎫⎪⎝⎭.【解析】【分析】(1)利用待定系数法即可解答;(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数a=yx得:a=3×4=12,∴12yx =.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴点B的坐标为(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y轴于点D.∵点M在一次函数y=2x﹣1上,∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=13 4∴2x﹣1=32,∴点M的坐标为133,42⎛⎫ ⎪⎝⎭.【点睛】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式. 23.(1)21542y x x =-+;(2)当t=1时,矩形ABCD 的周长有最大值,最大值为412;(3)抛物线向右平移的距离是1个单位. 【解析】 【分析】(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,1)代入计算可得; (2)由抛物线的对称性得BE=OA=t ,据此知AB=10-2t ,再由x=t 时AD=21542t t -+,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,据此可得. 【详解】(1)设抛物线解析式为()10y ax x =-,Q 当2t =时,4AD =,∴点D 的坐标为()2,4,∴将点D 坐标代入解析式得164a -=,解得:14a =-, 抛物线的函数表达式为21542y x x =-+; (2)由抛物线的对称性得BE OA t ==,102AB t ∴=-,当x t =时,21542AD t t =-+, ∴矩形ABCD 的周长()2AB AD =+()215210242t t t ⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎝⎭⎣⎦,21202t t =-++,()2141122t =--+,102-<Q ,∴当1t =时,矩形ABCD 的周长有最大值,最大值为412; (3)如图,当2t =时,点A 、B 、C 、D 的坐标分别为()2,0、()8,0、()8,4、()2,4,∴矩形ABCD 对角线的交点P 的坐标为()5,2, Q 直线GH 平分矩形的面积,∴点P 是GH 和BD 的中点,DP PB ∴=,由平移知,//PQ OBPQ ∴是ODB ∆的中位线,142PQ OB ∴==,所以抛物线向右平移的距离是1个单位. 【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点. 24.(1)223-;(2)-1; 【解析】 【分析】(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题; (2)根据分式的除法和减法可以解答本题. 【详解】 (1)2201801()(1)460(1)2sin o π------- 341412=--⨯- =41231-- =2-3(2)2214a 21211a a a a a ---÷++++=()()222111(1)2a a aa a a+-+ -⋅++-=1211aa a+-++=121aa--+=()11aa-++=-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.25.(1)答案见解析;(2)1 4【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率41. 164 ==点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.26.(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤.【解析】【分析】(1)设降价后乙种水果的售价是x元,30元可购买乙种水果的斤数是30x,原来购买乙种水果斤数是30x1+,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500﹣y)斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可.【详解】解:(1)设降价后乙种水果的售价是x 元,根据题意可得:30301.51x x =⨯+, 解得:x =2,经检验x =2是原方程的解, 答:降价后乙种水果的售价是2元/斤;(2)设至少购进乙种水果y 斤,根据题意可得: 2(500﹣y )+1.5y≤900, 解得:y≥200,答:至少购进乙种水果200斤. 【点睛】本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键 27.(1)50,108°,补图见解析;(2)9.6;(3)13. 【解析】 【分析】(1)根据A 景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A 景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B 景点接待游客数补全条形统计图;(2)根据E 景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E 景点旅游的人数; (3)根据甲、乙两个旅行团在A 、B 、D 三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率. 【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人), A 景点所对应的圆心角的度数是:30%×360°=108°, B 景点接待游客数为:50×24%=12(万人), 补全条形统计图如下:(2)∵E 景点接待游客数所占的百分比为:650×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=31 93 .【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.。
河西区2019学年度初中毕业生学业考试模拟试卷(一)
数 学
考试时间:2019年5月3日
本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷第1页至第3页,第Ⅱ卷第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!
第Ⅰ卷
注意事项:
1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分) (1)计算(-3)-9的结果等于( )
(A )6 (B )12 (C )12 (D )6
(2)cos300
的值是( ) (A )
2
2 (B )
3
3
(C )21 (D )23
(3)下列图案中,可以看作中心对称图形的是( )
(4)第十三届全运会将于2017年8月在天津举行,其中足球比赛项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学计数法表示应为( )
(A )163×103 (B )16.3×104 (C )1.63×105 (D )0.163×106
(5)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )
(6)分式方程
3
2
21+=
x x 的解为( ) (A )x=1 (B )x=2 (C )x=3 (D )x=-1 (7)等边三角形的边心距为3,则该等边三角形的边长是( )
(A )33 (B )6 (C )23 (D )2
(8)数轴上点A 表示a ,将点A 沿数轴向左移动3个单位得到点B ,设点B 所表示的数为x ,则x 可以表示 为( )
(9)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5.从中随机摸出一个小球,其标号大于2的概率为( )
(A )51 (B )52 (C )53 (D )5
4
(10)已知反比例函数y=
x
6
当1<x<3 时,y 的取值范围是( ) (A )0<y<1 (B )1<y<2 (C )y<6 (D )2<y<6
(11)如图,菱形ABCD 的对角线AC=3cm ,把它沿对角线AC 方向平移1cm 得到菱形EFGH ,则图中阴影部分图形的面积与四边形 ENCM 的面积之比为( )
(A )9:4 (B )12:5 (C )3:1 (D )5:2
(12)二次函数y=x 2+bx 的图象的对称轴为直线x=1,若关于x 的一元二次方程x 2
+bx-t=0(t 为实数)在-1<x<4的范围内有解,则t 的取值范围是( )
(A )t ≥-1 (B )-1≤t<3 (C )3<t<8 (D )-1≤t<8
第Ⅱ卷
注意事项:
1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2.本卷共13题,共84分。
二、填空题(本大题共6小题,每小题3分,共18分)
(13)计算a 2∙a 4
的结果等于__________.
(14)如果关于x 的一元二次方程x 2
-6x+2k=0有两个不相等的实根,那么实数k 的取值范围是__________.
(15)如图,Rt △ABC 中,∠C=300
,AB=10,AC=6,D 是BC 上一点,BD=5,DE ⊥AB,垂足为E,则线段DE 长为_________.
(16)如图,⊙O 的半径为2,△ABC 是⊙O 的内接三角形,连接OB,OC,若∠BOC 与∠BAC 互补,则弦BC 的长为_________.
(17)如图,在边长为a(a>2)正方形各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=450时,则正方形MNPQ的面积为__________.
(18)在每个小正方形的边长为1的网格中,等腰直角三角形ACB与ECD的顶点都在网格点上,点N,M分别为线段AB,DE上的动点,且BN=EM .
(Ⅰ)如图①,当BN=2时,计算CN+CM的值等于__________;
(Ⅱ)当CN+CM取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段CN和CM,并简要说明点和点的位置是如何找到的(不要求证明).
三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)
(19)(本小题8分)解不等式组:
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得__________;
(Ⅱ)解不等式②,得__________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为__________.
(20)(本小题8分)为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如下面的统计图表:
根据图表提供的信息,回答下列问题:
(Ⅰ)直接写出统计图中a的值__________;
(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?
(21)(本小题10分)在⊙O中,AB为直径,C为⊙O上一点.
(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=320,求∠P的大小;
(Ⅱ)如图②,D为优弧ADC上一点,且DO的延长线经过AC的中点E,连接DC与AB相交于点P,若∠CAB=160, 求∠DPA的大小.
(22)(本小题10分)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.
(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A/C/的位置时,A/C/的长为__________m;
(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=540,沿河岸MQ前行,在观景平台N处测得∠PNQ=730.已知PQ⊥MQ,MN=40m,求解放桥的全长PQ.(tan540≈1.4,tan730≈3.3,结果保留整数)
(23)(本小题10分)国庆期间,为了满足百姓的消费需求,某电器商店计划用170000元购进一批家电,这批家电的进价和售价如表:
若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.
(Ⅰ)商店至多可以购买冰箱多少台?
(Ⅱ)购买冰箱多少台时,能使该商店销售完这批家电后获得的利润最大?最大利润为多少元?
(24)(本小题10分)如图,将一个矩形纸片ABCD,放置在平面直角坐标系中,A(0,0),B(4,0),D(0,3),M是边CD上一点,将△ADM沿直线AM折叠,得到△ANM.
(Ⅰ)当AN平分∠MAB时,求∠DAM的度数和点M的坐标;
(Ⅱ)连接BN,当DM=1时,求△ABN的面积;
(Ⅲ)当射线BN交线段CD于点F时,求DF的最大值.(直接写出答案)
(25)(本小题10分)抛物线y=ax2+bx+c(a≠0)的图像经过点A,B,C,已知点A的坐标为(-3,0),点B的坐标为(1,0),点C在y轴的正半轴上,且∠CAB=300.
(Ⅰ)求抛物线的函数解析式;
(Ⅱ)若直线l:y=3x+m从点C开始沿y轴向下平移,分别交x轴、y轴于点D、E.
(ⅰ)当m>0时,在线段AC上是否存在点P,使得P,D,E构成等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(ⅱ)以动直线l为对称轴,线段AC关于直线l的对称线段A/C/与该二次函数图象有交点,请直接写出m的取值范围.
数学参考答案
一、选择题:
(1)B (2)D (3)C (4) C (5) B (6)A (7)B (8)A (9)C (10) D (11)D (12) D。