大连市第55中学09届初三数学学科第一次模拟试卷及答案
- 格式:doc
- 大小:540.50 KB
- 文档页数:15
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在平面直角坐标系中,点的坐标为,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限试题2:下列运算正确的是()A. B.C.D.试题3:图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是()A. 60分 B. 70分 C.75分D.80分试题4:下列式子中是完全平方式的是()A. B. C.D.试题5:已知两圆的半径分别为3cm和2cm,圆心距为5cm,则两圆的位置关系是()A.外离 B.外切 C.相交 D.内切试题6:在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是()A.甲 B.乙 C.丙 D.丁试题7:下面简单几何体的主视图是()试题8:O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A1B1C1,则△A1B1C1与△ABC重叠部分(图中阴影部分)的面积为().A. B. C. D.试题9:若向南走记作,则向北走记作.试题10:东东和爸爸到广场散步,爸爸的身高是176cm,东东的身高是156cm,在同一时刻爸爸的影长是88cm,那么东东的影长是 cm.试题11:九年级三班共有学生54人,学习委员调查了班级学生参加课外活动情况(每人只参加一项活动),其中:参加读书活动的18人,参加科技活动的占全班总人数的,参加艺术活动的比参加科技活动的多3人,其他同学参加体育活动.则在扇形图中表示参加体育活动人数的扇形的圆心角是度.试题12:下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是.试题13:如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转900,则点B的对应点的坐标是___________.试题14:已知反比例函数的图象经过点(m,2)和(-2,3)则m的值为.试题15:如图,在等腰梯形ABCD中,AD∥BC,AE∥DC,AB=6cm,则AE= cm.试题16:某市今年计划修建一条1500米的景观路,为了尽量减少施工对城市交通的影响,实际工作效率比原计划提高了20%,结果提前2天完成任务.设设原计划每天修路米,则根据题意可列方程.试题17:化简:试题18:学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.试题19:已知E、F是ABCD的边AB、CD延长线上的点,且BE = DF,线段EF分别交AD、BC于点M、N.请你在图中找出一对全等三角形并加以证明.(写出主要推理依据)解:我选择证明△__________≌△____________试题20:如图,有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.试题21:如图,二次函数顶点坐标为(1,4),与轴一个交点为(3,0)(1)求二次函数解析式;(2)若直线与抛物线交于A、B 两点,求时的取值范围.O试题22:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋高楼底部的俯角为,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:)试题23:武警战士乘一冲锋舟从地逆流而上,前往地营救受困群众,途经地时,由所携带的救生艇将地受困群众运回地,冲锋舟继续前进,到地接到群众后立刻返回地,途中曾与救生艇相遇.冲锋舟和救生艇距地的距离(千米)和冲锋舟出发后所用时间(分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从地到地所用的时间.(2)求水流的速度.(3)冲锋舟将地群众安全送到地后,又立即去接应救生艇.已知救生艇与地的距离(千米)和冲锋舟出发后所用时间(分)之间的函数关系式为,假设群众上下船的时间不计,求冲锋舟在距离地多远处与救生艇第二次相遇?试题24:如图,直线和轴、轴的交点分别为点B、A,点C 是OA的中点,过点C向左方作射线CM⊥轴,点D是线段OB上一动点,不和点B重合,DP⊥CM于点P,DE⊥AB于点E,连接PE.⑴求A、B、C三点的坐标;⑵设点D的横坐标为,△BED的面积为S,求S关于的函数关系式;⑶是否存在点D,使△DPE为等腰三角形?若存在,请直接写出所有满足要求的的值;若不存在,说明理由.试题25:如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).(1)当t=1时,得P1、Q1两点,求过A、P1、Q1三点的抛物线解析式及对称轴l;(2)当t为何值时,PC⊥QC;此时直线PQ与⊙C是什么位置关系?请说明理由;(3)在(2)的条件下,(1)中的抛物线对称轴l上存在一点N,使得NP+NQ最小,求出点N的坐标.试题26:⑴如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;⑵如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明;⑶如图3,若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF与线段GH的关系并加以证明.附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由.试题1答案:B.试题2答案:B.试题3答案:C.试题4答案:D.试题5答案:B.试题6答案:B.试题7答案:C试题8答案:C.试题9答案:+3m.试题10答案:78cm.试题11答案:100.试题12答案:0.试题13答案:(2,-1).试题14答案:-3.试题15答案:6.试题16答案:.试题17答案:解:=・=・=试题18答案:学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为,根据题意列方程,得解得,经检验不符合题意,舍去,所以答:这两年的年平均增长率为20%.试题19答案:△DMF≌△BNE证明:四边形ABCD是平行四边形∴DC∥AB,AD∥BC(平行四边形的定义)∴∠F=∠E,∠FDA=∠A(两直线平行,内错角相等)∠A=∠CBE(两直线平行同位角相等)∴∠FDA=∠CBE因为DF=BE,∴△DMF≌△BNE(ASA)试题20答案:解法一:(1)A B C DA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种其中既是中心对称图形又是轴对称图形的有9种,故所求概率是.解法二:(1)所以可能出现的结果:(A,A),(A,B),(A,C),(A,D),(B,A),(B,B),(B,C),(B,D),(C,A),(C,B),(C,C),(C,D),(D,A),(D,B),(D,C),(D,D).(2)由树状图可知,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种,故所求概率是.试题21答案:解:(1)设所求二次函数的解析式为,因为顶点坐标为(1,4),所以,过点(3,0),所以,所以,所以,,即(2)当时,=,解得,,由图象知,当≤x≤时,.试题22答案:解:如图,过点作,垂足为,根据题意,可得,,.在Rt△中,由,得.在Rt△中,由,得.∴.答:这栋楼高约为152.2 m .试题23答案:解:(1)24分钟(1分)(2)设水流速度为千米/分,冲锋舟速度为千米/分,根据题意得解得答:水流速度是千米/分.(3)如图,因为冲锋舟和水流的速度不变,所以设线段所在直线的函数解析式为把代入,得线段所在直线的函数解析式为由求出这一点的坐标答:冲锋舟在距离地千米处与救生艇第二次相遇.试题24答案:(1)将x=0代入,得y=3,故点A的坐标为(0,3);∵C为OA的中点,则C点坐标为(0,1.5);将y=0代入,得x=-4,故点B的坐标为(-4,0);则A、B、C三点的坐标分别为(0,3),(-4,0),(0,1.5);(2)由(1)得OB=4,OA=3,则由勾股定理可得,AB=5.∵点P的横坐标为x,故OD= -x,则,又由已知得,∠DEB=∠AOB=90°,∴,,,,,, ∴.().(3)符合要求的点有三个,x=0,-1.5,-.试题25答案:(1),对称轴为直线:(2)当t=2时,PC⊥QC此时直线PQ与⊙C相切,理由略(3)N(,)试题26答案:⑴如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;⑵如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明;M⑶如图3,若若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF与线段GH的关系并加以证明.⑴略证:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N证△GNH≌△FME∴EF=GH⑵略证:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N证△GNH≌△FME∴EF=GH⑶略证:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N证△GNH∽△FME∴附加题:已知平行四边形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,AD=mAB,则GH=mEF略证:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N证△GNH∽△FME∴即GH=mEF.。
大连市2014年初中毕业升学考试模拟试题(一)数学数学学科试卷1~6页,时间120分钟;满分150分.一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项正确.请将答案填写在答题栏中)1. 下列给出的实数中,绝对值最大的是 A. 2-2B. -2C.23 D. 22. 图1是由四个完全相同的正方体组成的几何体,这个几何体的主视图是3. 计算2(-2a )2的结果是A. 8a 2B. -8aC. 2a 3D. 4a 34. 某中学进行了“学雷锋”演讲比赛.下面是8位评委为一位参赛者的打分:9.4,9.6,9.8,9.9,9.7,9.9,9.8,9.5.若去掉一个最高分和一个最低分,这名参赛者的最后得分是 A. 9.68 B. 9.70 C. 9.72 D. 9.74 5. 如图2,AE ∥BD ,C 是BD 上的点,且AB =BC ,∠ACD =110°,则∠EAB =_____度. A. 20 B. 40C. 45D. 706. 下列一元二次方程中,有两个相等的实数根的是 A. 012=+-x x 2B. 042=++x x 2C. 0242=-+x x 2D. 0242=+-x x 27. 给甲、乙、丙三个人打电话,若打电话的顺序是任意的,则第一个电话打给甲的概率为A.31 B. 21 C. 61D. 32 8. 在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按照如图3所示的方式折叠,使点A 和点D 重合,图1AB C DE AB D图2折痕为EF ,则三角形DEF 的周长为 A. 9.5 B. 11.5C. 13.5D. 15.5二、填空题(本题共8小题,每小题3分,共24分)9. 分解因式:015422++x x =________.10. 平面直角坐标系中一点(-2,5)关于x 轴的对称点在第________象限.11. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学记数法表示应为________. 12. 某种绿豆在相同条件下的发芽试验,结果如下表所示:则这种绿豆发芽的概率估计值是13. 图4为一个底面半径为1,母线长为4的圆锥,一只小蚂蚁从A 点出发,绕侧面一周后又回到A 点,它爬行的最短路线长为________.14. 化简:aa a a +-÷⎪⎭⎫ ⎝⎛2211-1=________.15. 如图5,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为50m ,点A 、D 、B 在同一条直线上,则A 、B 两点的距离是________m .(结果精确到个位, 1.733≈).16. 图6中的抛物线是函数1+=2x y 的图像,把这条抛物线沿直线x y =的方向平移2个单位,平移后的函数解析式为________.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17. 计算:()()1313294523220-++⎪⎪⎭⎫⎝⎛+︒+sin .图4A 30°45°D C BA图518. 解不等式组:⎩⎨⎧--≥-②.①,x x x 4<2 2)3(1219. 如图7,在平行四边形ABCD 中,E F 、为BD 上两点,且BF DE =,连结AE CF 、.求证:AE CF =.20. 我市公安部门加大了对“酒后驾车”的处罚力度,出台了不准酒后驾车的禁令.某记者在某区随机选取了几个停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:A .有酒后开车; B .喝酒后不开车或请专业司机代驾;C .开车当天不喝酒;D .从不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图如图8,请根据相关信息,解答下列问题.(1)该记者本次一共调查了________名司机; (2)图一中情况D 所在扇形的圆心角为________°; (3)在本次调查中,记者随机采访其中的一名司机,则他属情况C 的概率是多少?(4)若该区有3万名司机,则其中不违反“酒驾”禁令的人数约为________人.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21. 为了迎接五一小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.⑴若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?⑵该专卖店为使甲、乙两种服装共200件的总利润(利润= 售价-进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?22. 某物流公司的甲乙两辆货车分别从A ,B 两地同时相向而行,并以各自的速度匀速行驶,途FEDCBA图7图8D C B 8%A 1%径配货站C ,甲车先到达C 地,并在C 地用1h 配货,然后按原速度开往B 地,乙车从B 地直达A 地,图9-1是甲乙两车离A 地的距离y (km )与乙车出发的时间x (h )的函数图像. (1)A 、B 两地的距离是________km,甲车出发_________h 到达C 地.(2)求乙车出发2h 后直至到达A 地的过程中,出y 与x 的函数关系式及x 的取值范围,并在图9-2中画出函数图像.(3)乙车出发多长时间,两车相距150km.23. 已知:如图10,在半径为4的⊙O 中,AB ,CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E ,且EM >MC .连结D E ,DE =15.(1) 求证:MC EM MB AM ⋅=⋅; (2)求EM 的长; (3)求sin ∠EOB 的值.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)图9-1 9-2/kmx /hOy 图10AD ECOM24.如图11已知一次函数y=-x+7与正比例函数43y x=的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P 和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.25. 如图12,正方形ABCD与正方形BEFG有公共点B,点G在边BC上,AG的延长线交CE于点H,连接BH.(1)求证:BCEBAG∠=∠;(2)若BGAB2=,求AHBH的值;(3)若kBGAB=,试探究AHBH的值(用含k的代数式表示).26.如图13,抛物线322++-=xxy与x轴相交于A、B两点(点A在点B的左侧),与yDA图12CG H FEB图11 备用图轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.(3)在以上条件下,四边形PEDF 可能是等腰梯形吗?如果可能,直接写出m 的值;如果不可能,请说明理由.大连市2014年初中毕业升学考试模拟试卷(一) 数学 参考答案与评分标准(7-13页,满分150分)图13 备用图试卷分析:本试卷是完全根据2013中考命题风格命制的,不是对今年的考试方向和趋势的预测。
中考模拟考试数学试题一、选择题(本大题共10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的)1.(3分)﹣5的绝对值是()A.5B.﹣C.﹣5D.2.(3分)下列图形是中心对称图形的是()A.B.C.D.3.(3分)2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数不少于16 000 000人次,将16 000 000用科学记数法表示应为()A.16×104B.1.6×107C.16×108D.1.6×1084.(3分)一元二次方程x2﹣4x+2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a46.(3分)小明记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5;则这组数据的中位数是()A.5B.4.5C.5.5D.5.27.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=()A.48°B.42°C.40°D.45°8.(3分)如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°9.(3分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,下列结论:①∠BAE=30°;②△ABE∽△AEF;③CF=CD;④S△ABE=4S△ECF.正确结论的个数为()A.1个B.2个C.3个D.4个10.(3分)如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)分解因式:a2﹣9=.12.(4分)八边形内角和度数为.13.(4分)等腰三角形的两边长是3和7,则这个三角形的周长等于.14.(4分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF 对应边上中线的比为.15.(4分)不等式组的解是.16.(4分)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为.17.(4分)在平面直角坐标系中,点A在x轴正半轴上,点B在y轴正半轴上,O为坐标原点,OA=OB=1,过点O作OM1⊥AB于点M1;过点M1作M1A1⊥OA于点A1:过点A1作A1M2⊥AB于点M2;过点M2作M2A2⊥OA于点A2…以此类推,点M2019的坐标为.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.(6分)计算:19.(6分)先化简,再求值:÷a,中a=﹣1.20.(6分)如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠BAC的平分线交BC于D(保留痕迹);(2)若AD=DB,求∠B的度数.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(8分)2019年全国两会于3月5日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为“淡薄”层次的约有人.22.(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.23.(8分)如图,楼房BD的前方竖立着旗杆AC.小亮在B处观察旗杆顶端C的仰角为45°,在D处观察旗杆顶端C的俯角为30°,楼高BD为20米.(1)求∠BCD的度数;(2)求旗杆AC的高度.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.25.(10分)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的)1.(3分)﹣5的绝对值是()A.5B.﹣C.﹣5D.【解答】解:﹣5的绝对值是5.故选:A.2.(3分)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.3.(3分)2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数不少于16 000 000人次,将16 000 000用科学记数法表示应为()A.16×104B.1.6×107C.16×108D.1.6×108【解答】解:将16 000 000用科学记数法表示应为1.6×107,故选:B.4.(3分)一元二次方程x2﹣4x+2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【解答】解:∵△=(﹣4)2﹣4×2=8>0,∴方程有两个不相等的实数根.故选:A.5.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.6.(3分)小明记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5;则这组数据的中位数是()A.5B.4.5C.5.5D.5.2【解答】解:把这些数据从小到大排列为:4.5,4.5,5,5,5,5.5,5.5,最中间的数是5,则这组数据的中位数是5;故选:A.7.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=()A.48°B.42°C.40°D.45°【解答】解:如图,∵∠2=42°,∴∠3=90°﹣∠2=48°,∴∠1=48°.故选:A.8.(3分)如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°【解答】解:∵∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:B.9.(3分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,下列结论:①∠BAE=30°;②△ABE∽△AEF;③CF=CD;④S△ABE=4S△ECF.正确结论的个数为()A.1个B.2个C.3个D.4个【解答】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴=,∵BE=CE=BC,∴=()2=4,∴S△ABE=4S△ECF,故④正确;∴CF=EC=CD,故③错误;∴tan∠BAE==,∴∠BAE≠30°,故①错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=2a,EF=a,AF=5a,∴==,==,∴=,∴△ABE∽△AEF,故②正确.∴②与④正确.∴正确结论的个数有2个.故选:B.10.(3分)如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【解答】解:由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则S△ANM=AN•BM,∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则S△ANM=AN•BC,∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=9﹣3x,∴S△ANM=AM•AN,∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选:A.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)分解因式:a2﹣9=(a+3)(a﹣3).【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).12.(4分)八边形内角和度数为1080°.【解答】解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.13.(4分)等腰三角形的两边长是3和7,则这个三角形的周长等于17.【解答】解:分两种情况:当腰为3时,3+3<7,所以不能构成三角形;当腰为7时,7+4>7,所以能构成三角形,周长是:7+7+3=17.故答案为:17.14.(4分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF 对应边上中线的比为2:3.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为2:3,∴△ABC与△DEF对应边上中线的比是2:3,故答案为:2:3.15.(4分)不等式组的解是1<x≤6.【解答】解:解不等式①,得x>1,解不等式②,得x≤6,所以,这个不等式组的解集是1<x≤6,故答案为1<x≤6.16.(4分)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为3.【解答】解:由旋转得:AD=EF,AB=AE,∠D=90°,∵DE=EF,∴AD=DE,即△ADE为等腰直角三角形,根据勾股定理得:AE==3,则AB=AE=3,故答案为:317.(4分)在平面直角坐标系中,点A在x轴正半轴上,点B在y轴正半轴上,O为坐标原点,OA=OB=1,过点O作OM1⊥AB于点M1;过点M1作M1A1⊥OA于点A1:过点A1作A1M2⊥AB于点M2;过点M2作M2A2⊥OA于点A2…以此类推,点M2019的坐标为(1﹣,).【解答】解:∵OA=OB,OM1⊥AB,∴点M1是AB的中点,∵M1A1⊥OA,∴A1是OA的中点,∴点M1的坐标为(,),同理,点M2的坐标为(1﹣,),点M3的坐标为(1﹣,),……点M2019的坐标为(1﹣,),故答案为:(1﹣,).三、解答题(一)(本大题共3小题,每小题6分,共18分)18.(6分)计算:【解答】解:原式=﹣2﹣1+3﹣1=﹣1.19.(6分)先化简,再求值:÷a,中a=﹣1.【解答】解:原式=﹣=﹣1=当a=﹣1时,原式==﹣20.(6分)如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠BAC的平分线交BC于D(保留痕迹);(2)若AD=DB,求∠B的度数.【解答】解:(1)如图所示,AD即为所求.(2)∵AD=DB,∴∠DBA=∠DAB,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠DBA=∠DAB=∠DAC,∵∠ACB=90°,∴∠B=30°.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(8分)2019年全国两会于3月5日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了120名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为108°;(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为“淡薄”层次的约有150人.【解答】解:(1)18÷15%=120,即本次调查一共随机抽取了120名居民,故答案为:120;(2)“较强”层次的有:120×45%=54(名),补充完整的条形统计图如右图所示;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为:360°×=108°,故答案为:108°;(4)1500×=150(人),故答案为:150.22.(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.23.(8分)如图,楼房BD的前方竖立着旗杆AC.小亮在B处观察旗杆顶端C的仰角为45°,在D处观察旗杆顶端C的俯角为30°,楼高BD为20米.(1)求∠BCD的度数;(2)求旗杆AC的高度.【解答】解:(1)过点C作CE⊥BD于E,则DF∥CE,AB∥CE∵DF∥CE∴∠ECD=∠CDF=30°同理∠ECB=∠ABC=45°∴∠BCD=∠ECD+∠ECB=75°.(2)在Rt△ECD中,∠ECD=30°∵∴同理BE=CE∵BD=BE+DE∴,答:(1)∠BCD为75°;(2)旗杆AC的高度CE为米.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.【解答】解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.25.(10分)已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax+bx﹣4经过点A(2,0),B(﹣4,0),∴,解得,∴抛物线解析式为y=x2+x﹣4;(2)如图1,连接OP,设点P(x,),其中﹣4<x<0,四边形ABPC的面积为S,由题意得C(0,﹣4),∴S=S△AOC+S△OCP+S△OBP=+,=4﹣2x﹣x2﹣2x+8,=﹣x2﹣4x+12,=﹣(x+2)2+16.∵﹣1<0,开口向下,S有最大值,∴当x=﹣2时,四边形ABPC的面积最大,此时,y=﹣4,即P(﹣2,﹣4).因此当四边形ABPC的面积最大时,点P的坐标为(﹣2,﹣4).(3),∴顶点M(﹣1,﹣).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2,0),M(﹣1,﹣),∴,∴直线AM的解析式为y=﹣3.在Rt△AOC中,=2.∵D为AC的中点,∴,∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE﹣AO=5﹣2=3,∴E(﹣3,0),由图可知D(1,﹣2)设直线DE的函数解析式为y=mx+n,∴,解得:,∴直线DE的解析式为y=﹣﹣.∴,解得:,∴G().中考模拟考试数学试卷含答案一、选择题(本大题共16小题,共42.0分)1.若代数式有意义,则实数x的取值范围是()A. B. C. D.2.计算3.8×107-3.7×107,结果用科学记数法表示为()A. B. C. D.3.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A. 3B. 4C. 5D. 64.一元一次不等式x+1<2的解集在数轴上表示为()A. B.C. D.5.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.B.C.D.6.如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1mL=1cm3)()A. 以上,以下B. 以上,以下C. 以上,以下D. 以上,以下7.若阿光以四种不同的方式连接正六边形ABCDEF的两条对角线,连接后的情形如下列选项中的图形所示,则下列哪一个图形不是轴对称图形()A. B. C. D.8.已知点A与点B关于原点对称,A的坐标是(2,-3),那么经过点B的反比例函数的解析式是()A. B. C. D.9.用配方法解一元二次方程x2+4x-5=0,此方程可变形为()A. B. C. D.10.图中的手机截屏内容是某同学完成的作业,他做对的题数是()A. 2个B. 3个C. 4个D. 5个11.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A. B. C. D.12.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为()A. B. C. D.13.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A. B. C. D.14.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A. 2B. 4C. 6D. 815.已知坐标平面上有两个二次函数y=a(x+1)(x-7),y=b(x+1)(x-15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x-15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A. 向左平移4单位B. 向右平移4单位C. 向左平移8单位D. 向右平移8单位16.如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述何者正确()A. O是的外心,O是的外心B. O是的外心,O不是的外心C. O不是的外心,O是的外心D. O不是的外心,O不是的外心二、填空题(本大题共3小题,共12.0分)17.分式方程=1的解是x=______.18.如图所示,正五边形ABCDE的边长为1,⊙B过五边形的顶点A、C,则劣弧AC的长为______.19.将一个直角三角形纸片ABO,放置在平面直角坐标中,点A(,0),点B(0,1),点O(0,0),过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于N,沿着MN折叠该纸片,得顶点A的对应点A'.设OM=m,折叠后的△A'MN与四边形OMNB重叠部分的面积为S.(1)如图,当点A'与顶点B重合时,点M的坐标为______.(2)当S=时,点M的坐标为______.三、计算题(本大题共1小题,共8.0分)20.有三个有理数x、y、z,其中x=(n为正整数)且x与y互为相反数,y与z互为倒数.(1)当n为奇数时,求出x、y、z这三个数,并计算xy-y n-(y-2z)2015的值.(2)当n为偶数时,你能求出x、y、z这三个数吗?为什么?四、解答题(本大题共6小题,共58.0分)21.阅读与证明:请阅读以下材料,并完成相应的任务.传说古希腊毕达哥拉斯(约公元570年-约公元前500年)学派的数学家经常在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,比如,他们研究过1、3、6,10…由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n个三角形数可以用(n≥1)表示.任务:请根据以上材料,证明以下结论:(1)任意一个三角形数乘8再加1是一个完全平方数;(2)连续两个三角形数的和是一个完全平方数.22. 为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下 (1)请补充完成下面的成绩统计分析表:平均分 方差 中位数 合格率 优秀率 男生6.9 2.4 ______ 91.7% 16.7%女生______1.3 ______ 83.3% 8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由; (3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?23. 在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE的延长线于点F .(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形;(3)若AC =4,AB =5,求菱形ADCF 的面积.24.已知函数y=-x+4的图象与函数的图象在同一坐标系内.函数y=-x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN交y轴于点C.(1)m=______,S△AOB=______;(2)如果线段MN被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,求k的值;(3)如图2,若反比例函数图象经过点N,此时反比例函数上存在两个点E(x1,y1)、F(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.25.某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=95,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?26.如图,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切.现动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置)(1)如图①,点P从A→B→C→D,全程共移动了______cm(用含a、b的代数式表示);(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;(3)如图②,已知a=20,b=10.是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?如存在,直接写出点P的移动速度V1与⊙O移动速度V2的比值(即的值);如不存在,请简要说明理由.答案和解析1.【答案】D【解析】解:由题意得,x-3≠0,解得,x≠3,故选:D.根据分式有意义的条件列出不等式解不等式即可.本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.2.【答案】D【解析】解:3.8×107-3.7×107=(3.8-3.7)×107=0.1×107=1×106.故选:D.直接根据乘法分配律即可求解.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.注意灵活运用运算定律简便计算.3.【答案】A【解析】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC=,即圆心O到AB的距离为3.故选:A.作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在Rt△AOC 中利用勾股定理计算OC即可.本题考查了垂径定理:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.关键是根据勾股定理解答.4.【答案】B【解析】解:不等式x+1<2,解得:x<1,如图所示:故选:B.求出不等式的解集,表示出数轴上即可.此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.5.【答案】A【解析】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°-∠BAC=40°,故选:A.根据角平分线定义求出∠BAC,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可.本题考查了角平分线定义和平行线的性质的应用,关键是求出∠BAC的度数,再结合∠ACD+∠BAC=180°.6.【答案】C【解析】解:300-180=120,120÷3=40,120÷4=30故选:C.先求出剩余容量,然后分别除以3和4,就可知道球的体积范围.特别注意水没满与满的状态.7.【答案】D【解析】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.8.【答案】C【解析】解:点A(2,-3),∴点A关于原点对称的点B的坐标(-2,3),∵反比例函数y=经过B点,∴k=-2×3=-6,∴反比例函数的解析式是y=-.故选:C.先根据中心对称的点的横坐标互为相反数,纵坐标互为相反数,求得B为(-2,3),然后把(-2,3)代入函数y=中可先求出k的值,那么就可求出函数解析式.本题考查了关于原点的对称的点的坐标和待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.9.【答案】A【解析】解:x2+4x-5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.移项后配方,再根据完全平方公式求出即可.本题考查了解一元二次方程的应用,关键是能正确配方.10.【答案】A【解析】解:(1)-3的绝对值是3,正确,故原题解答错误;(2)(a2)3=a6,错误,故原题解答错误;(3)a的相反数是:-a,错误,故原题解答正确;(4)的倒数是,错误,故原题解答错误;(5)cos45°=,错误,故原题解答正确;故选:A.直接利用幂的乘方运算法则以及相反数的定义以及绝对值的性质、倒数的定义分别分析得出答案.此题主要考查了幂的乘方运算以及相反数的定义以及绝对值的性质、倒数的定义,正确把握相关定义是解题关键.11.【答案】B【解析】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,在Rt△BCD中,∵cos∠BCD=,∴BC==,故选:B.根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=,即可求出BC的长度.本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.12.【答案】C【解析】解:从中随机摸出一个小球,恰好是黄球的概率==.故选:C.直接根据概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.13.【答案】A【解析】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.由平面图形的折叠及正方体的表面展开图的特点解题.本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.14.【答案】D【解析】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选:D.根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.本题考查了平行线分线段成比例定理,菱形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.15.【答案】A【解析】解:∵y=a(x+1)(x-7)=ax2-6ax-7a,y=b(x+1)(x-15)=bx2-14bx-15b,∴二次函数y=a(x+1)(x-7)的对称轴为直线x=3,二次函数y=b(x+1)(x-15)的对称轴为直线x=7,∵3-7=-4,∴将二次函数y=b(x+1)(x-15)的图形向左平移4个单位,两图形的对称轴重叠.故选:A.将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.16.【答案】B【解析】解:如图,连接OA、OB、OD.∵O是△ABC的外心,∴OA=OB=OC,∵四边形OCDE是正方形,∴OA=OB=OE,∴O是△ABE的外心,∵OA=OE≠OD,∴O不是△AED的外心,故选:B.根据三角形的外心的性质,可以证明O是△ABE的外心,不是△AED的外心.本题考查三角形的外心的性质.正方形的性质等知识,解本题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】1【解析】解:=1,去分母,得3x=x+2.整理得2x=2,解方程得x=1.经检验x=1是原分式方程的解.故原分式方程的解是x=1.故答案为:1.先确定分式方程的最简公分母为(x+2),两边同乘最简公分母将分式方程转化为整式方程求解.本题主要考查的是分式方程的解法,解分式方程要注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.【答案】π【解析】解:∵五边形ABCDE是正五边形,∴∠B=(5-2)×180°=108°,∴劣弧AC的长==π;故答案为:.由正五边形的性质好内角和定理得出∠B=108°,然后由弧长公式即可得出结果.本题考查了正五边形的性质、多边形内角和定理、弧长公式;熟练掌握正五边形的性质,由内角和定理求出∠B的度数是解决问题的关键.19.【答案】(,0)(,0)【解析】解:(1)当点A'与顶点B重合时,∴N是AB的中点,∵点A(,0),点B(O,1),∴AB=2,∴AN=1,∵∠OAB=30°,∴AM=,∴M(,0);(2)在Rt△ABO中,tan∠OAB===,∴∠OAB=30°,。
大连市初三中考数学第一次模拟试卷【含答案】一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.9的平方根为( ) A .3B .-3C .±3D .2.如图的几何体,它的俯视图是( )A .B .C .D .3.下列运算正确的是( ) A .(-3mn )2=-6m2n2 B .4x4+2x4+x4=6x4 C .(xy )2÷(-xy )=-xyD .(a-b )(-a-b )=a2-b24.如图,AE ∥CD ,△ABC 为等边三角形,若∠CBD=15°,则∠EAC 的度数是( )A .60°B .45°C .55°D .75°5.已知正比例函数y=kx (k≠0)的图象经过点A (a-2,b )和点B (a ,b+4),则k 的值为( )A .12B .-12C .2D .-26.如图,△ABC 中,∠A=25°,∠B=65°,CD 为∠ACB 的平分线,CE ⊥AB 于点E ,则∠ECD 的度数是( )A.25°B.20°C.30°D.15°7.直线l1:y=-12x+1与直线l2关于点(1,0)成中心对称,下列说法正确的是()A.将l1向下平移2个单位得到l2B.将l1向右平移2个单位得到l2C.将l1向左平移1个单位,再向下平移2个单位得到l2 D.将l1向左平移4个单位,再向上平移1个单位得到l28.如图,BD为菱形ABCD的一条对角线,E、F在BD上,且四边形ACEF为矩形,若EF=1 2BD,则AEAD的值为()A.B.25C.12D.9.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接OC、BD,若∠AOC=110°,则∠BCD的度数是()A.35°B.46°C.55°D.70°10.关于x的二次函数y=mx2+(m-4)x+2(m<0),下列说法:①二次函数的图象开口向下;②二次函数与x轴有两个交点;③当x<-13,y随x的增大而增大;④二次函数图象顶点的纵坐标大于等于6,其中正确的论述是()A.①②③B.①③④C.①②④D.②③④二、填空题(共4小题,每小题3分,共12分)11.不等式442xx->-的最小整数解为12.如图,在正五边形ABCDE 中,连接AC 、AD ,则∠CAD 的度数是 度13.若直线y=-x+m 与双曲线y=nx (x >0)交于A (2,a ),B (4,b )两点,则mn 的值为 .14.如图,等腰直角△ABC 中,∠C=90°,,E 、F 为边AC 、BC 上的两个动点,且CF=AE ,连接BE 、AF ,则BE+AF 的最小值为三、解答题(共11小题,计78分.解答应写出过程)15.计算:312tan 602-︒⎛⎫-+ ⎪⎝⎭ 16.解方程:13222x xx --=-- 17.如图,已知四边形ABCD 中,AD <BC ,AD ∥BC ,∠B 为直角,将这个四边形折叠使得点A 与点C 重合,请用尺规作图法找出折痕所在的直线.(保留作图痕迹,不写作法)18.如图,AB ∥CD ,且AB=CD ,连接BC ,在线段BC 上取点E 、F ,使得CE=BF ,连接AE 、DF .求证:AE ∥DF .19.我校“点爱”社团倡导全校学生参加“关注特殊儿童”自愿捐款活动,并对此次活动进行抽样调查,得到一组学生捐款情况的数据,将数据整理成如图所示的统计图(图中信息不完整).已知A 、B 两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次抽样调查样本的容量是;(2)补全“捐款人数分组统计图1”;(3)若记A组捐款的平均数为5元,B组捐款的平均数为15元,C组捐款的平均数为25元,D组捐款的平均数为35元,E组捐款的平均数为50元,全校共有2000名学生参加此次活动,请你估计此次活动可以筹得善款的金额大约为多少元.20.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向2千米处.有一艘小船在观测点A北偏西60°的方向上航行,一段时间后,到达点C处,此时,从观测点B 测得小船在北偏西15°方向上.求点C与点B之间的距离.(结果保留根号)21.为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.(1)求y与x之间的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元?22.甲、乙、丙、丁4人聚会,吗,每人带了一件礼物,4件礼物从外盒包装看完全相同,将4件礼物放在一起.(1)甲从中随机抽取一件,则甲抽到不是自己带来的礼物的概率是 ;(2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙2人抽到的都不是自己带来的礼物的概率.23.如图,△ABC 中,∠ACB=90°,∠A=60°,点O 为AB 上一点,且3AO=AB ,以OA 为半径作半圆O ,交AC 于点D ,AB 于点E ,DE 与OC 相交于F . (1)求证:CB 与⊙O 相切; (2)若AB=6,求DF 的长度.24.已知抛物线L :y=ax2+bx+3与x 轴交于A (1,0),B (3,0)两点,与y 轴交于点C ,顶点为D .(1)求抛物线的函数表达式及顶点D 的坐标;(2)若将抛物线L 沿y 轴平移后得到抛物线L′,抛物线L′经过点E (4,1),与y 轴的交点为C′,顶点为D′,在抛物线L′上是否存在点M ,使得△MCC′的面积是△MDD′面积的2倍?若存在,求出点M 的坐标;若不存在,请说明理由.25.发现问题:如图1,直线a ∥b ,点B 、C 在直线b 上,点D 为AC 的中点,过点D 的直线与a ,b 分别相交于M 、N 两点,与BA 的延长线交于点P ,若△ABC 的面积为1,则四边形AMNB 的面积为 ;探究问题:如图2,Rt △ABC 中,∠DAC=13∠BAC ,DA=2,求△ABC 面积的最小值;拓展应用:如图3,矩形花园ABCD 的长AD 为400米,宽CD 为300米,供水点E 在小路AC 上,且AE=2CE ,现想沿BC 上一点M 和CD 上一点N 修一条小路MN ,使得MN 经过E ,并在四边形AMCN 围城的区域内种植花卉,剩余区域铺设草坪根据项目的要求种植花卉的区域要尽量小.请根据相关数据求出四边形AMCN 面积的最小值,及面积取最小时点M 、N 的位置.(小路的宽忽略不计)参考答案与试题解析1. 【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:.故选:C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2. 【分析】找到从几何体的上面看所得到的图形即可.【解答】解:这个几何体的俯视图为故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 【分析】根据积的乘方、合并同类项、整式的乘法、除法,即可解答.【解答】解:A、(-3mn)2=9m2n2,故错误;B、4x4+2x4+x4=7x4,故错误;C、正确;D、(a-b)(-a-b)=-(a2-b2)=b2-a2,故错误;故选:C.【点评】本题考查了积的乘方、合并同类项、整式的乘法、除法,解决本题的关键是熟记相关法则.4. 【分析】如图,延长AC交BD于H.求出∠CHB即可解决问题.【解答】解:如图,延长AC交BD于H.∵△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CBD+∠CHB,∠CBD=15°,∴∠CHB=45°,∵AE∥BD,∴∠EAC=∠CHB=45°,故选:B.【点评】本题考查平行线的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5. 【分析】由正比例函数y=kx可得k=yx,将点A与B代入可得42b ba a+=-,求出b=2a-4,再将A点代入即可求解.【解答】解:由正比例函数y=kx可得k=y x,∵图象经过点A(a-2,b)和点B(a,b+4),∴42b ba a+=-,∴b=2a-4,∴A(a-2,2a-4),将点A代入y=kx可得2a-4=k(a-2),∴k=2,故选:C.【点评】本题考查正比例函数的性质;能够根据已知点建立方程求出b=2a-4是解题的关键.6. 【分析】根据∠ECD=∠DCB-∠ECB,求出∠DCB,∠ECB即可.【解答】解:∵∠ACB=180°-∠A-∠B=90°,又∵CD平分∠ACB,∴∠DCB=12×90°=45°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°-65°=25°,∴∠ECD=45°-25°=20°.故选:B.【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 【分析】设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,代入可得直线l2解析式,根据直线l1与直线l2的解析式即可判断.【解答】解:设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,∴-y=-12(2-x)+1,∴直线l2的解析式为:y=-12(x-2)+1,∴将l1向右平移2个单位得到l2,故选:B.【点评】本题考查了一次函数图象与几何变换,求得直线l2的解析式是解题的关键.8. 【分析】由菱形的性质可知对角线垂直且互相平分,由矩形的性质可知对角线又互相平分且相等,再加上EF=12BD,可以得到OA=OC=OE=OF=12OB=14BD,设OA=x,用勾股定理可以表示出AE、AD,进而求出他们的比值,再做出选择.【解答】解:连接AC交BD于点O,∵菱形ABCD,∴AC⊥BD,AB=BC=CD=DA,OA=OC=12AC,OB=OD=12BD,∵AFCE是矩形,∴AC=EF=2OF=2OE,又∵EF=12BD,∴OA=OF,OB=2OA,设OA=x,则OE=x,OB=2x,在Rt△AOE和Rt△AOB中,AEAE ABAD====∴==;,故选:A.【点评】考查菱形的性质、矩形的性质、直角三角形的勾股定理等知识,合理的转化以及设参数是解决问题常用方法.9. 【分析】连接BC,根据圆周角定理求得∠ABC的度数,然后根据直角三角形的锐角互余即可求解.【解答】解:连接BC,∵∠AOC=110°,∴∠ABC=12∠AOC═55°,∵CD⊥AB,∴∠BEC=90°,∴∠BCD=90°-55°=35°,故选:A.【点评】本题考查了垂径定理以及圆周角定理,根据圆周角定理把求∠ABD的问题转化成求等腰三角形的底角的问题.10. 【分析】①由m<0即可判断出①;②令y=mx2+(m-4)x+2=0,求出根的判别式△>0,判断②;③求出抛物线的对称轴,即可判断③;④根据顶点坐标式求出抛物线的顶点,然后根据顶点纵坐标判断④.【解答】解:①∵m<0,∴二次函数的图象开口向下,故①正确,②令y=mx2+(m-4)x+2=0,求△=(m-8)2-48,∵m<0,∴△=(m-8)2-48>0,∴二次函数与x轴有两个交点,故②正确,③抛物线开口向下,对称轴42mxm-=-,∵41120 236m mm m---+=<,∴4123 mm--<-,所以当42mxm--<时,y随x的增大而增大,故③错误,④y=mx2+(m-4)x+2,∵2242(4)(4)60 44m m mm m⨯--+-=-…,∴242(4)64m mm⨯--…,∴二次函数图象顶点的纵坐标大于等于6,故④正确,正确的结论有①②④, 故选:C . 【点评】本题主要考查二次函数的性质,解答本题的关键是熟练掌握抛物线的图象以及二次函数的性质,此题难度一般.11. 【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最小整数解即可.【解答】解:442x x->-,x-4>8-2x , 3x >12 x >4,故不等式442x x->-的最小整数解为5.故答案为:5.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质. 12. 【分析】根据正五边形的性质和内角和为540°,得到△ABC ≌△AED ,AC=AD ,AB=BC=AE=ED ,先求出∠BAC 和∠DAE 的度数,再求∠CAD 就很容易了. 【解答】解:根据正五边形的性质,△ABC ≌△AED ,∴∠CAB=∠DAE=12(180°-108°)=36°,∴∠CAD=108°-36°-36°=36°.【点评】本题考查了正五边形的性质:各边相等,各角相等,内角和为540°.13【分析】根据反比例函数图象上点的坐标特征和一次函数图象上点的坐标特征得出2244nm n m ⎧-+=⎪⎪⎨⎪-+=⎪⎩①②,解方程组即可求得m 、n 的值,从而求得mn 的值.【解答】解:由题意得2244n m n m ⎧-+=⎪⎪⎨⎪-+=⎪⎩①②,①-②得,4n=2,解得n=8,把n=8代入①求得m=6, ∴mn=48, 故答案为48.【点评】本题考查了一次函数和反比例函数的交点问题,根据题意得到关于m 、n 的方程组是解题的关键. 14.【分析】如图,作点C 关于直线B 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH=AD ,连接EH ,BH ,DE .想办法证明AF=DE=EH ,BE+AF 的最小值转化为EH+EB 的最小值. 【解答】解:如图,作点C 关于直线B 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH=AD ,连接EH ,BH ,DE .∵CA=CB ,∠C=90°, ∴∠CAB=∠CBA=45°, ∵C ,D 关于AB 对称,∴DA=DB ,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°, ∴∠CAD=∠CBD=∠ADC=∠C=90°, ∴四边形ACBD 是矩形, ∵CA=CB ,∴四边形ACBD 是正方形,∵CF=AE ,CA=DA ,∠C=∠EAD=90°, ∴△ACF ≌△DAE (SAS ), ∴AF=DE ,∴AF+BE=ED+EB ,∵CA 垂直平分线段DH , ∴ED=EH ,∴AF+BE=EB+EH , ∵EB+EH≥BH ,∴AF+BE 的最小值为线段BH 的长,=,∴AF+BE 的最小值为故答案为【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,轴对称最短问题等知识,解题的关键是学会学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型. 15. 【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式()+8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:1-x-2x+4=3,解得:x=23,经检验x=23是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17. 【分析】由折叠可得,折痕所在直线垂直平分对称点的连线AC ,故作线段AC 的垂直平分线EF ,则EF 即为所求.【解答】解:如图所示,连接AC ,作线段AC 的垂直平分线EF ,则EF 即为所求.【点评】本题主要考查了利用轴对称变换作图,利用轴对称的性质是解决问题的关键. 18. 【分析】根据平行线的性质可得∠C=∠B ,再根据等式的性质可得CF=BE ,然后利用SAS 判定△AEB ≌△DFC ,根据全等三角形对应边相等可得∠AEB=∠DFC 即可解决问题. 【解答】证明:∵AB ∥CD , ∴∠C=∠B , ∵CE=BF ,∴CE+EF=FB+EF , 即CF=BE ,在△AEB 和△DFC 中AB CD B C EB CF ⎧⎪⎪⎩∠∠⎨===,∴△AEB ≌△DFC (SAS ), ∴∠AEB=∠DFC , ∴AE ∥DF . 【点评】此题主要考查了全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 19. 【分析】(1)由B 组人数为100且A 、B 两组捐款人数的比为1:5可得a 的值,用A 、B 组人数和除以其所占百分比可得总人数; (2)先求出C 组人数,继而可补全图形;(3)先求出抽查的500名学生的平均捐款数,再乘以总人数可得.【解答】解:(1)a=100×15=20,本次调查样本的容量是:(100+20)÷(1-40%-28%-8%)=500, 故答案为:20,500;(2)∵500×40%=200, ∴C 组的人数为200,补全“捐款人数分组统计图1”如右图所示;(3)∵A 组对应百分比为20500×100%=4%,B 组对应的百分比为100500×100%=20%,∴抽查的500名学生的平均捐款数为5×4%+15×20%+25×40%+35×28%+50×8%=27(元), 则估计此次活动可以筹得善款的金额大约为2000×27=54000(元).【点评】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20. 【分析】作BH ⊥AC 于H ,根据含30°的直角三角形的性质求出BH ,根据等腰直角三角形的性质求出BC .【解答】解:作BH ⊥AC 于H ,由题意得,∠BAC=30°,∠ABC=105°, ∴∠C=180°-105°-30°=45°, ∵∠AHB=90°,∠BAC=30°,∴BH=12AB=1,在Rt △BCH 中,∠C=45°,∴,答:点C与点B千米.【点评】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.21. 【分析】(1)y与x之间的函数关系是分段函数关系,当0<x≤200时,y与x是正比例函数,当x>200时,y与x是一次函数,可分别用待定系数法求出其函数关系式;(2)根据题意,可以确定自变量的取值范围,在自变量的取值范围内,依据函数的增减性确定种植面积和最小值的问题.【解答】解:(1)当0<x≤200时,y与x是正比例函数,由于过(200,24000)∴k=120∴y与x之间的函数关系式为:y=120x (0<x≤200),当x>200时,y与x是一次函数,由于过(200,24000),(300,32000)设y=kx+b,代入得:2002400030032000k bk b⎨⎩++⎧==,解得:k=80,b=8000,∴y与x之间的函数关系式为:y=80x+8000 (x≥200),答:y与x之间的函数关系式为:y=120?020080()(8000?200)x xx x⎩≤+⎧⎨<>.(2)由题意得:()20021200xx x≥≤-⎧⎨⎩,解得:200≤x≤800,又∵y=80x+8000 (x≥200),∴y随x的增大而增大,当x=200时,y最小=200×80+8000=24000元,此时,甲花卉种200m2,乙花卉种1000m2,答:甲花卉种200m2,乙花卉种1000m2,才能使种植费用最少,最少费用为24000元.【点评】考查一次函数的性质,待定系数法求函数的关系式,一元一次不等式组应用等知识,正确地掌握这些知识,是解决问题的前提和基础.22. 【分析】(1)根据概率公式计算即可得出答案;(2)画出树状图,然后根据概率公式列式进行计算即可得解.【解答】解:(1)甲抽到不是自己带来的礼物的概率为:3 4;故答案为:3 4;(2)设甲、乙、丙、丁4人的礼物分别记为a、b、c、d,根据题意画出树状图如图:一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7个,∴甲、乙2人抽到的都不是自己带来的礼物的概率为7 12.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23. 【分析】(1)过O作OH⊥BC与H,根据直角三角形的性质得到OH=12OB,证得OH=OA,于是得到结论;(2)解直角三角形得到BC=,根据相似三角形的性质即可得到结论.【解答】(1)证明:过O作OH⊥BC与H,∵∠ACB=90°,中学数学一模模拟试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.9的平方根为()A.3 B.-3 C.±3 D.2.如图的几何体,它的俯视图是()A.B.C.D.3.下列运算正确的是()A.(-3mn)2=-6m2n2 B.4x4+2x4+x4=6x4C.(xy)2÷(-xy)=-xy D.(a-b)(-a-b)=a2-b24.如图,AE∥CD,△ABC为等边三角形,若∠CBD=15°,则∠EAC的度数是()A.60°B.45°C.55°D.75°5.已知正比例函数y=kx(k≠0)的图象经过点A(a-2,b)和点B(a,b+4),则k的值为()A.12B.-12C.2 D.-26.如图,△ABC中,∠A=25°,∠B=65°,CD为∠ACB的平分线,CE⊥AB于点E,则∠ECD 的度数是()A.25°B.20°C.30°D.15°7.直线l1:y=-12x+1与直线l2关于点(1,0)成中心对称,下列说法正确的是()A.将l1向下平移2个单位得到l2B.将l1向右平移2个单位得到l2C.将l1向左平移1个单位,再向下平移2个单位得到l2 D.将l1向左平移4个单位,再向上平移1个单位得到l28.如图,BD为菱形ABCD的一条对角线,E、F在BD上,且四边形ACEF为矩形,若EF=1 2BD,则AEAD的值为()A.5B .25C .12D.29.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接OC 、BD ,若∠AOC=110°,则∠BCD 的度数是( )A .35°B .46°C .55°D .70°10.关于x 的二次函数y=mx2+(m-4)x+2(m <0),下列说法:①二次函数的图象开口向下;②二次函数与x 轴有两个交点;③当x <-13,y 随x 的增大而增大;④二次函数图象顶点的纵坐标大于等于6,其中正确的论述是( ) A .①②③B .①③④C .①②④D .②③④二、填空题(共4小题,每小题3分,共12分)11.不等式442x x->-的最小整数解为12.如图,在正五边形ABCDE 中,连接AC 、AD ,则∠CAD 的度数是 度13.若直线y=-x+m 与双曲线y=n x (x >0)交于A (2,a ),B (4,b )两点,则mn 的值为 .14.如图,等腰直角△ABC 中,∠C=90°,,E 、F 为边AC 、BC 上的两个动点,且CF=AE ,连接BE 、AF ,则BE+AF 的最小值为三、解答题(共11小题,计78分.解答应写出过程)15.计算:312tan 602-︒⎛⎫-+ ⎪⎝⎭ 16.解方程:13222x xx --=-- 17.如图,已知四边形ABCD 中,AD <BC ,AD ∥BC ,∠B 为直角,将这个四边形折叠使得点A 与点C 重合,请用尺规作图法找出折痕所在的直线.(保留作图痕迹,不写作法)18.如图,AB ∥CD ,且AB=CD ,连接BC ,在线段BC 上取点E 、F ,使得CE=BF ,连接AE 、DF .求证:AE ∥DF .19.我校“点爱”社团倡导全校学生参加“关注特殊儿童”自愿捐款活动,并对此次活动进行抽样调查,得到一组学生捐款情况的数据,将数据整理成如图所示的统计图(图中信息不完整).已知A 、B 两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次抽样调查样本的容量是;(2)补全“捐款人数分组统计图1”;(3)若记A组捐款的平均数为5元,B组捐款的平均数为15元,C组捐款的平均数为25元,D组捐款的平均数为35元,E组捐款的平均数为50元,全校共有2000名学生参加此次活动,请你估计此次活动可以筹得善款的金额大约为多少元.20.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向2千米处.有一艘小船在观测点A北偏西60°的方向上航行,一段时间后,到达点C处,此时,从观测点B 测得小船在北偏西15°方向上.求点C与点B之间的距离.(结果保留根号)21.为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.(1)求y与x之间的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元?22.甲、乙、丙、丁4人聚会,吗,每人带了一件礼物,4件礼物从外盒包装看完全相同,将4件礼物放在一起.(1)甲从中随机抽取一件,则甲抽到不是自己带来的礼物的概率是;(2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙2人抽到的都不是自己带来的礼物的概率.23.如图,△ABC中,∠ACB=90°,∠A=60°,点O为AB上一点,且3AO=AB,以OA为半径作半圆O,交AC于点D,AB于点E,DE与OC相交于F.(1)求证:CB与⊙O相切;(2)若AB=6,求DF的长度.24.已知抛物线L :y=ax2+bx+3与x 轴交于A (1,0),B (3,0)两点,与y 轴交于点C ,顶点为D .(1)求抛物线的函数表达式及顶点D 的坐标;(2)若将抛物线L 沿y 轴平移后得到抛物线L′,抛物线L′经过点E (4,1),与y 轴的交点为C′,顶点为D′,在抛物线L′上是否存在点M ,使得△MCC′的面积是△MDD′面积的2倍?若存在,求出点M 的坐标;若不存在,请说明理由.25.发现问题:如图1,直线a ∥b ,点B 、C 在直线b 上,点D 为AC 的中点,过点D 的直线与a ,b 分别相交于M 、N 两点,与BA 的延长线交于点P ,若△ABC 的面积为1,则四边形AMNB 的面积为 ;探究问题:如图2,Rt △ABC 中,∠DAC=13∠BAC ,DA=2,求△ABC 面积的最小值;拓展应用:如图3,矩形花园ABCD 的长AD 为400米,宽CD 为300米,供水点E 在小路AC 上,且AE=2CE ,现想沿BC 上一点M 和CD 上一点N 修一条小路MN ,使得MN 经过E ,并在四边形AMCN 围城的区域内种植花卉,剩余区域铺设草坪根据项目的要求种植花卉的区域要尽量小.请根据相关数据求出四边形AMCN 面积的最小值,及面积取最小时点M 、N 的位置.(小路的宽忽略不计)参考答案与试题解析1. 【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个. 【解答】解:9的平方根有:.故选:C .【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2. 【分析】找到从几何体的上面看所得到的图形即可.【解答】解:这个几何体的俯视图为故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 【分析】根据积的乘方、合并同类项、整式的乘法、除法,即可解答.【解答】解:A、(-3mn)2=9m2n2,故错误;B、4x4+2x4+x4=7x4,故错误;C、正确;D、(a-b)(-a-b)=-(a2-b2)=b2-a2,故错误;故选:C.【点评】本题考查了积的乘方、合并同类项、整式的乘法、除法,解决本题的关键是熟记相关法则.4. 【分析】如图,延长AC交BD于H.求出∠CHB即可解决问题.【解答】解:如图,延长AC交BD于H.∵△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CBD+∠CHB,∠CBD=15°,∴∠CHB=45°,∵AE∥BD,∴∠EAC=∠CHB=45°,故选:B.【点评】本题考查平行线的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5. 【分析】由正比例函数y=kx可得k=yx,将点A与B代入可得42b ba a+=-,求出b=2a-4,再将A点代入即可求解.【解答】解:由正比例函数y=kx可得k=y x,∵图象经过点A(a-2,b)和点B(a,b+4),∴42b ba a+=-,∴b=2a-4,∴A(a-2,2a-4),将点A代入y=kx可得2a-4=k(a-2),∴k=2,故选:C.【点评】本题考查正比例函数的性质;能够根据已知点建立方程求出b=2a-4是解题的关键.6. 【分析】根据∠ECD=∠DCB-∠ECB,求出∠DCB,∠ECB即可.【解答】解:∵∠ACB=180°-∠A-∠B=90°,又∵CD平分∠ACB,∴∠DCB=12×90°=45°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°-65°=25°,∴∠ECD=45°-25°=20°.故选:B.【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 【分析】设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,代入可得直线l2解析式,根据直线l1与直线l2的解析式即可判断.【解答】解:设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,∴-y=-12(2-x)+1,∴直线l2的解析式为:y=-12(x-2)+1,∴将l1向右平移2个单位得到l2,故选:B.【点评】本题考查了一次函数图象与几何变换,求得直线l2的解析式是解题的关键.8. 【分析】由菱形的性质可知对角线垂直且互相平分,由矩形的性质可知对角线又互相平分且相等,再加上EF=12BD,可以得到OA=OC=OE=OF=12OB=14BD,设OA=x,用勾股定理可以表示出AE、AD,进而求出他们的比值,再做出选择.【解答】解:连接AC交BD于点O,∵菱形ABCD,∴AC⊥BD,AB=BC=CD=DA,OA=OC=12AC,OB=OD=12BD,∵AFCE是矩形,∴AC=EF=2OF=2OE,又∵EF=12BD,∴OA=OF,OB=2OA,设OA=x,则OE=x,OB=2x,在Rt△AOE和Rt△AOB中,5AEAE ABAD====∴==;,故选:A.【点评】考查菱形的性质、矩形的性质、直角三角形的勾股定理等知识,合理的转化以及设参数是解决问题常用方法.9. 【分析】连接BC,根据圆周角定理求得∠ABC的度数,然后根据直角三角形的锐角互余即可求解.【解答】解:连接BC,∵∠AOC=110°,∴∠ABC=12∠AOC═55°,∵CD⊥AB,∴∠BEC=90°,∴∠BCD=90°-55°=35°,故选:A.【点评】本题考查了垂径定理以及圆周角定理,根据圆周角定理把求∠ABD的问题转化成求等腰三角形的底角的问题.10. 【分析】①由m<0即可判断出①;②令y=mx2+(m-4)x+2=0,求出根的判别式△>0,判断②;③求出抛物线的对称轴,即可判断③;④根据顶点坐标式求出抛物线的顶点,然后根据顶点纵坐标判断④.【解答】解:①∵m<0,∴二次函数的图象开口向下,故①正确,②令y=mx2+(m-4)x+2=0,求△=(m-8)2-48,∵m<0,∴△=(m-8)2-48>0,∴二次函数与x轴有两个交点,故②正确,③抛物线开口向下,对称轴42mxm-=-,∵41120 236m mm m---+=<,∴4123 mm--<-,所以当42mxm--<时,y随x的增大而增大,故③错误,④y=mx2+(m-4)x+2,∵2242(4)(4)60 44m m mm m⨯--+-=-…,∴242(4)64m mm⨯--…,∴二次函数图象顶点的纵坐标大于等于6,故④正确,正确的结论有①②④,故选:C.【点评】本题主要考查二次函数的性质,解答本题的关键是熟练掌握抛物线的图象以及二次函数的性质,此题难度一般.11. 【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最小整数解即可.【解答】解:442xx ->-,x-4>8-2x,3x>12x>4,故不等式442xx->-的最小整数解为5.故答案为:5.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.12. 【分析】根据正五边形的性质和内角和为540°,得到△ABC ≌△AED ,AC=AD ,AB=BC=AE=ED ,先求出∠BAC 和∠DAE 的度数,再求∠CAD 就很容易了.【解答】解:根据正五边形的性质,△ABC ≌△AED ,∴∠CAB=∠DAE=12(180°-108°)=36°,∴∠CAD=108°-36°-36°=36°.【点评】本题考查了正五边形的性质:各边相等,各角相等,内角和为540°.13【分析】根据反比例函数图象上点的坐标特征和一次函数图象上点的坐标特征得出2244n m n m ⎧-+=⎪⎪⎨⎪-+=⎪⎩①②,解方程组即可求得m 、n 的值,从而求得mn 的值. 【解答】解:由题意得2244n m n m ⎧-+=⎪⎪⎨⎪-+=⎪⎩①②, ①-②得,4n=2,解得n=8,把n=8代入①求得m=6,∴mn=48,故答案为48.【点评】本题考查了一次函数和反比例函数的交点问题,根据题意得到关于m 、n 的方程组是解题的关键.14.【分析】如图,作点C 关于直线B 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH=AD ,连接EH ,BH ,DE .想办法证明AF=DE=EH ,BE+AF 的最小值转化为EH+EB 的最小值.【解答】解:如图,作点C 关于直线B 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH=AD ,连接EH ,BH ,DE .∵CA=CB ,∠C=90°,∴∠CAB=∠CBA=45°,∵C ,D 关于AB 对称,∴DA=DB ,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,∴∠CAD=∠CBD=∠ADC=∠C=90°,。
中考第一次模拟考试数学试卷数学试题时间:120分钟 总分:150分考生注意:1.本试卷含三个大题,共25题,答题时,考生务必按答题要求在答题纸规定位置上作答,在草稿纸、本试卷上答题一律无效2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.3.可以使用函数型计算器.一、选择题:(本大题共6题,每题4分,满分24分)1.在Rt ABC △中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不成立的是( )A .tan bB a =B .cos a B c =C .sin a A c =D .cot a A b= 2.如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A .北偏东30°B .北偏西30°C .北偏东60°D .北偏西60°3.将二次函数()222y x =-的图像向左平移1个单位,再向下平移3个单位后所得图像的函数解析式为( )A .()2224y x =--B .()2213y x =-+C .()2213y x =--D .223y x =-4.已知二次函数2y ax bx c =++的图像如图所示,那么根据图像,下列判断中不正确的是( )A .0a <B .0b >C .0c >D .0abc >5.已知:点C 在线段AB 上,且2AC BC =,那么下列等式一定正确的是( )A .423AC BC AB +=u u u r u u u r u u u r B .20AC BC -=u u u r u u u r C .AC BC BC +=u u u r u u u r u u u rD .AC BC BC -=u u u r u u u r u u u r 6.已知在ABC △中,点D 、E 、F 分别在边AB 、AC 和BC 上,且DE BC P ,DF AC P ,那么下列比例式中,正确的是( )A .AE CF EC FB = B .AE DE EC BC = C .DF DE AC BC= D .EC FC AC BC = 二、填空题:(本大题共12题,每题4分,满分48分)7.已知::2:5x y =,那么():x y y +=__________.8.化简:313=222a b a b ⎛⎫-++- ⎪⎝⎭r r r r __________. 9.抛物线232y x x =++与y 轴的公共点的坐标是__________.10.已知二次函数2132y x =--,如果0x >,那么函数值y 随着自变量x 的增大而__________.(填“增大”或“减小”).11.已知线段4AB =厘米,点P 是线段AB 的黄金分割点()AP BP >,那么线段AP =__________厘米.(结果保留根号) 12.在ABC △中,点D 、E 分别在边AB 、AC 上,且DE BC P .如果35AD AB =,6DE =,那么__________.13.已知两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为__________.14.在Rt ABC △中,90C ∠=︒,210AB =,1tan 3A =,那么BC =__________. 15.某超市自动扶梯的坡比为1:24..一位顾客从地面沿扶梯上行了5.2米,那么这位顾客此时离地面的高度为__________米.16.在ABC △和DEF △中,AB BC DE EF=.要使ABC DEF △∽△,还需要添加一个条件,那么这个条件可以是__________(只需填写一个正确的答案).17.如图,在Rt ABC △中,90ACB ∠=︒,42AC BC ==,点D 、E 分别在边AB 上,且2AD =,45DCE ∠=︒,那么DE =__________.18.如图,在Rt ABC △中,90ACB ∠=︒,3BC =,4AC =,点D 为边AB 上一点.将BCD △沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE CD P ,那么BE =__________.三、解答题:(本大题共7题,满分78分)19.已知在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像经过点()1,0A 、()0,5B -、()23C ,.求这个二次函数的解析式,并求出其图像的顶点坐标和对称轴.20.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O .E 为边AB 上一点,且2BE AE =.设AB a =u u u r r ,AD b =u u u r r .(1)填空:向量DE =u u u r __________; (2)如果点F 是线段OC 的中点,那么向量EF =u u u r __________,并在图中画出向量EF u u u r 在向量AB u u u r 和AD u u u r 方向上的分向量.注:本题结果用向量a r 、b r 的式子表示.画图不要求写作法,但要指出所作图中表示结论的向量).21.如图,在Rt ABC △中,90ACB ∠=︒,6BC =,8AC =.点D 是AB 边上一点,过点D 作DE BC P ,交边AC 于E .过点C 作CF AB P ,交DE 的延长线于点F .(1)如果13AD AB =,求线段EF 的长; (2)求CFE ∠的正弦值.22.如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD .中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)参考数据:sin320.5299︒≈,cos320.8480︒≈,tan320.6249︒≈214142≈..23.如图,在ABC △中,点D 为边BC 上一点,且AD AB =,AE BC ⊥,垂足为点E .过点D 作DF AB P ,交边AC 于点F ,联结EF ,212EF BD EC =⋅. (1)求证:EDF EFC △∽△;(2)如果14VEDF VADC S S =,求证:AB BD =.24.已知:在平面直角坐标系xOy 中,抛物线2y ax bx =+经过点()5,0A 、()3,4B -,抛物线的对称轴与x 轴相交于点D .(1)求抛物线的表达式;(2)联结OB 、BD .求BDO ∠的余切值;(3)如果点P 在线段BO 的延长线上,且PAO BAO ∠=∠,求点P 的坐标.25.如图,在梯形ABCD 中,AD BC P ,AB CD =,5AD =,15BC =,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF BE P ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE x =,AG y DG=. (1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域;(3)如果23ABEFABCD S S =四边形四边形,求线段CE 的长.2019—2020学年谯城九年级第一次调研模拟试卷数学试题参考答案一、选择题:1.D ;2.B ;3.C ;4.B ;5.C ;6.A .二、填空题:7.7:5(或75);8.14a b -+r r ;9.()0,2;10.减小;11.252-;12.10; 13.4:9(或49);14.2;15.2;16.B E ∠=∠(或AB AC DE DF =或BC AC EF DF=); 17.103;18.245(或4.8). 三、解答题:19.解:由这个函数的图像经过点()1,0A 、()0,5B -、()23C ,,得0,5,42 3.a b c c a b c ++=⎧⎪=-⎨⎪++=⎩解得1,6,5.a b c =-⎧⎪=⎨⎪=-⎩所以,所求函数的解析式为265y x x =-+-. ()226534y x x x =-+-=--+.所以,这个函数图像的顶点坐标为()3,4,对称轴为直线3x =.20.解:(1)13a b -r r (2)53124a b +r r .画图及结论正确. 21.解:(1)DE BC Q P ,13AD AB ∴=. 又6BC =Q ,2DE ∴=.DF BC Q P ,CF AB P ,∴四边形BCFD 是平行四边形.6DF BC ∴==.–4EF DF DE ∴==.(2)Q 四边形BCFD 是平行四边形,B F ∴∠=∠.在Rt ABC △中,90ACB ∠=︒,6BC =,8AC =,利用勾股定理,得10AB ===.84sin 105AC B AB ∴===.45CFE ∴∠=. 22.解:过点D 作DH AB ⊥,垂足为点H .由题意,得3HB CD ==,15EC =,HD BC =,90ABC AHD ∠=∠=︒,32ADH ∠=︒. 设AB x =,则–3AH x =.在Rt ABE △中,由45AEB ∠=︒,得tan tan 451AB AEB EB∠=︒==. EB AB x ∴==.15HD BC BE EC x ∴==+=+.在Rt AHD △中,由90AHD ∠=︒,得tan AH ADH HD∠=. 即得3tan 3215x x -︒=+. 解得15tan 32332.99331tan 32x ⋅︒+=≈≈-︒. ∴塔高AB 约为33米.23.证明:(1)AB AD =Q ,AE BC ⊥,∴12ED BE BD ==. 212EF BD EC =⋅Q ,2EF ED EC ∴=⋅.即得EF ED EC EF =. 又FED CEF ∠=∠Q ,EDF EFC ∴△∽△.(2)AB AD =Q ,B ADB ∴∠=∠.又DF AB Q P ,FDC B ∴∠=∠.ADB FDC ∴∠=∠.ADB ADF FDC ADF ∴∠+∠=∠+∠,即得EDF ADC ∠=∠.EDF EFC Q △∽△,EFD C ∴∠=∠.EDF ADC ∴△∽△.2214VEDF VADC S ED S AD ∴==. 12ED AD ∴=,即12ED AD =. 又12ED BE BD ==Q ,BD AD ∴=. AB BD ∴=.24.解:(1)Q 抛物线2y ax bx =+经过点()5,0A 、()3,4B -, 2550,93 4.a b a b +=⎧∴⎨-=⎩解得1,65.6a b ⎧=⎪⎪⎨⎪=-⎪⎩∴所求抛物线的表达式为21566y x x =-. (2)由21566y x x =-,得抛物线的对称轴为直线52x =. ∴点5,02D ⎛⎫ ⎪⎝⎭. 过点B 作BC x ⊥轴,垂足为点C .由()5,0A 、()3,4B -,得4BC =,3OC =,511322CD =+=. 11cot 8CD BDO CB ∴∠==. (3)设点(),P m n .过点P 作PQ x ⊥轴,垂足为点Q .则PQ n =-,OQ m =,5AQ m =-. 在Rt ABC △中,90ACB ∠=︒,824AC BAC BC ∴∠===. PAO BAO ∠=∠Q ,52AQ m PAO PQ n-∴∠===-. 即得25m n -=.① 由BC x ⊥轴,PQ x ⊥轴,得90BCO PQA ∠=∠=︒.BC PQ ∴P .BC OC PQ OQ ∴=,即得43n m=-.43m n ∴=-.② 由①、②解得1511m =,2011n =-. ∴点P 的坐标为1520,1111⎛⎫- ⎪⎝⎭. 25.解:(1)分别过点A 、D 作AM BC ⊥、DN BC ⊥,垂足为点M 、N . AD BC Q P ,AB CD =,5AD =,15BC =,()()11155522BM BC AD ∴=-=-=. 在Rt ABM △中,90AMB ∠=︒, 55cos 13BM ABM AB AB ∴∠===. 13AB ∴=.(2)AG y DG =Q ,1AG DG y DG+∴=+.即得51DG y =+. AFD BEC ∠=∠Q ,ADF C ∠=∠.ADF BCE ∴△∽△.51153FD AD EC BC ∴===. 又CE x =Q ,13FD x =,13AB CD ==.即得1133FC x =+. AD BC Q P ,FD DG FC BC ∴=.5113115133x y x +∴=+. 3923x y x-∴=. ∴所求函数的解析式为3923x y x -=,函数定义域为3902x <<. (3)在Rt ABM △中,利用勾股定理,得12AM ==. S ∴梯形()()115151212022ABCD AD BC AM =+⋅=+⨯=. 23ABEFABCD S S =Q 四边形四边形,S ∴四边形80ABEF =.设V ADF S S -=.由ADF BCE △∽△,13FD EC =,得9V BEC S S -=. 过点E 作EH BC ⊥,垂足为点H . 由题意,本题有两种情况: (ⅰ)如果点G 在边AD 上,则S 四边形ABCD S -四边形840ABEF S ==. 5S ∴=.945BEC V S S -∴==.11154522V BEC S BC EH EH -∴=⋅=⨯⋅=. 6EH ∴=.由DN BC ⊥,EH BC ⊥,易得EH DN P . 61122CE EH CD DN ==∴=. 又13CD AB ==,132CE ∴=. (ⅱ)如果点G 在边DA 的延长线上,则S 四边形ABCD S +四边形9ABEF V ADF S S -+=.8200S ∴=.解得25S =.9225V BEC S S -∴==.111522522V BEC S BC EH EH -∴=⋅=⨯⋅=.解得30EH =. 305122CE EH CD DN ∴===.652CE ∴=. 132CE ∴=或652.中考第一次模拟考试数学试题一.选择题(共12小题)1.如图所示,下列存在算术平方根的是()A.a+b B.ab C.a﹣b D.b﹣a2.下列各式计算正确的是()A.(﹣x﹣2y)(x+2y)=x2﹣4y2B.3x﹣1=C.(﹣2y2)3=﹣6y6D.(﹣x)3m÷x m=(﹣1)m x2m3.正多边形的一个内角是150°,则这个正多边形的边数为()A.10B.11C.12D.134.下列关于反比例函数y=﹣的说法正确的是()A.图象位于第一、第三象限B.y随x的增大而增大C.函数图象过点(2,)D.图象是中心对称图形5.一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4D.3π+46.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,则一次函数y=kx﹣k 的大致图象是()A.B.C.D.7.在平面直角坐标系中,点A的坐标为(1,),以原点O为中心,将点A顺时针旋转60°得到点A',则点A′的坐标为()A.(0,)B.(1,﹣)C.(﹣1,)D.(2,0)8.下列说法中正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值C.检测一批灯泡的使用寿命,采用全面调查D.已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次9.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=4,∠C=30°,则△ACD的面积为()A.B.C.D.1310.为了帮助一名贫困学生,某班组织捐款,现从全班所有学生的捐款数额中随机抽取5名学生的捐款数统计如表:捐款金额/元5101520人数1211则下列说法正确的是()A.5名学生是总体的一个样本B.平均数是10C.方差是26D.中位数是1511.如图,在半径为3,圆心角为90°的扇形ACB内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A.B.C.D.12.如图,矩形ABCD中,AB=2,BC=4,点P是BC边上的一个动点(点P不与点B,C重合),现将△ABP沿直线AP折叠,使点B落到点B′处;作∠B′PC的角平分线交CD于点E.设BP=x,CE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二.填空题(共5小题)13.已知一个氧原子的质量为2.657×10﹣23克,那么2000个氧原子的质量用科学记数法表示为.14.分解因式:a3b﹣ab3=.15.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为.16.如图,菱形ABCD中,AB=4,∠ABC=60°,点E、F、G分别为线段BC,CD,BD 上的任意一点,则EG+FG的最小值为.17.如图:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,…,按此规律得到四边形A n B n∁n D n.若矩形A1B1C1D1的面积为24,那么四边形A n B n∁n D n的面积为.三.解答题(共9小题)18.计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;19.解方程:﹣=1.20.小高发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=12米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,求电线杆的高度.(结果保留根号)21.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?22.如图,在平行四边形ABCD中,AD>AB.(1)作∠BAD的平分线交BC于点E,在AD边上截取AF=AB,连接EF(要求:尺规作图,保留作图痕迹,不写作法);(2)判断四边形ABEF的形状,并说明理由.23.某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄264257健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄23252632333739424852健康指数93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄22293136394043465155健康指数94908885827872766260根据上述材料回答问题:(1)小张、小王和小李三人中,谁的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据能够较好地反映出该单位职工健康情况表,绘制出青年职工、中年职工、老年职工健康指数的平均数的直方图.24.如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D.连接OE、AC,已知∠POE=2∠CAB,∠P=∠E.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=20D,PB=9,求⊙O的半径及tan∠P的值.25.国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?26.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD 折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q 从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.如图所示,下列存在算术平方根的是()A.a+b B.ab C.a﹣b D.b﹣a【分析】根据a、b在数轴上的位置确定出a+b<0,ab<0,a﹣b>0,b﹣a<0,然后再根据算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根可得a﹣b有算术平方根.【解答】解:根据数轴可得:a>0,b<0,|a|<|b|,则:a+b<0,ab<0,a﹣b>0,b﹣a<0,存在算术平方根的是a﹣b,故选:C.2.下列各式计算正确的是()A.(﹣x﹣2y)(x+2y)=x2﹣4y2B.3x﹣1=C.(﹣2y2)3=﹣6y6D.(﹣x)3m÷x m=(﹣1)m x2m【分析】根据整式的相关运算法则和规定计算可得.【解答】解:A.(﹣x﹣2y)(x+2y)=﹣(x+2y)2=﹣x2﹣4xy﹣4y2,此选项计算错误;B.3x﹣1=,此选项计算错误;C.(﹣2y2)3=﹣8y6,此选项计算错误;D.(﹣x)3m÷x m=(﹣1)m x2m,此选项计算正确;故选:D.3.正多边形的一个内角是150°,则这个正多边形的边数为()A.10B.11C.12D.13【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.4.下列关于反比例函数y=﹣的说法正确的是()A.图象位于第一、第三象限B.y随x的增大而增大C.函数图象过点(2,)D.图象是中心对称图形【分析】直接利用反比例函数的性质分别判断得出答案.【解答】解:A、反比例函数y=﹣的图象位于第二、第四象限,故此选项错误;B、反比例函数y=﹣,每个象限内,y随x的增大而增大,故此选项错误;C、当x=2时,y=﹣,故此选项错误;D、图象是中心对称图形,正确.故选:D.5.一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4D.3π+4【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【解答】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,长方体的长为2,宽为1,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故选:D.6.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,则一次函数y=kx﹣k 的大致图象是()A.B.C.D.【分析】首先根据一元二次方程有两个不相等的实数根确定k的取值范围,然后根据一次函数的性质确定其图象的位置.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,∴(﹣2)2﹣4(﹣k+1)>0,即k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象位于一、三、四象限,故选:B.7.在平面直角坐标系中,点A的坐标为(1,),以原点O为中心,将点A顺时针旋转60°得到点A',则点A′的坐标为()A.(0,)B.(1,﹣)C.(﹣1,)D.(2,0)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,进而利用旋转解答即可.【解答】解:如图所示:过A作AB⊥x轴,∵点A的坐标为(1,),∴OB=1,AB=,∴OA=2,∠AOB=60°,∴将点A顺时针旋转60°得到点A',A‘(2,0),故选:D.8.下列说法中正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值C.检测一批灯泡的使用寿命,采用全面调查D.已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次【分析】利用概率的意义、利用频率估计概率的方法对各选项进行判断后即可确定正确的选项.【解答】解:A、“任意画一个三角形,其内角和为360°”是不可能事件,故错误,不符合题意;B、在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,正确,符合题意;C、检测一批灯泡的使用寿命,因范围广宜采用抽样调查,故错误,不符合题意;D、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故错误,不符合题意;故选:B.9.如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=4,∠C=30°,则△ACD的面积为()A.B.C.D.13【分析】根据作图过程可得MN是AC的垂直平分线,交AC于点E,得DA=DC,根据∠C=30°,可以证明△ABD是等边三角形,进而可求△ACD的面积.【解答】解:由作图过程可知:MN是AC的垂直平分线,交AC于点E,∴DA=DC,∴∠DAC=∠C=30°,∴∠ADB=60°,∵AB=BD=4,∴△ABD是等边三角形,∴AD=AB=BD=4,在Rt△DCE中,DC=4,∠C=30°,∴DE=2,CE=2,∴AC=2CE=4,∴S△ADC=•AC•DE=4×2=4.故选:A.10.为了帮助一名贫困学生,某班组织捐款,现从全班所有学生的捐款数额中随机抽取5名学生的捐款数统计如表:捐款金额/元5101520人数1211则下列说法正确的是()A.5名学生是总体的一个样本B.平均数是10C.方差是26D.中位数是15【分析】根据总体的概念和平均数、方差、中位数的概念逐一分析可得.【解答】解:A.5名学生的捐款数是总体的一个样本,此选项错误;B.平均数是=12(元),此选项错误;C.方差为×[(5﹣12)2+2×(10﹣12)2+(15﹣12)2+(20﹣12)2]=26,此选项正确;D.这组数据的中位数是10元.此选项错误;故选:C.11.如图,在半径为3,圆心角为90°的扇形ACB内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A.B.C.D.【分析】首先根据圆周角定理以及等腰直角三角形的性质得出S阴影=S弓形ACB+S△BCD=S﹣S△ACD=S扇形ACB﹣S△ABC进而得出即可.扇形ACB【解答】解:∵∠ACB=90°,AC=CB,∴∠CBD=45°,又∵BC是直径,∴∠CDB=90°,∴∠DCB=45°,∴DC=DB,∴S弓形CD=S弓形BD,∴S阴影=S弓形ACB+S△BCD=S扇形ACB﹣S△ACD=S扇形ACB﹣S△ABC=π×32﹣××3×3=π﹣.故选:B.12.如图,矩形ABCD中,AB=2,BC=4,点P是BC边上的一个动点(点P不与点B,C重合),现将△ABP沿直线AP折叠,使点B落到点B′处;作∠B′PC的角平分线交CD于点E.设BP=x,CE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【分析】根据折叠可证明△ABP∽△PCE,得=,进而可得函数解析式y=x(4﹣x)=﹣x2+2x,即可判断函数图象.【解答】解:∵△ABP沿直线AP折叠得到△AB′P,∴∠APB=∠APB′,∵PE平分∠B′PC,∴∠B′PE=∠CPE,∴∠APB′+∠EPB′=×180°=90°,∵∠C=90°,∴∠CPE+∠CEP=90°,∴∠APB=∠CEP,∵∠B=∠C=90°,∴△ABP∽△PCE,∴=,∵BP=x,CE=y,矩形ABCD中,AB=2,BC=4,∴PC=4﹣x,∴=,∴y=x(4﹣x)=﹣x2+2x.∴该函数图象是抛物线,开口向下.故选:D.二.填空题(共5小题)13.已知一个氧原子的质量为2.657×10﹣23克,那么2000个氧原子的质量用科学记数法表示为 5.314×10﹣20.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2.657×10﹣23×2000=5.314×10﹣20.故答案为:5.314×10﹣20.14.分解因式:a3b﹣ab3=ab(a+b)(a﹣b).【分析】先提公因式ab,再利用公式法分解因式即可.【解答】解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).15.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为3.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故答案是:3.16.如图,菱形ABCD中,AB=4,∠ABC=60°,点E、F、G分别为线段BC,CD,BD 上的任意一点,则EG+FG的最小值为2.【分析】根据轴对称确定最短路线问题,作点E关于BD的对称点E′,连接E′F与BD的交点即为所求的点G,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知E′F⊥CD时EG+FG的最小值,然后求解即可.【解答】解:作点E关于BD的对称点E′,连接E′F与BD的交点即为所求的点G,如图,∵AB=4,∠ABC=60°,∴点E′到CD的距离为4×=2,∴EG+FG的最小值为2.故答案为:2.17.如图:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,…,按此规律得到四边形A n B n∁n D n.若矩形A1B1C1D1的面积为24,那么四边形A n B n∁n D n的面积为.【分析】根据矩形A1B1C1D1面积、四边形A2B2C2D2的面积、四边形A3B3C3D3的面积,即可发现新四边形与原四边形的面积的一半,找到规律即可解题.【解答】解:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为矩形A1B1C1D1面积的一半,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,故新四边形与原四边形的面积的一半,则四边形A n B n∁n D n面积为矩形A1B1C1D1面积的,∴四边形A n B n∁n D n面积=×24=,故答案为.三.解答题(共9小题)18.计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;【分析】本题涉及乘方、二次根式化简、特殊角的三角函数值、绝对值、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣24﹣+|1﹣4sin60°|+(π﹣)0=﹣16﹣2+|1﹣4×|+1=﹣16﹣2+|1﹣2|+1=﹣16﹣2﹣1+2+1=﹣16.19.解方程:﹣=1.【分析】观察可得方程最简公分母为:(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.20.小高发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=12米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,求电线杆的高度.(结果保留根号)【分析】先根据CD的长以及坡角求出坡面上的影子在地面上的实际长度,即可知道电线杆的总影长,从而根据1米杆的影长为2米来解答.【解答】解:延长AD交BC的延长线于F点,作DE⊥CF于E点.DE=12sin30°=6;CE=12cos30°=6;∵测得1米杆的影长为2米.∴EF=2DE=12(米),∴BF=BC+CE+EF=20+6+12=32+6,∴电线杆AB的长度是(32+6)=(16+3)(米).21.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?【分析】(1)由共有4种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵共有4种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=;(2)列表得:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(4,4),∴最后落回到圈A的概率P2==,∴她与嘉嘉落回到圈A的可能性一样.22.如图,在平行四边形ABCD中,AD>AB.(1)作∠BAD的平分线交BC于点E,在AD边上截取AF=AB,连接EF(要求:尺规作图,保留作图痕迹,不写作法);(2)判断四边形ABEF的形状,并说明理由.【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出结论.【解答】解:(1)如图所示:(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形.23.某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄264257健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄23252632333739424852健康指数93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄22293136394043465155健康指数94908885827872766260根据上述材料回答问题:(1)小张、小王和小李三人中,谁的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据能够较好地反映出该单位职工健康情况表,绘制出青年职工、中年职工、老年职工健康指数的平均数的直方图.【分析】根据各个样本的抽取中是否有代表性、随机性和广泛性确定答案即可.【解答】解:(1)①小李抽样调查的数据能够较好地反映出该单位职工健康情况;②小张抽样调查所抽取的单位职工数量过少;③小王抽样调查所抽取的10位单位职工的青年中年老年比例明显和该单位整体情况不符.(2)根据小李抽样调查单位10名职工的健康指数的情形,可知青年职工、中年职工、老年职工健康指数的平均数分别为90.6,78.6,61,青年职工、中年职工、老年职工健康指数的平均数的直方图,如图所示,24.如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D.连接OE、AC,已知∠POE=2∠CAB,∠P=∠E.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=20D,PB=9,求⊙O的半径及tan∠P的值.【分析】(1)连接OC,根据圆周角定理得到∠COB=2∠CAB,又∠POE=2∠CAB,则∠COD=∠EOD,根据等腰三角形的性质得∠ODC=∠ODE=90°,即CE⊥AB;(2)由CE⊥AB,∠P=∠E,得到∠P+∠PCD=∠E+∠PCD=90°,得到∠OCD+∠PCD =∠PCO=90°,根据切线的判定定理即可得到结论;(3)设⊙O的半径为r,OD=x,则BD=2x,r=3x,易证得Rt△OCD∽Rt△OPC,根据相似三角形的性质得OC2=OD•OP,即(3x)2=x•(3x+9),解出x,即可得圆的半径;同理可得PC2=PD•PO=(PB+BD)•(PB+OB)=162,可计算出PC,然后在Rt△OCP。
大连市第55中学09届初三数学学科第一次模拟试卷4月一、选择题(本题8小题,每小题3分,共24分)1.在平面直角坐标系中,点P 的坐标为(46)-,,则点P 在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.下列运算正确的是( )A .5510x x x +=B .5510·x x x =C .5510()x x =D .20210x x x ÷= 3.图1是小敏同学6次数学测验的成绩统计 表,则该同学6次成绩的中位数是( ) A . 60分 B . 70分 C .75分 D .80分4.下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a5.已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切6.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁 7.下面简单几何体的主.视图是(C )8.O 是边长为1的正△ABC 的中心,将△ABC 绕点O 逆时针方向旋转180°,得△A 1B 1C 1,则△A 1B 1C 1与△ABC 重叠部分(图中阴影部分)的面积为( ).A .33 B .43 C .63 D .83 二、填空题(本题共8小题,每小题3分,共24分) 9.若向南走2m 记作2m -,则向北走3m 记作 m .9085 80 75 70 656055分数 测验1 测验2 测验3 测验4 测验5 测验6图110.东东和爸爸到广场散步,爸爸的身高是176cm ,东东的身高是156cm ,在同一时刻爸爸的影长是88cm ,那么东东的影长是 cm .11.九年级三班共有学生54人,学习调查了班级学生参加课外活动情况(每人只参加一项活动),其中:参加读书活动的18人,参加科技活动的占全班总人数的16,参加艺术活动的比参加科技活动的多3人,其他同学参加体育活动.则在扇形图中表示参加体育活动人数的扇形的圆心角 是 度.12.下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .13.如图,Rt △OAB 的直角边OA 在y 轴上,点B 在第一象限内,OA =2,AB =1,若将△OAB 绕点O 按顺时针方向旋转900,则点B 的对应点的坐标是___________.14.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.如图,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB=6cm ,则AE = cm. 16.某市今年计划修建一条1500米的景观路,为了尽量减少施工对城市交通的影响,实际工作效率比原计划提高了20%,结果提前2天完成任务.设设原计划每天修路x 米,则根据题意可列方程 .三、解答题(本题共4小题,其中17、18题各9分, 19 题10分,20题12分,共40分)17.化简:aa a a a 21)242(22+⋅---18.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.读书 体育 科技艺术 输入x (2)⨯- 4+输出 yA OB A B CED19.已知E 、F 是ABCD 的边AB 、CD 延长线上的点,且BE = DF ,线段EF 分别交AD 、BC 于点M 、N .请你在图中找出一对全等三角形并加以证明.(写出主要推理依据) 解:我选择证明△__________≌△____________20.如图,有四张背面相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A ,B ,C ,D 表示);(2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.图 7F NMED CBAx Oy A B四、解答题(本题共3小题,21、22题各10分,其中23题8分,共28分)21.如图,二次函数)0(21≠++=a c bx ax y 顶点坐标为(1,4),与x 轴一个交点为(3,0)(1)求二次函数解析式; (2)若直线2212+-=x y 与抛物线交于A 、B 两点,求21y y ≥时x 的取值范围.22.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)23.武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?x (分)y (千米) O10 20 1244五、解答题和附加题(本题共3小题,其中24题10分,25题14分,26题10分,共34分;附加题5分,全卷累积不超过150分,附加题较难,......建议考生最后答附加题..........)24.如图,直线334y x=+和x轴、y轴的交点分别为点B、A,点C是OA的中点,过点C向左方作射线CM⊥y轴,点D是线段OB上一动点,不和点B重合,DP⊥CM于点P,DE⊥AB于点E,连接PE.⑴求A、B、C三点的坐标;⑵设点D的横坐标为x,△BED的面积为S,求S关于x的函数关系式;⑶是否存在点D,使△DPE为等腰三角形?若存在,请直接写出所有满足要求的x的值;若不存在,说明理由.AB ECD OPMyx25.如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O 同时出发,设运动时间为t(秒).(1)当t=1时,得P1、Q1两点,求过A、P1、Q1三点的抛物线解析式及对称轴l;(2)当t为何值时,PC⊥QC;此时直线PQ与⊙C是什么位置关系?请说明理由;(3)在(2)的条件下,(1)中的抛物线对称轴l上存在一点N,使得NP+NQ最小,求出点N的坐标.26.⑴如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;⑵如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明;⑶如图3,若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF与线段GH的关系并加以证明.BOCHDEFOCHDGEFA OCHDGEF附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由.大连市第55中学09届初三数学学科第一次模拟试卷参考答案与评分标准(仅供参考....) 一、选择题(本题8小题,每小题3分,共24分)1.D . 2.B . 3.C . 4.D . 5.B . 6.B . 7.C .8.C . 二、填空题(本题共8小题,每小题3分,共24分)9.+3m .10.78cm .11.100.12.0. 13.(2,-1).14.-3.15.6.16.()2%20115001500=+-x x . 三、解答题(本题共4小题,其中17、18题各9分, 19 题10分,20题12分,共40分)17.化简:解:aa a a a 21)242(22+⋅--- =242--a a ·()21+a a ………………………………………………………………………3分=()()222--+a a a ·()21+a a ………………………………………………………………6分=a1………………………………………………………………………9分 18.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x ,根据题意列方程,得()2.7152=+x ………………………………………………………………………5分2.11±=+x ………………………………………………………………………6分 解得2.01=x ,2.22-=x …………………………………………………………………7分 经检验2.22-=x 不符合题意,舍去,所以%202.0==x ………………………………8分 答:这两年的年平均增长率为20%. ………………………………………………………9分 19.△DMF ≌△BNE ………………………………………………………………………1分 证明:四边形ABCD 是平行四边形∴DC ∥AB ,AD ∥BC (平行四边形的定义) ………………………………………3分 ∴∠F =∠E ,∠FDA =∠A (两直线平行,内错角相等)∠A =∠CBE (两直线平行同位角相等)…………………………………………………6分 ∴∠FDA =∠CBE ………………………………………………………………………8分 因为DF =BE ,∴△DMF ≌△BNE (ASA )……………………………………………………………10分 注:方法不唯一,其它方法请参照给分20.解法一:( A B C D A (A ,A ) (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,B ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,C ) (C ,D ) D(D ,A )(D ,B )(D ,C )(D ,D )………………………………………………………………………6分(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,……………………8分 其中既是中心对称图形又是轴对称图形的有9种,………………………………………10分第二次 第一次故所求概率是169. ………………………………………………………………………12分解法二:(1)所以可能出现的结果:(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ).(2)由树状图可知,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种,故所求概率是169. 四、解答题(本题共3小题,21、22题各10分,其中23题8分,共28分)21. 解:(1)设所求二次函数的解析式为21()y a x h k =-+,因为顶点坐标为(1,4),所以21(1)4y a x =-+, (2)分过点(3,0),所以20(31)4a =-+,所以1a =-,…………………………………………4分所以,21(1)4y x =--+,即2123y x x =-++ ……………………………………………6分(2)当12y y =时,223x x -++=122x -+, 解得15414x +=,25414x -=,……………………………………………………………8分 由图象知,当5414-≤x ≤5414+时,21y y ≥.…………………………………………10分 22. 解:如图,过点A 作BC AD ⊥,垂足为D ,……………1分 根据题意,可得︒=∠30BAD ,︒=∠60CAD ,66=AD .……2分A B C DA ABC DB A BC DC A B C DD 开始第一次牌面的字母第二次牌面的字母 D在Rt △ADB 中,由ADBDBAD =∠tan , 得322336630tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD .………5分 在Rt △ADC 中,由ADCDCAD =∠tan , 得36636660tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD .……………8分 ∴2.152388366322≈=+=+=CD BD BC . ……………9分 答:这栋楼高约为152.2 m . ……………10分 23. 解:(1)24分钟 (1分)(2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩············································································· (3分) 解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩答:水流速度是112千米/分. ······································································ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为56y x b =+ ···························································································· (5分) 把(440),代入,得1103b =-∴线段a 所在直线的函数解析式为511063y x =- ············································ (6分)ax (分)y (千米)O1020 124420(52)3,由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ·············································· (7分)答:冲锋舟在距离A 地203千米处与救生艇第二次相遇.………………………… 8分 五、解答题和附加题(本题共3小题,其中24题10分,25题14分,26题10分,共34分;附加题5分,全卷累积不超过150分,附加题较难,建议考生最后答附加题................) 24.(1)将x =0代入343+=x y ,得y =3,故点A 的坐标为(0,3); ∵C 为OA 的中点,则C 点坐标为(0,1.5); 将y =0代入343+=x y ,得x =-4,故点B 的坐标为(-4,0); 则A 、B 、C 三点的坐标分别为(0,3),(-4,0),(0,1.5);…………………………3分(2)由(1)得OB =4,OA =3,则由勾股定理可得,AB =5. …………………………4分 ∵点P 的横坐标为x ,故OD = -x ,则x BD +=4, 又由已知得,∠DEB =∠AOB =90°, ∴53sin sin ===∠=∠AB OA BD DE ABO DBE ,534=+x DE ,)4(53x DE +=, 54cos cos ===∠=∠AB OB BD BE ABO DBE ,544=+x BE ,)4(54x BE +=,…………………………6分∴)4(53)4(5421x x S +⨯+⨯=. 2)4(256x S +=(04≤<-x ). …………………………7分 (3)符合要求的点有三个,x =0,-1.5,-1639. …………………………10分25.(1)222833y x x =-++,对称轴为直线:12x =…………………………4分 (2)当t =2时,PC ⊥QC ………………………………………………………7分此时直线PQ 与⊙C 相切,理由略………………………………………10分(3)N (12,203)……………………………………………………………14分26.⑴ 如图1,已知正方形ABCD ,E 是AD 上一点,F 是BC 上一点,G 是AB 上一点,H 是CD 上一点,线段EF 、GH 交于点O ,∠EOH =∠C ,求证:EF =GH ;⑵如图2,若将“正方形ABCD ”改为“菱形ABCD ”,其他条件不变,探索线段EF 与线段GH 的关系并加以证明;⑶如图3,若若将“正方形ABCD ”改为“矩形ABCD ”,且AD =mAB ,其他条件不变,探索线段EF 与线段GH 的关系并加以证明.⑴略证:如图,过点F 作FM ⊥AD 于M ,过点G 作GN ⊥CD 于N 证△GNH ≌△FME∴EF =GH ……………………………………………………………3分 ⑵略证:如图,过点F 作FM ⊥AD 于M ,过点G 作GN ⊥CD 于N 证△GNH ≌△FME∴EF =GH ……………………………………………………………6分 ⑶略证:如图,过点F 作FM ⊥AD 于M ,过点G 作GN ⊥CD 于N 证△GNH ∽△FME ∴m FMGNEF GH == ……………………………………………………………10分附加题:已知平行四边形ABCD ,E 是AD 上一点,F 是BC 上一点,G 是AB 上一点,H 是CD 上一点,线段EF 、GH 交于点O ,∠EOH =∠C ,AD =mAB ,则GH =mEFA B O C H D G EF O C HD E FA B OC H G E F M N N M N略证:如图,过点F 作FM ⊥AD 于M , 过点G 作GN ⊥CD 于N 证△GNH ∽△FME ∴m FMGNEF GH == 即GH =mEF . 注:命题正确1分,图形正确1分,证明过程3分,共计5分.A CD E GFHMON。
中考第一次模拟考试数学试卷数 学(满分:120分 考试时间:120分钟)一、选择题(共10小题,每小题3分,满分30分) 1.3-8=( D ) A .2 B .-2 2 C .-83D .-2[命题考向:此题考查立方根,根据-8的立方根是-2解答.]2.据科学家估计,地球的年龄大约是4 600 000 000年,将4 600 000 000用科学记数法表示为( D ) A .4.6×108 B .46×108 C .4.69D .4.6×109[命题考向:此题考查科学记数法表示较大的数的方法,形式为a ×10n ,准确确定a 与n 的值是关键.]3.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .已知AB AC =13,则( C )(第3题图)A.AB BC =13B.AD FC =13C.DE EF =12D.BE FC =12[命题考向:本题考查平行线分线段成比例定理,属于中考常考题型.] 4.如图是杭州市某天上午和下午各四个整点时的气温绘制成的折线统计图,为了了解该天上午和下午的气温哪个更稳定,则应选择的统计量是( C )(第4题图)A .众数B .平均数C .方差D .中位数[命题考向:本题主要考查折线统计图和统计量的选择,解题的关键是理解方差的意义:方差(或标准差)越大,数据的离散程度越大,稳定性越差;反之,则离散程度越小,稳定性越好.]5.下列各式变形中,正确的是( A ) A .(x )2=xB .(-x -1)(1-x )=1-x 2 C.x -x +y =-x x +y D .x 2+x +1=⎝ ⎛⎭⎪⎫x +122-34[命题考向:本题考查的是二次根式的化简、平方差公式、分式的基本性质和配方法.]6.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y 人,则下列方程组正确的是( C ) A.⎩⎨⎧x -1=y ,x =2y B.⎩⎨⎧x =y ,x =2(y -2) C.⎩⎨⎧x -1=y ,x =2(y -1)D.⎩⎨⎧x +1=y ,x =2(y -1)[命题考向:此题主要考查了二元一次方程组的应用,根据题意利用已知得出正确等量关系是解题关键.] 7.若(5-m )m -3>0,则( D ) A .m <5 B .3≤m <5 C .3≤m ≤5D .3<m <5[命题考向:本题考查不等式的性质,二次根式的非负性.解题的关键是熟练运用不等式的性质,本题属于基础题型.解析:原不等式等价于⎩⎨⎧m -3>0,5-m >0,∴3<m <5,故选D.]8.已知A ,B 两地相距120 km ,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:km)与时间t (单位:h)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:km),则y 关于t 的函数图象是( B )(第8题图)A BC D[命题考向:本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.解析:由题意和图象可得,乙到达B地时甲距A地120 km,开始时两人的距离为0;甲的速度是120÷(3-1)=60 km/h,乙的速度是80÷3=803km/h,即乙出发1 h后两人距离为803km;设乙出发后被甲追上的时间为x h,则60(x-1)=803x,解得x=1.8,即乙出发后被甲追上的时间为1.8 h.所以符合题意的函数图象只有选项B.故选B.]9.如图,AB是⊙O的直径,点D是半径OA的中点,过点D作CD⊥AB,交⊙O 于点C,点E为弧BC的中点,连结ED并延长ED交⊙O于点F,连结AF,BF,则(C)A.sin∠AFE=12B.cos∠BFE=12C.tan∠EDB=32D.tan∠BAF= 3(第9题图) (第9题答图)[命题考向:本题考查的是圆周角定理、全等三角形的判定和性质、锐角三角函数的定义,掌握圆周角定理、直角三角形的性质是解题的关键.解析:如答图,连结OC,OE,作EG⊥AB于点G,∵OD=12OA=12OC,∴∠OCD=30°,∴∠COD=60°,∴∠BOC=180°-60°=120°,∵点E是弧BC的中点,∴∠COE=∠BOE=60°,∴∠AOE=∠AOC+∠COE=120°,∴∠AFE=12∠AOE=60°,∴sin∠AFE=32,A错误;∵∠BOE=60°,∴∠BFE=30°,∴cos∠BFE=32,B错误;设OD=a,则OC=2a,由勾股定理得CD=OC2-OD2=3a,在△COD和△EOG中,⎩⎨⎧∠COD =∠EOG ,∠CDO =∠EGO ,OC =OE ,∴△COD ≌△EOG (AAS ),∴EG =CD =3a ,OG =OD=a ,∴tan ∠EDB =EG DG =32,C 正确;∵tan ∠EDB =32,∴∠EDB =∠ADF ≠60°,则∠BAF ≠60°,∴tan ∠BAF ≠3,D 错误.故选C.]10.如图,已知在△ABC 中,点D 为BC 边上一点(不与点B ,点C 重合),连结AD ,点E 、点F 分别为AB ,AC 上的点,且EF ∥BC ,交AD 于点G ,连结BG ,并延长BG 交AC 于点H .已知AE BE =2,①若AD 为BC 边上的中线,则BG BH 的值为23;②若BH ⊥AC ,当BC >2CD 时,BHAD <2sin ∠DAC .则( A )(第10题图)A .①正确;②不正确B .①正确;②正确C .①不正确;②正确D .①不正确;②不正确[命题考向:本题是三角形的一个综合题,主要考查了直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,关键是作辅助线,构造全等三角形与相似三角形、直角三角形进行解答.解析:①如答图①,过点B 作BM ∥AC ,与AD 的延长线相交于点M ,∴∠C =∠MBD ,在△ACD 和△MBD 中,⎩⎨⎧∠C =∠MBD ,CD =BD ,∠ADC =∠MDB ,∴△ACD ≌△MBD (ASA ),∴AD =MD ,∵EF ∥BC ,AE BE =2,∴AGDG=AEBE=2,∴MGAG=42=2,∵BM∥AC,∴△MBG∽△AHG,∴BGHG=MGAG=2,∴BGBH=23,故①正确;②如答图②,过点D作DN⊥AC于点N,则DN=AD·sin∠DAC,∵BH⊥AC,DN⊥AC,∴BH∥DN,∴BHDN=BCDC,即BHAD sin∠DAC=BCDC,∵BC>2CD,∴BHAD sin∠DAC>2,∴BHAD>2sin∠DAC.故②错误.故选A.](第10题答图①) (第10题答图②) 二、填空题(共6小题,每小题4分,满分24分)11.计算:a·a2=__a3__.[命题考向:本题主要考查同底数幂的乘法,熟练掌握运算法则是解题的关键.]12.分解因式:m4n-4m2n=__m2n(m+2)(m-2)__.[命题考向:本题考查了提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.]13.如图,点P在⊙O外,P A,PB分别切⊙O于点A、点B,若∠P=50°,则∠A=__65°__.(第13题图)[命题考向:本题考查了切线的性质.解题的关键是掌握切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.解析:∵P A,PB分别切⊙O于点A,点B,∴P A=PB,∴∠A=∠B.∵∠P=50°,∴∠A=∠B=12×(180°-50°)=65°.]14.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,不放回,再抽出一张卡片,以第一次抽取的数字为十位数,第二次抽取的数字为个位数,则组成的两位数是6的倍数的概率是__16__.[命题考向:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点:概率=所求情况数与总情况数之比.解析:列表如下:由表格可得,共有30种等可能结果,其中组成的两位数是6的倍数的有5种结果,∴组成的两位数是6的倍数的概率是530=16,故答案为16.]15.已知在▱ABCD中,∠B和∠C的平分线分别交直线AD于点E、点F,AB=5,若EF>4,则AD的取值范围是__0<AD<6或AD>14__.[命题考向:本题考查了平行四边形的性质,角平分线的性质,利用分类讨论思想解决问题是本题的关键.解析:若点E在点F右边,如答图①,∵四边形ABCD 是平行四边形,∴AD∥BC,AB=CD=5,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE=5,同理可得DF=CD=5,∴AD=AE+DF-EF=10-EF,∵EF>4,∴0<AD<6;若点E在点F左边,如答图②,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=5,∴∠AEB =∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE =5,同理可得DF=CD=5,∴AD=AE+EF+FD=10+EF,∵EF>4,∴AD >14.故答案为0<AD<6或AD>14.](第15题答图①) (第15题答图②) 16.在△ABC 中,点A 到直线BC 的距离为d ,AB >AC >d ,以A 为圆心,AC 为半径画圆弧,圆弧交直线BC 于点D ,过点D 作DE ∥AC 交直线AB 于点E ,若BC =4,DE =1,∠EDA =∠ACD ,则AD =.[命题考向:本题考查等边三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是运用分类讨论的思想,利用参数结合几何图形中的等量关系构建方程解决问题.解析:分两种情形:Ⅰ.如答图①中,当点D 在线段BC 上时.∵DE ∥AC ,∴∠ADE =∠CAD ,∵∠ADE =∠C ,∴∠CAD =∠C ,∴DA=DC ,∵AD =AC ,∴AD =DC =AC ,设AD =x ,∵DE ∥AC ,∴DE AC =BD BC ,∴1x=4-x 4,解得x =2.Ⅱ.如答图②中,当点D 在线段BC 的延长线上时,同法可证:AD=DC=AC,设AD=x,∵DE∥AC,∴DEAC=BDBC,∴1x=4+x4,解得x=-2+22或-2-22(舍去),综上所述,满足条件的AD的值为2或-2+22,故答案为2或-2+2 2.](第16题答图①) (第16题答图②)三、解答题(共7小题,满分66分)17.(6分)跳跳一家外出自驾游,出发时油箱里还剩有汽油30 L,已知跳跳家的汽车每百千米平均油耗为12 L,设油箱里剩下的油量为y(单位:L),汽车行驶的路程为x(单位:km).(1)求y关于x的函数表达式;(2)若跳跳家的汽车油箱中的油量低于5 L时,仪表盘会亮起黄灯警报.要使油箱中的存油量不低于5 L,跳跳爸爸至多行驶多少千米就要进加油站加油?[命题考向:本题考查了一次函数的应用,解一元一次不等式,读懂题目信息,理解剩余油量的表示是解题的关键.]解:(1)y关于x的函数表达式为y=-0.12x+30;(2)当y≥5时,-0.12x+30≥5,解得x≤625 3.答:跳跳爸爸至多行驶6253km就要进加油站加油.18.(8分)为了满足学生的个性化需求,新课程改革势在必行,某校积极开展拓展性课程建设,大体分为学科、文体、德育、其他等四个框架进行拓展课程设计.为了了解学生喜欢的拓展课程类型,学校随机抽取了部分学生进行调查,调查后将数据绘制成扇形统计图和条形统计图(未绘制完整).(第18题图)(1)求调查的学生总人数,把条形图补充完整并填写扇形图中缺失的数据;(2)小明同学说:“因为调查的同学中喜欢文体类拓展课程的同学占16%,而喜欢德育类拓展课程的同学仅占12%,所以全校2 000名学生中,喜欢文体类拓展课程的同学人数一定比喜欢德育类拓展课程的同学人数多.”你觉得小明说得对吗?为什么?[命题考向:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.]解:(1)被调查的总人数为4÷16%=25(人),学科的人数为25×32%=8(人),其他的百分比为1-(32%+16%+12%)=40%,补全图形如答图:(第18题答图)(2)不对,样本容量不够大,无法用样本预测整体.19.(8分)如图,已知在△ABC中,AB=AC,点D为BC上一点(不与点B、点C 重合),连结AD,以AD为边在右侧作△ADE,DE交AC于点F,其中AD=AE,∠ADE=∠B.(1)求证:△ABD∽△AEF;(2)若BDEF=43,记△ABD的面积为S1,△AEF的面积为S2,求S1S2的值.(第19题图)[命题考向:本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的性质是解题的关键.]解:(1)证明:∵AB =AC ,∴∠B =∠C ,∵AD =AE ,∴∠ADE =∠E ,又∵∠ADE =∠B ,∴∠B =∠E ,∵∠BDE =∠ADB +∠ADE =∠C +∠DFC =∠E +∠AFE ,∴∠ADB =∠AFE ,∴△ABD ∽△AEF ;(2)由(1)得△ABD ∽△AEF ,而BD EF =43,∴S 1S 2=⎝⎛⎭⎪⎫BD EF 2=169. 20.(10分)在同一平面直角坐标系中,设一次函数y 1=mx +n (m ,n 为常数,且m ≠0,m ≠-n )与反比例函数y 2=m +n x .(1)若y 1与y 2的图象有交点(1,5),且n =4m ,当y 1≥5时,求y 2的取值范围;(2)若y 1与y 2的图象有且只有一个交点,求m n 的值.[命题考向:此题主要考查了反比例函数与一次函数的交点问题,正确利用数形结合思想分析问题是解题关键.]解:(1)把(1,5)代入y 1=mx +n ,得 m +n =5.又∵n =4m ,∴m =1,n =4.∴y 1=x +4,y 2=5x .∴当y 1≥5时,x ≥1.此时,0<y 2≤5;(2)令m +n x =mx +n ,得mx 2+nx -(m +n )=0.由题意得Δ=n 2+4m (m +n )=(2m +n )2=0,即2m +n =0.∴m n =-12.21.(10分)如图,在矩形ABCD 中,2AB >BC ,点E 和点F 为边AD 上两点,将矩形沿着BE 和CF 折叠,点A 和点D 恰好重合于矩形内部的点G 处.(1)当AB =BC 时,求∠GEF 的度数;(2)若AB =2,BC =2,求EF 的长.(第21题图)[命题考向:本题考查了翻折变换,矩形的性质,勾股定理,等腰直角三角形的性质,证明△EGF 为等腰直角三角形是解第(2)问的关键.]解:(1)当AB =BC 时,矩形ABCD 为正方形,由折叠得AB =BG ,CD =CG ,∠EGB =∠A =90°=∠FGC ,∵AB =BC =CD ,∴BG =BC =GC ,∴∠GBC =60°,∴∠ABG =30°,∴∠AEG =360°-∠A -∠BGE -∠ABG =150°,∴∠GEF =30°;(2)在矩形ABCD 中,AB =CD =2,由折叠得AB =BG ,CD =CG ,AE =EG ,DF =FG ,∴BG =GC =2,∵BG 2+CG 2=4,BC 2=4,∴BG 2+CG 2=BC 2,∴∠BGC =90°,且BG =CG ,∴∠GBC =45°,∴∠ABG =45°,∴∠AEG =360°-∠A -∠BGE -∠ABG =135°,∴∠FEG =45°,同理可得∠EFG =45°,∴△EGF 为等腰直角三角形,设EG =x ,则AE =FD =x ,EF =2x ,由AE +EF +FD =AD ,得2x +2x =2,∴x =2-2,∴EF =2x =22-2.22.(12分)在平面直角坐标系中,函数y 1=ax +b (a ,b 为常数,且ab ≠0)的图象如图所示,y 2=bx +a ,设y =y 1·y 2.(1)当b =-2a 时,①若点(1,4)在函数y 的图象上,求函数y 的表达式;②若点(x 1,p )和(x 2,q )在函数y 的图象上,且⎪⎪⎪⎪⎪⎪x 1-54<⎪⎪⎪⎪⎪⎪x 2-54,比较p ,q 的大小;(2)若函数y 的图象与x 轴交于(m ,0)和(n ,0)两点,求证:m =1n .(第22题图)[命题考向:本题考查的是一次函数及二次函数的应用,利用函数与方程及不等式的关系是解题关键.]解:(1)由题意得y =(ax +b )(bx +a ),当b =-2a 时,y =(ax -2a )(-2ax +a ).①把(1,4)代入表达式,得a 2=4,由题意可知a <0,则a =-2,故函数y 的表达式为y =(-2x +4)(4x -2)=-8x 2+20x -8;②令(ax -2a )(-2ax +a )=0,得x 1=2,x 2=12,∴二次函数y =(ax -2a )(-2ax +a )与x 轴的两个交点坐标为(2,0),⎝ ⎛⎭⎪⎫12,0, ∴二次函数y 的对称轴为直线x =54,又∵⎪⎪⎪⎪⎪⎪x 1-54<⎪⎪⎪⎪⎪⎪x 2-54, ∴点(x 1,p )离对称轴较近,且抛物线y 开口向下,∴p >q ;(2)证明:令(ax+b)(bx+a)=0,得x1=-ba,x2=-ab,∴mn=⎝⎛⎭⎪⎫-ba×⎝⎛⎭⎪⎫-ab=1,即m=1n得证.23.(12分)已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,以AD为对角线作正方形AEDF,DE交AB于点M,DF交AC于点N,连结EF,EF分别交AB,AD,AC于点G,O,H.(1)求证:EG=HF;(2)当∠BAC=60°时,求AHNC的值;(3)设HFHE=k,△AEH和四边形EDNH的面积分别为S1和S2,求S2S1的最大值.(第23题图)[命题考向:本题考查了相似三角形的判定和性质,等腰三角形的性质,正方形的性质,正确的识别图形是解题的关键.]解:(1)证明:在正方形AEDF中,OE=OF,EF⊥AD,∵AD⊥BC,∴EF∥BC,∴∠AGH=∠B,∠AHG=∠C,∵AB=AC,∴∠B=∠C,∴∠AGH =∠AHG ,∴AG =AH ,∴OG =OH , ∴OE -OG =OF -OH ,∴EG =HF ;(2)当∠BAC =60°时,△ABC 为正三角形.∵AD ⊥BC ,∴∠OAH =30°,∴AO OH =3,设OH =a ,则OA =OE =OF =3a , ∴EH =(3+1)a ,HF =(3-1)a ,∵AE ∥FN ,∴△AEH ∽△NFH ,∴AH NH =EH FH =3+13-1, ∵EF ∥BC ,∴△AOH ∽△ADC ,∴OH DC =AO AD =12,∴CD =2a ,∵△HNF ∽△CND ,∴NH NC =HF CD =3-12,∴AH NC =AH NH ·NH NC =3+12;(3)设EH =2m ,则FH =2km ,∴EF =EH +FH =2m +2km ,∴OA =12EF =(k +1)m ,∴S 1=12EH ·OA =(k +1)m 2,由(2)得△AEH ∽△NFH ,∴S △HNF =k 2S 1=k 2(k +1)m 2,而S △EDF =OA 2=(k +1)2m 2,∴S 2=S △EDF -S △HNF =(k +1)2m 2-k 2(k +1)m 2 =(-k 2+k +1)(k +1)m 2,∴S 2S 1=-k 2+k +1=-⎝ ⎛⎭⎪⎫k -122+54,∴当k =12时,S 2S 1最大,其最大值为54.102019年杭州市萧山区临浦片中考模拟试卷数学(满分:120分考试时间:120分钟)一、选择题(每小题3分,满分30分)1.下列计算正确的是(D)A.-16=-4B.16=±4C.(-4)2=-4D.3(-4)3=-4[命题考向:本题考查平方根、立方根的计算.]2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440 000万人,将440 000用科学记数法表示为(B)A.4.4×106B.4.4×105C.44×104D.0.44×105[命题考向:本题考查科学记数法.]3.哥哥身高1.68 m,在地面上的影子长是2.1 m,同一时间测得弟弟的影子长1.8 m,则弟弟身高是(A)A.1.44 m B.1.52 mC.1.96 m D.2.25 m[命题考向:本题考查相似三角形的应用.能够根据同一时刻,物高与影长成比例,列出正确的比例式,再进行求解.解析:设弟弟的身高是x m,则x1.8=1.682.1,解得x=1.44.故选A.]4.如图是某厂2018年各季度产值统计图(单位:万元),则下列说法正确的是( D )(第4题图)A .四个季度中,每个季度生产总值有增有减B .四个季度中,前三个季度生产总值增长较快C .四个季度中,各季度的生产总值变化一样D .第四季度生产总值增长最快[命题考向:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长率.]5.下列运算中,错误的是( C ) A.x -y x +y =-y -x y +x B.-a -ba +b=-1 C.a 2=aD.(1-2)2=2-1[命题考向:此题主要考查了二次根式的性质以及分式的性质,正确化简各式是解题关键.]6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( C ) A.⎩⎨⎧8y +3=x ,7y -4=x B.⎩⎨⎧8x +3=y ,7x -4=y C.⎩⎨⎧8x -3=y ,7x +4=yD.⎩⎨⎧8y -3=x ,7y +4=x[命题考向:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系.]7.下列不等式变形中,错误的是( D ) A .若a ≥b ,则a +c ≥b +c B .若a +c ≥b +c ,则a ≥b C .若a ≥b ,则ac 2≥bc 2 D .若ac 2≥bc 2,则a ≥b[命题考向:本题考查了不等式的性质,熟记性质是解决此题的关键.解析:A.a ≥b ,不等式两边同时加上c ,不等号的方向不变,即a +c ≥b +c ,变形正确;B.a +c ≥b +c ,不等式两边同时减去c ,不等号的方向不变,即a ≥b ,变形正确;C.a ≥b ,c 2≥0,不等式两边同时乘以一个非负数c 2,ac 2≥bc 2成立,变形正确;D.ac 2≥bc 2,若c 2=0,则不等式两边同时除以c 2无意义,变形错误.故选D.] 8.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论; ①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ; ③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154. 其中正确的结论有( C )(第8题图)A .①②③④B .①②④C .①②D .②③④[命题考向:本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t 是小带车所用的时间.解析:由图象可知A ,B 两城市之间的距离为300 km ,小带行驶的时间为5 h ,而小路是在小带出发1 h 后出发的,且用时3 h ,即比小带早到1 h ,∴①②都正确;设小带车离开A 城的距离y 与t 的关系式为y 小带=kt ,把(5,300)代入可求得k =60,∴y 小带=60t ,设小路车离开A 城的距离y 与t 的关系式为y 小路=mt +n ,把(1,0)和(4,300)代入可得⎩⎨⎧m +n =0,4m +n =300,解得⎩⎨⎧m =100,n =-100,∴y 小路=100t -100,令y 小带=y 小路,可得60t =100t -100,解得t =2.5,即小带和小路两直线的交点横坐标为t =2.5,此时小路出发时间为1.5 h ,即小路车出发1.5 h 后追上甲车,∴③不正确;令|y 小带-y 小路|=50,可得|60t -100t +100|=50,即|100-40t |=50,当100-40t =50时,可解得t =54,当100-40t =-50时,可解得t =154,又当t =56时,y 小带=50,此时小路还没出发,当t =256时,小路到达B 城,y 小带=250.综上可知当t 的值为54或154或56或256时,两车相距50 km ,∴④不正确.故选C.]9.如图,直径AB ,CD 相互垂直,P 为弧BC 上任意一点,连结PC ,P A ,PD ,PB ,下列结论: ①∠APC =∠DPE ;②∠AED =∠DF A ; ③CP +DP BP +AP =AP DP . 其中正确的是( A ) A .①③ B .只有① C .只有②D .①②③(第9题图)(第9题答图)[命题考向:此题考查了圆周角定理、垂径定理、旋转的性质以及勾股定理.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.解析:∵直径AB ,CD 相互垂直,∴∠AOC =∠AOD ,∴∠APC =∠DPE ,故①正确;∵∠AED=∠DPE +∠D ,∠DF A =∠APF +∠A ,∵P 为BC 上任意一点,∴∠A 不一定等于∠D ,∴∠AED 不一定等于∠DF A ,故②错误;如答图,连结AC ,AD ,BD ,将△ACP 绕A 点顺时针旋转90°,使AC 与AD 重合(由AB ⊥CD 知AC =AD ),点P 旋转到Q 点,∴AQ =AP ,CP =QD ,∵∠P AQ =90°,AQ =AP ,∵∠ADQ +∠ADP =∠ACP +∠ADP =180°,∴P ,D ,Q 三点共线,∴∠Q =∠APD =45°,∴PQ 2=P A 2+AQ 2,∴PQ =2AP ,即CP +DP =2AP ,同理:BP +AP =2DP ,∴CP +DP BP +AP =AP DP.故③正确.故选A.] 10.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的格点上,AB ,CD 相交于点E ,则sin ∠AEC 的值为( A ) A.255B.3510C.12D.104(第10题图) (第10题答图)[命题考向:本题考查了勾股定理、相似三角形的判定和性质、锐角三角函数等知识点,能够正确作出辅助线是解此题的关键.解析:如答图,过A作AF⊥CD于F,在Rt△ADB中,BD=3,AD=3,由勾股定理得AB=32+32=32,在Rt△CAD中,AC=1,AD=3,由勾股定理得CD=12+32=10,由三角形的面积公式得12×CD×AF=12×AC×AD,10×AF=1×3,解得AF=31010,∵AC∥BD,∴△CEA∽△DEB,∴ACBD=AEBE,∴13=AE32-AE,∴AE=324,∴sin∠AEC=AFAE=31010324=255.故选A.]二、填空题(每小题4分,满分24分)11.若a m=5,a n=6,则a m+n=__30__.[命题考向:本题考查了同底数幂的乘法计算,属于简单题,熟悉法则是解题关键.解析:a m+n=a m·a n=5×6=30.]12.分解因式:3x2-6x2y+3xy2=__3x(x-2xy+y2)__.[命题考向:本题考查因式分解.]13.如图,直线l与x轴、y轴分别交于点A,B,且OB=4,∠ABO=30°,一个半径为1的⊙C,圆心C从点(0,1)开始沿y轴向下运动,当⊙C与直线l相切时,⊙C运动的距离是__3或7__.(第13题图) (第13题答图)[命题考向:本题考查切线的性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,注意一题多解.解析:设第一次相切的切点为E,第二次相切的切点为F,如答图,连结EC′,FC″,在Rt△BEC′中,∠ABC=30°,EC′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=7,故答案为3或7.]14.袋中装有一个红球和两个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是__19__.[命题考向:此题考查的是用列表法或画树状图法求概率的知识.画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.解析:画树状图如答图,由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是1 9.](第14题答图)15.平行四边形两条对角线的长分别为8 cm,6 cm,则它的一边长a的取值范围是__1<a<7__.[命题考向:本题考查平行四边形的性质以及三角形的三边关系.根据平行四边形的对角线互相平分将已知数据和未知数据都转化到一个三角形中是解决此题的关键.解析:如答图,∵四边形ABCD是平行四边形,AC=6,BD=8,∴OC =3,OB=4,在△BOC中,设BC=a,则OB-OC<a<OB+OC,即4-3<a <3+4,即1<a<7.∴它的一条边长a的取值范围是1<a<7.](第15题答图)16.数学课上,老师提出如下问题:△ABC是⊙O的内接三角形,OD⊥BC于点D.请借助直尺,画出△ABC中∠BAC的平分线.晓龙同学的画图步骤如下:①延长OD交⊙O于点M;②连结AM交BC于点N.所以线段AN为所求△ABC中∠BAC的平分线.请回答:晓龙同学画图的依据是__垂径定理和在同圆或等圆中,同弧或等弧所对的圆周角相等__.(第16题图) (第16题答图) [命题考向:此题主要考查了基本作图,关键是掌握垂径定理和圆周角定理的知识.解析:如答图所示:∵OM ⊥BC ,∴BM ︵=MC ︵,∴∠BAM =∠CAM ,故线段AN 即为所求△ABC 中∠BAC 的平分线,画图的依据是垂径定理和在同圆或等圆中,同弧或等弧所对的圆周角相等.]三、解答题(共7小题,满分66分)17.(6分)浙江实施“五水共治“以来,越来越重视节约用水,某地对居民用水按阶梯水价方式进行收费,人均月生活用水收费标准如图所示,图中x 表示人均月生活用水的吨数(吨),y 表示收取的人均月生活用水费(元),请根据图象信息,回答下列问题.(1)请写出y 与x 的函数关系式;(2)若某个家庭有5人,响应节水号召,计划控制1月份的生活用水费不超过76元,则该家庭这个月最多可以用多少吨水?(第17题图)[命题考向:本题考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.]解:(1)当0≤x ≤5时,设y =kx ,5k =8,得k =1.6,即当0≤x ≤5时,y =1.6x ,当x >5时,设y =ax +b ,则⎩⎨⎧5a +b =8,10a +b =20,解得⎩⎨⎧a =2.4,b =-4,即当x >5时,y =2.4x -4,综上可得y =⎩⎨⎧1.6x (0≤x ≤5),2.4x -4(x >5); (2)令2.4x -4≤765,解得x ≤8,5×8=40吨.答:该家庭这个月最多可以用40吨水.18.(8分)我市某中学为了了解孩子们对《中国诗词大会》《挑战不可能》《最强大脑》《超级演说家》《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(第18题图)(1)本次调查中共抽取了__200__名学生;(2)补全条形统计图;(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是__36__度.[命题考向:本题考查了条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.]解:(1)本次调查的学生总人数为30÷15%=200(名);(2)喜爱《挑战不可能》的人数为200-(20+60+40+30)=50(人),补全条形图如答图;(第18题答图)(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是360°×20200=36°.19.(8分)如图,已知等腰三角形ADC,AD=AC,B是线段DC上一点,连结AB,且有AB=DB.(1)求证:△ADB∽△CDA;(2)若DB=2,BC=3,求AD的值.(第19题图)[命题考向:本题考查的是相似三角形的判定与性质的运用,解题的关键是熟练掌握相似三角形的判定和性质.]解:(1)证明:∵AD=AC,∴∠D=∠C,又∵AB=DB,∴∠D=∠DAB,∴∠DAB=∠D=∠C.又∵∠D=∠D,∴△ADB∽△CDA;(2)∵△ADB∽△CDA,∴ADCD=BDAD,∵DB=2,BC=3,∴CD=5,∴AD2=BD·CD=2×5=10,∴AD=10.20.(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=3x(x>0)的图象交于A(1,m),B(n,1)两点.(1)求直线AB的表达式及△OAB面积;(2)根据图象写出当y1<y2时,x的取值范围;(3)若点P在x轴上,求P A+PB的最小值.(第20题图) (第20题答图) [命题考向:本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出自变量的取值范围是解答此题的关键.]解:(1)把A (1,m ),B (n ,1)两点坐标分别代入反比例函数y 2=3x ,可得m =3,n=3,∴A (1,3),B (3,1),把A (1,3),B (3,1)代入一次函数y 1=kx +b ,可得⎩⎨⎧3=k +b ,1=3k +b ,解得⎩⎨⎧k =-1,b =4,∴直线AB的表达式为y=-x+4. ∴M(0,4),N(4,0).∴S△OAB =S△MON-S△AOM-S△BON=12×4×4-12×4×1-12×4×1=4;(2)从图象看出0<x<1或x>3时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是0<x<1或x>3;(3)如答图,作点A关于x轴的对称点C,连结BC交x轴于点P,则P A+PB的最小值等于BC的长,过C作x轴的平行线,过B作y轴的平行线,交于点D,则Rt△BCD中,BD=4,CD=2,BC=CD2+BD2=22+42=2 5.∴P A+PB的最小值为2 5.21.(10分)如图,已知一张长方形纸片,AB=CD=a,AD=BC=b(a<b<2a).将这张纸片沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G.(1)在图中确定点F、点E和点G的位置;(2)连结AE,则∠EAB=__45__°;(3)用含有a,b的代数式表示线段DG的长.(第21题图) (第21题答图)[命题考向:本题考查了翻折变换(折叠问题),矩形的性质,正确地作出图形是解题的关键.]解:(1)点F、点E和点G的位置如答图所示;(2)由折叠的性质得∠DAE=∠EAB,∵四边形ABCD是矩形,∴∠BAD=∠DAE+∠EAB=90°,∴∠EAB=45°;(3)由折叠的性质得DG=EG,∵∠ABE=90°,∠EAB=45°,∴∠AEB=45°,∴BE=AB=a,∴CE=b-a,设CG=x,则DG=EG=a-x,在Rt△CEG中,CG2+CE2=EG2,即x2+(b-a)2=(a-x)2,解得x=2ab-b22a,∴DG=a-x=a-2ab-b22a=a-b+b22a.22.(12分)用描点法在同一直角坐标系中画出y1=|x|和y2=x+1的图象,并根据图象回答:(1)当x在什么范围时,y1<y2?(2)当x在什么范围时,y1>y2?[命题考向:本题考查了一次函数与一元一次不等式的性质,能正确画出两函数的图象是解此题的关键.]解:函数图象如答图所示:(第22题答图)两函数的交点坐标是(-0.5,0.5),(1)当x>-0.5时,y1<y2;(2)当x<-0.5时,y1>y2.23.(12分)(1)如图1,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,若AB=AC=2,求DE的长;(2)如图2,在(1)的条件下,连结AG,AF分别交DE于M,N两点,求MN的长;(3)如图3,在△ABC中,AB=AC=BN=2,∠BAC=108°,若AM=AN,请直接写出MN的长.(第23题图)[命题考向:本题考查相似三角形的判定和性质,正方形的性质,等腰三角形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.]解:(1)∵AB=AC=2,∠A=90°,∴∠B=∠C=45°,BC=22,∵四边形DEFG是正方形,∴DE=DG=GF=EF,∠DGF=∠EFG=90°,∴∠BGD=∠CFE=90°,∴∠B=∠BDG=45°,∠C=∠CEF=45°,∴BG=DG,CF=EF,∴BG=FG=FC=DE,。
BAODC B A 2009辽宁省(大连市)毕业升学统一考试模拟试题数 学题号 一 二 三 四 五 附加题总分 分数试题整理人:Dickn本试卷1~8页,共150分,考试时间120分钟。
请考生准备好圆规,直尺、三角板、计算器等答题工具,祝愿所有考生都能发挥最佳水平。
一、选择题(本题8小题,每小题3分,共24分)说明:将下列各题唯一正确的答案代号A 、B 、C 、D 填到题后的括号内。
1、在平面直角坐标系中,点P (3, -2)在 ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限2、计算32-是 ( ) A 、-8 B 、8 C 、-6 D 、63、如图,AB 与⊙O 切于点B ,AO =6㎝,AB =4㎝,则⊙O的半径为 ( )A 、45㎝B 、25㎝C 、213㎝D 、13㎝4、下列计算正确的是 ( ) A 、2323a a a += B 、1122a a-=C 、326()a a a -=-D 、122aa-=5、已知两个分式:244A x =-,1122B x x=++-,其中2x ≠±,则A 与B 的关系是( )A 、相等B 、互为倒数C 、互为相反数D 、A 大于B 6、计算123-的结果是( ) A 、3 B 、3 C 、23 D 、337 数学老师对小明参加的4次中考数学模拟考试成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这4次数学成绩的 ( ) A 、平均数 B 、众数 C 、中位数 D 、标准差8、如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各阅卷人 得分O D CBAoyx3-2挖去一个圆洞,最后将正方形纸片展开,得到的图案是 ( )二、填空题(本题共7小题,每小题3分,共21分) 说明:将答案直接填在题后的横线上。
9、某天的最高气温为11℃,最低气温为-6℃,则这天的最高气温比最低气温高 ℃. 10、在Rt △ABC 中,∠C =90°,BC = 4,AC =3,则cosA 的值为____________. 11、在“石头、剪子、布”的游戏中,两人做同样手势的概率是 .12、若圆锥的底面周长为20π,侧面展开后所得扇形的圆心角为120°,则圆锥的侧面积为 .13、如图,点D 在以AC 为直径的⊙O 上,如果∠BDC =20°,那么 ∠ACB = . 14、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 … 输出…1225310417526…那么,当输入数据为8时,输出的数据为 .15、如图是一次函数y 1=kx+b 和反比例函数y 2=m x的图象,观察图象写出y 1>y 2时,x 的取值范围 .三、解答题(本题共5小题,其中16、 17题各9分,18、19、20题各10分,共48分)16、已知关于x 的方程2210x kx -+=的一个解与方程2141x x+=-的解相同.⑴求k 的值;⑵求方程2210x kx -+=的另一个解.17,某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率。
精选大连市初三中考数学第一次模拟试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=.12.(3分)不等式组的解集是.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S S;比较3月份与5月份,月份的更稳定.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.【分析】根据:a0=1(a≠0)可得结论.【解答】解:20=1,故选:B.【点评】本题考查了零指数幂的计算,比较简单,熟练掌握公式是关键.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a6【分析】直接利用完全平方公式以及积的乘方运算法则分别判断得出答案.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a2b2=(ab)2,故此选项错误;D、(a3)2=a6,正确.故选:D.【点评】此题主要考查了完全平方公式以及积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.5.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=6【分析】根据一元一次方程的解法即可求出答案.【解答】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点评】本题考查一元一次方程,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣2x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=,k=2>0,在每个象限里,y随x的增大而减小,故B错误;C、y=﹣2x2+1(x>0),二次函数,a<0,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故C错误;D、y=2x,一次函数,k>0,故y随着x增大而增大,故D正确.故选:D.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.【分析】根据四边形CDEF是正方形,即可得出CD==2,根据矩形ABCD的面积为6,即可得出AD=3,再根据勾股定理即可得到AC的长.【解答】解:由折叠可得,∠DEF=∠DCF=∠CDE=90°,∴四边形CDEF是矩形,由折叠可得,CD=DE,∴四边形CDEF是正方形,∴CD==2,又∵矩形ABCD的面积为6,∴AD=3,∴Rt△ACD中,AC==,故选:C.【点评】本题主要考查了折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC【分析】根据梯形的性质和相似三角形的判定和性质解答即可.【解答】解:∵CD∥AB,∴△AOB∽△COD,故A正确;∵CD∥BE,DB∥CE,∴四边形BDCE是平行四边形,故C正确;∵△ABC的面积=△BOC的面积+△AOB的面积=△ADB的面积=△AOD的面积+△AOB的面积,∴△AOD的面积=△BOC的面积,故D正确;∵∠AOB=∠COD,∴∠DOC=∠OCE>∠ACB,故B错误;故选:B.【点评】此题考查相似三角形的判定,关键是根据梯形的性质和相似三角形的判定和性质解答.9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.【分析】具体折一折,从中发挥想象力,可得正确的答案.【解答】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.【点评】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx﹣k过一、三、四象限;y=过一、三象限;②当k<0时,y=kx﹣k过一、二、四象象限;y=过二、四象限.观察图形可知,只有A选项符合题意.故选:A.【点评】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=2b.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2b,故答案为:2b【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)不等式组的解集是x>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣x<0得x>0,解不等式3x+5>0得x>﹣,所以不等式组的解集为x>0,故答案为:x>0.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=15.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AE∥BD,CD=20,CE=36,AC=27,∴,即,解得:BC=15,故答案为:15【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是0.28.【分析】直接利用5各小组的频率之和为1,进而得出答案.【解答】解:∵某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,∴第4组和第5组的频率和为:1﹣0.3﹣0.14=0.56,∵第4组和第5组的频率相等,∴第5组的频率是:0.28.故答案为:0.28.【点评】此题主要考查了频率的意义,正确得出第4组和第5组的频率和是解题关键.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了19道题.【分析】设他做对了x道题,则小英做错了(25﹣x)道题,根据总得分=4×做对的题数﹣1×做错的题数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.【点评】本题考查了一元一次方程的应用,根据总得分=4×做对的题数﹣1×做错的题数列出关于x的一元一次方程是解题的关键.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是2.【分析】连接DF,过E作EG⊥BD于G,当E,F,D三点共线时,EF+BF的最小值等于DE的长,利用勾股定理求得DE的长,即可得出EF+BF的最小值.【解答】解:如图所示,连接DF,过E作EG⊥BD于G,∵AC垂直平分BD,∴FB=FD,AB=AD,∴EF+BF=EF+FD,当E,F,D三点共线时,EF+BF的最小值等于DE的长,∵∠BAD=120°,∴∠ABD=30°,又∵AB=4,点E是AB的中点,∴EG=BE=1,AH=AB=2,∴BG=,BH=2,GH=,∴DH=2,DG=3,∴Rt△DEG中,DE===2,故答案为:2.【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣(﹣2)﹣6=1+2﹣6=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.【分析】在▱ABCD中,AD=BC,又BE=DF,可得AF=EC,得出AF平行且等于EC,根据平行四边形的判定,可得出四边形AECF是平行四边形.【解答】证明:∵四边形ABCD平行四边形∴AD=BC.又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.【点评】此题主要要掌握平行四边形的判定与性质;熟练掌握平行四边形的判定与性质是解决问题的关键.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.【分析】利用平方差公式可将原式化简成a+b,再根据方程的系数结合根的判别式可得出a+b=5,此题得解.【解答】解:﹣=,=,=a+b.∵a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,∴a+b=5,∴原式=a+b=5.【点评】本题考查了根与系数的关系以及平方差公式,利用平方差公式将原式化简成a+b是解题的关键.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是3℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S<S;比较3月份与5月份,3月份的更稳定.【分析】(1)最低气温14℃的有3天,据此补充频数分布直方图;(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃);(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定.【解答】解:(1)最低气温14℃的有3天,所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃),故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定,故但为<,3.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【解答】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴,解得,k1=﹣6,b=240,∴w=﹣6t+240.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B 点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)【分析】过点B作BF⊥AD、BE⊥CD,垂足分别为E、F,已知AD=AF+FD,则分别求得AF、DF的长即可求得AD的长.【解答】解:过点B作BF⊥AD、BE⊥CD,垂足分别为E、F.在Rt△ABF中,∵∠F AB=60°,AB=20,∴AF=AB cos∠F AB=20×=10.在Rt△BCE中,∵∠EBC=45°,BC=40,∴BE=BC cos∠EBC=40×=20.在矩形BEDF中,FD=BE=20,∴AD=AF+FD=10+20.答:AD的长为(10+20)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.【分析】(1)令y=0,得kx﹣8k=0,解出即可;(2)作OD⊥AB,垂足为D.可知点O到直线AB的距离为线段OD的长度,利用勾股定理可得OD的长;(3)介绍两种方法:方法一,先根据勾股定理计算DN的长,证明Rt△OMD∽Rt△NOD,列比例式求OM的长,可得结论;方法二:先得∠OND=30°.根据30度的正切列式可得OM的长,可得结论.【解答】解:(1)令y=0,得kx﹣8k=0,∵k≠0,解得x=8,∴直线l与x轴的交点N的坐标为(8,0).(2)连接OB,过点O作OD⊥AB,垂足为D.∴点O到直线AB的距离为线段OD的长度,∵⊙O的半径为5,∴OB=5.又∵AB=6,∴BD=AB==3.在Rt△OBD中,∵∠ODB=90°,∴OD===4.答:点O到直线AB的距离为4.(3)由(1)得N的坐标为(8,0),∴ON=8.由(2)得OD=4.方法一:∴在Rt△ODN中,DN===4.又∵∠OMD+∠MOD=90°,∠NOD+∠MOD=90°,∴∠OMD=∠NOD.∵∠ODM=∠ODN,∴Rt△OMD∽Rt△NOD,∴.∴OM=•NO=×8=.∴直线AB与y轴的交点为(0,).方法二:∴在Rt△OND中,sin∠OND==.∴∠OND=30°.∵在Rt△OMN中,tan30°=∴OM=ON•tan∠OND,∴OM=8tan30°=.∴直线AB与y轴的交点为(0,).【点评】此题考查了一次函数的综合题,考查了待定系数法和解直角三角形,三角形相似的性质和判定,同时也利用了垂径定理和勾股定理解决问题,难度适中.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)【分析】(1)通过解直角三角形可求出点A,B,C的坐标,根据点A,B,C的坐标,利用待定系数法可求出a,b,c的值;(2)求出当等腰直角△DEF的直角顶点F在y轴负半轴时点E,F的坐标,结合点B的坐标可得出将△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度可使点E与点B 重合,再结合点F的坐标即可得出平移后点F的坐标;(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,分两种情况考虑:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,则四边形Q1CR1P1是正方形,设Q1C=CR1=R1P1=P1Q1=r1,在Rt△P1R1B中通过解直角三角形BR1=r1,进而可得出BC=(+1)r1,结合BC=6可求出r1的值,由BR1=r1,结合OP1=OB﹣BP1可求出点P1的坐标,再结合点E的坐标即可得出把△DEF 沿x轴负方向(向左)平移(3﹣3)个单位长度可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,则四边形Q2CR2P2是正方形,同理,可求出点P2的坐标,再结合点E的坐标即可得出把△DEF沿x轴负方向(向左)平移(9+3)个单位长度可使⊙E与直线AC 和BC均相切.综上,此题得解.【解答】解:(1)在Rt△ABC中,∠CAB=60°,∠ACB=90°,BC=6,∴∠ABC=30°,OC=BC•sin∠ABC=6×sin30°=3,∴点C的坐标为(0,3);在Rt△COB中,OC=3,∠OBC=30°,∴OB=OC•cot∠OBC=3×cot30°=3,∴点B的坐标为(3,0);在Rt△AOC中,OC=3,∠CAO=60°,∴AO=OC•cot∠CAO=3×cot60°=,∴点A的坐标为(﹣,0).将A(﹣,0),B(3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴a=﹣,b=,c=3.(2)当等腰直角△DEF的直角顶点F在y轴负半轴时,∵DE=6,∴OE=OF=DE=×6=3,∴点F起始位置的坐标为(0,﹣3),点E起始位置的坐标为(3,0).∵点B的坐标为(3,0),∴BE=OB﹣OE=3﹣3,∴△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度,可使点E与点B重合,∴当点E与点B重合时,点F的坐标为(3﹣3,﹣3).(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,有两种情况:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,如图③所示.∵∠ACB=90°,∴四边形Q1CR1P1是矩形.∵⊙P1与AC、BC相切于点Q1、R1,∴R1P1=P1Q1,∴矩形Q1CR1P1是正方形.设Q1C=CR1=R1P1=P1Q1=r1,∴在Rt△P1R1B中,BR1=R1P1cot∠CBA=r1cot30°=r1,∴BC=CR1+BR1=r1+r1=(+1)r1,又∵BC=6,∴(+1)r1=6,∴r1===3(﹣1)=3﹣3.∴P1B=2R1P1=2r1=2(3﹣3)=6﹣6,∴OP1=OB﹣BP1=3﹣(6﹣6)=6﹣3,∴P1的坐标为(6﹣3,0).∵OE=3,∴EP1=OE﹣OP1=3﹣(6﹣3)=3﹣3,∴把△DEF沿x轴负方向(向左)平移(3﹣3)个单位长度,可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,如图④所示.∵∠ACB=90°,∴∠R2CQ2=90°,∵⊙P2与AC、BC相切于点Q2、R2,∴矩形Q2CR2P2是正方形.设Q2C=CR2=R2P2=P2Q2=r2,∴在Rt△P2R2B中,BR2=R2P2cot∠CBA=r2cot30°=r2,∴BC=BR2﹣CR2 =r2 ﹣r2=(﹣1)r2,又∵BC=6,∴(﹣1)r2=6,∴r2===3(+1)=3+3,∴P2B=2R2P2=2r2=2(3+3)=6+6,∴OP2=BP2﹣OB=6+6﹣3=6+3,∴P2的坐标为(﹣6﹣3,0).∵OE=3,OP2=6+3,∴EP2=OE+OP2=3+(6+3)=9+3,∴把△DEF沿x轴负方向(向左)平移(9+3)个单位长度,可使⊙E与直线AC和BC均相切.综上所述,把△DEF沿x轴负方向(向左)平移(3﹣3)或(9+3)个单位长度,可使⊙E与直线AC和BC均相切.【点评】本题考查了解直角三角形、待定系数法求二次函数解析式、等腰直角三角形、正方形的判定与性质以及平移的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出a,b,c的值;(2)利用等腰直角三角形的性质求出点E,F的坐标;(3)分两种情况求出点P的坐标(即点E移动到的位置).25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.【分析】(1)根据正方形的性质和全等三角形的判定解答即可;(2)①根据全等三角形的性质和等腰直角三角形的判定和性质解答即可;②在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H,根据全等三角形的判定和性质以及等腰直角三角形的判定解答即可.【解答】(1)证明:∵四边形ABCD和四边形CGFE是正方形,∴CE=FE,AD=DC,∠CEF=90°,AD∥EF.∴∠1=∠2.在△AMD和△FMN中,∵∴△AMD≌△FMN(ASA)(2)答:△DEM是等腰直角三角形.由(1)得△AMD≌△FMN,∴MD=MN,AD=FN.在正方形ABCD中,∵AD=DC,∴DC=NF,又∵EC=EF,∴EC﹣DC=EF﹣NF,即ED=EN.又∵∠DEN=90°,∴△DEN是等腰直角三角形.∴EM⊥MD,ME=MD.∴△DEM是等腰直角三角形;(3)答:仍然成立.如图,在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H.在△AMD和△FMP中,∵∴△AMD≌△FMP(SAS).∴∠3=∠4,AD=PF,又∵四边形ABCD、四边形CGFE均为正方形,∴CE=FE,AD=DC,∠ADC=90°,∠CEF=∠ADC=∠EFG=∠ECG=90°.∴DC=PF.∵∠3=∠4,∴AD∥FH.∴∠H=∠ADC=90°.∵∠G=90°,∠5=∠6,∠GCH=180°﹣∠H﹣∠5,∠GFH=180°﹣∠G﹣∠6,∴∠GCH=∠GFH.∵∠GCH+∠DCE=∠GFH+∠PFE=90°,∴∠DCE=∠PFE,在△DCE和△PFE中,∵∴△DCE≌△PFE(SAS).∴ED=EP,∠DEC=∠PEF,∵∠CEF=90°,∴∠DEP=90°.∴△DEP是等腰直角三角形.∴EM⊥MD,ME=MD,∴△DEM是等腰直角三角形.【点评】本题考查的是四边形的综合题,关键是根据正方形的性质、全等三角形的判定定理和性质定理以及等腰直角三角形的判定进行解答.重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、填空题(每小题5分,共60分)1.现在爸爸的年龄是儿子的7倍,5年后爸爸的年龄将是儿子的4倍,则儿子现在的年龄是岁.2.若与互为相反数,则a2+b2=.3.若不等式组无解,则m的取值范围是.4.如图,函数y=ax2﹣bx+c的图象过点(﹣1,0),则的值为.5.在半径为1的⊙O中,弦AB、AC分别是、,则∠BAC的度数为.6.在Rt△ABC中,∠A=90°,tan B=3tan C,则sin B=.7.如图,矩形ABCD中,E是BC上一点,且BE:EC=1:4,AE⊥DE,则AB:BC=.8.如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若S△AOD:S△ACD=1:3,则S△AOD:S△BOC=;若S△AOD=1,则梯形ABCD的面积为.。
中考第一次模拟考试数学试卷含答案一.选择题(共10小题)1.﹣的绝对值是()A.﹣3 B.3 C.D.﹣2.某种感冒病毒的直径约为120nm,1nm=10﹣9m,则这种感冒病毒的直径用科学记数法表示()A.120×10﹣9m B.1.2×10﹣6m C.1.2×10﹣7m D.1.×10﹣8m3.下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.下列各式计算正确的是()A.B.C.2a2+4a2=6a4D.(a2)3=a65.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.记录一被测人员在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,﹣0.6,+0.2,﹣0.4,那么,该被测者这一周中测量体温的平均值是()A.37.1℃B.37.31℃C.36.8℃D.36.69℃6.如图,是一个正方体纸盒的平面展开图,六个面上分别写有“为武汉加油!”,则写有“为”字的对面是什么字()A.汉B.!C.武D.加7.将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.8.不等式组的最小整数解为()A.﹣1 B.0 C.1 D.29.如图,CD是圆O的直径,弦AB⊥CD于点G,直线EF与圆O相切与点D,则下列结论中不一定正确的是()A.AG=BG B.AD∥BC C.AB∥EF D.∠ABC=∠ADC 10.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)二.填空题(共5小题)11.计算:+(﹣3)2=.12.已知扇形的半径为4cm,圆心角为120°,则扇形的弧长为cm.13.已知点P(a,b)在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为.14.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.15.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为.三.解答题(共8小题)16.先化简,再求值.(1﹣)÷,其中x的值从不等式组的整数解中选取.17.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.18.如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.19.2020春节期间,为了进一步做好新型冠状病毒感染的肺炎疫情防控工作,防止新型肺炎外传,切断传播途径.项城市市区各入口一些主要路段均设立了检测点,对出入人员进行登记和体温检测.下图为一关口的警示牌,已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求警示牌BC的高度.20.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,4),双曲线y =(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边上一点,且△FBC∽△DEB,求直线FB的解析式.21.在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不超过A 型口罩的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.①求y关于x的函数关系式;②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?(3)在销售时,该药店开始时将B型口罩提价100%,当收回成本后,为了让利给消费者,决定把B型口罩的售价调整为进价的15%,求B型口罩降价的幅度.22.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.23.二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选:C.2.某种感冒病毒的直径约为120nm,1nm=10﹣9m,则这种感冒病毒的直径用科学记数法表示()A.120×10﹣9m B.1.2×10﹣6m C.1.2×10﹣7m D.1.×10﹣8m【分析】科学记数法的表示形式为a×10n的形式,其中0<|a|≤1,n为整数.当原数为较大数时,n为整数位数减1;当原数为较小数(大于0小于1的小数)时,n为第一个非0数字前面所有0的个数的相反数.【解答】解:∵1nm=10﹣9m,∴120nm=120×10﹣9m=1.2×10﹣7m.故选:C.3.下列图形,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.4.下列各式计算正确的是()A.B.C.2a2+4a2=6a4D.(a2)3=a6【分析】根据各选项进行分析得出计算正确的答案,注意利用幂的乘方的运算以及二次根式的加减,负整数指数幂等知识分别判断即可.【解答】解:A、(﹣1) 0﹣()﹣1=1﹣2=﹣1,故此选项错误;B、与不是同类项无法计算,故此选项错误;C、2a2+4a2=6a2,故此选项错误;D、(a2)3=a6,故此选项正确.故选:D.5.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.记录一被测人员在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,﹣0.6,+0.2,﹣0.4,那么,该被测者这一周中测量体温的平均值是()A.37.1℃B.37.31℃C.36.8℃D.36.69℃【分析】根据题意将这位同学一周内的体温写出来相加再除以七,得出其体温的平均值.【解答】解:根据题意检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”得这位同学在一周内的体温分别是37.1、36.7、36.5、37.1、36.4、37.2,36.6;将(37.1+36.7+36.5+37.1+37.2+36.4+36.6)÷7=36.8(℃);故选:C.6.如图,是一个正方体纸盒的平面展开图,六个面上分别写有“为武汉加油!”,则写有“为”字的对面是什么字()A.汉B.!C.武D.加【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到写有“为”字的对面是什么字.【解答】解:结合展开图可知,写有“为”字的对面是“!”.故选:B.7.将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:根据左视图的概念可知,从物体的左面看得到的视图是C,故选:C.8.不等式组的最小整数解为()A.﹣1 B.0 C.1 D.2【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】解:不等式组解集为﹣1<x≤2,其中整数解为0,1,2.故最小整数解是0.故选:B.9.如图,CD是圆O的直径,弦AB⊥CD于点G,直线EF与圆O相切与点D,则下列结论中不一定正确的是()A.AG=BG B.AD∥BC C.AB∥EF D.∠ABC=∠ADC 【分析】根据切线的性质,垂径定理即可作出判断.【解答】解:A、∵CD是⊙O的直径,弦AB⊥CD于点G,∴AG=BG,故A不符合题意;B、只有当弧AC=弧AD时,AD∥BC,当两个互不等时,则不平行,故B选项符合题意;C、∵直线EF与⊙O相切于点D,∴CD⊥EF,又∵AB⊥CD,∴AB∥EF,故C不合题意;D、根据同弧所对的圆周角相等,可以得到∠ABC=∠ADC.故D选项不合题意.故选:B.10.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),故选:B.二.填空题(共5小题)11.计算:+(﹣3)2=10 .【分析】本题涉及零指数幂、乘方等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+9=10.故答案为10.12.已知扇形的半径为4cm,圆心角为120°,则扇形的弧长为πcm.【分析】根据弧长公式求出扇形的弧长.【解答】解:l扇形==π,则扇形的弧长=πcm.故答案为:π.13.已知点P(a,b)在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为﹣2 .【分析】本题需先根据已知条件,求出ab的值,再根据点P关于y轴对称并且点P关于y轴对称的点在反比例函数的图象上即可求出点K的值.【解答】解:∵点P(a,b)在反比例函数的图象上,∴ab=2,∵点P关于y轴对称的点的坐标是(﹣a,b),∴k=﹣ab=﹣2.故答案为:﹣2.14.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.【分析】利用画树状图法列出所有等可能结果,然后根据概率公式进行计算即可求解.【解答】解:设四个小组分别记作A、B、C、D,画树状图如图:由树状图可知,共有16种等可能结果,其中小明、小亮被分到同一个小组的结果由4种,∴小明和小亮同学被分在一组的概率是=,故答案为:.15.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为或.【分析】由直角三角形的性质可得∠BAC=60°,AC=1,AB=2,分两种情况讨论,由锐角三角函数和折叠的性质可求解.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,BC=,∴∠BAC=60°,AC=1,AB=2,若点F在线段BC上,∠AFE=90°时,由折叠可得:BD=DF,∠B=∠EFD=30°,∴∠AFC=60°,∵tan∠AFC==,∴CF=,∴BD=(BC﹣CF)=,若点F在BC的延长线上,∠EAF=90°,如图,由折叠可得:BD=DF,∵cos∠ABF==,∴BF=,∴BD=,故答案为:或.三.解答题(共8小题)16.先化简,再求值.(1﹣)÷,其中x的值从不等式组的整数解中选取.【分析】直接将括号里面通分运算,进而利用分式的混合运算法则化简,再解不等式组得出x的值,代入得出答案.【解答】解:原式=•=•=,,解①得:x<3,解②得:﹣1≤x,故不等式组的解集为:﹣1≤x<3,当x=2时,原式=1.17.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.【分析】(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.【解答】解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是全校经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.18.如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为 4 ;②连接OD,当∠PBA的度数为60°时,四边形BPDO是菱形.【分析】(1)根据中位线的性质得到DP∥AB,DP=AB,由SAS可证△CDP≌△POB;(2)①当四边形AOPD的AO边上的高等于半径时有最大面积,依此即可求解;②根据有一组对应边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形,再根据邻边相等的平行四边形是菱形,以及等边三角形的判定和性质即可求解.【解答】(1)证明:∵PC=PB,D是AC的中点,∴DP∥AB,∴DP=AB,∠CPD=∠PBO,∵BO=AB,∴DP=BO,在△CDP与△POB中,∴△CDP≌△POB(SAS);(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,(4÷2)×(4÷2)=2×2=4;②如图:∵DP∥AB,DP=BO,∴四边形BPDO是平行四边形,∵四边形BPDO是菱形,∴PB=BO,∵PO=BO,∴PB=BO=PO,∴△PBO是等边三角形,∴∠PBA的度数为60°.故答案为:4;60°.19.2020春节期间,为了进一步做好新型冠状病毒感染的肺炎疫情防控工作,防止新型肺炎外传,切断传播途径.项城市市区各入口一些主要路段均设立了检测点,对出入人员进行登记和体温检测.下图为一关口的警示牌,已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求警示牌BC的高度.【分析】在Rt△ADB中,由∠BDA=45°,AB=3可得出DA=3,在Rt△ADC中,由特殊角的正切值即可得出线段CA的长度,再利用线段间的关系即可得出结论.【解答】解:∵在Rt△ADB中,∠BDA=45°,AB=3,∴DA=3.在Rt△ADC中,∠CDA=60°,∴tan60°=,∴CA=DA•tan60°=3,∴BC=CA﹣BA=3﹣3(米).答:路况显示牌BC的高度是(3﹣3)米.20.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,4),双曲线y =(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边上一点,且△FBC∽△DEB,求直线FB的解析式.【分析】(1)由条件可先求得点D的坐标,代入反比例函数可求得k的值,又由点E的位置可求得E点的横坐标,代入可求得E点坐标;(2)由相似三角形的性质可求得CF的长,可求得OF,则可求得F点的坐标,利用待定系数法可求得直线FB的解析式.【解答】解:(1)在矩形OABC中,∵B(2,4),∴BC边中点D的坐标为(1,4),∵又曲线y=的图象经过点(1,4),∴k=4,∵E点在AB上,∴E点的横坐标为2,∵y=经过点E,∴E点纵坐标为2,∴E点坐标为(2,2);(2)由(1)得,BD=1,BE=2,BC=2,∵△FBC∽△DEB,∴,即,∴CF=1,∴OF=3,即点F的坐标为(0,3),设直线FB的解析式为y=kx+b,而直线FB经过B(2,4),F(0,3),∴,解得,∴直线BF的解析式为y=x+3.21.在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不超过A 型口罩的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.①求y关于x的函数关系式;②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?(3)在销售时,该药店开始时将B型口罩提价100%,当收回成本后,为了让利给消费者,决定把B型口罩的售价调整为进价的15%,求B型口罩降价的幅度.【分析】(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据“销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元”列方程组解答即可;(2)①根据题意即可得出y关于x的函数关系式;②根据题意列不等式得出x的取值范围,再结合①的结论解答即可;(3)设B型口罩降价的幅度是x,根据题意列方程解答即可.【解答】解:(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)①根据题意得,y=0.15x+0.2(2000﹣x),即y=﹣0.05x+400;②根据题意得,2000﹣x≤3x,解得x≥500,∵y=﹣0.05x+400,k=﹣0.05<0;∴y随x的增大而减小,∵x为正整数,∴当x=500时,y取最大值,则2000﹣x=1500,即药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大;(3)设B型口罩降价的幅度是x,根据题意得(1+100%)(1﹣x)=1+15%,解得x=0.425.答:B型口罩降价的幅度42.5%.22.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【分析】(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P 在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=2,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.23.二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【分析】(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,即可求解;(2)△DNB的面积=△DMB的面积﹣△MNB的面积=MB×DM﹣MB×MN,即可求解;(3)PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,PB=PC,则(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,且PC⊥PB,==﹣1,即可求解.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)C(0,2),∴BC的直线解析式为y=﹣x+2,当t=时,AM=3,∵AB=5,∴MB=2,∴M(2,0),N(2,1),D(2,3),∴△DNB的面积=△DMB的面积﹣△MNB的面积=MB×DM﹣MB×MN=×2×2=2;(3)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).中考模拟考试数学试题姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 在下列4个数中,最小的数是()A.-30B.C.-(-3)D.-|-3|2、(3分) 下列各式的变形中,正确的是()A.(-x-y)(-x+y)=x2-y2B.-x=C.x2-4x+3=(x-2)2+1D.x÷(x2+x)=+13、(3分) 下列调查中,适合用普查方式的是()A.检测100只灯泡的质量情况B.了解在南充务工人员月收入的大致情况C.了解全市学生观看“开学第一课”的情况D.了解某班学生对“南充丝绸文化”的知晓率4、(3分) 不等式组的整数解之和是()A.3B.4C.5D.65、(3分) 如图,把一副三角板放在桌面上,若两直角顶点重合,两条斜边平行,则∠1与∠2的差是()A.45°B.30°C.25°D.20°6、(3分) 某商店剩有两个进价不同的计算器,处理时都卖了70元,其中一个赢利40%,另一个亏本30%,针对这两个计算器,这家商店()A.赚了10%B.赚了10元C.亏了10%D.亏了10元7、(3分) 如图,▱ABCD的对角线AC,BD交于点O,若顺次联接ABCD各边中点,可得到的一个新的四边形.添加下列条件不能肯定新的四边形成为矩形的是()A.AC⊥BDB.AB=BCC.∠ABD=∠ADBD.∠ABO=∠BAO8、(3分) 如图,在正六边形ABCDEF外作正方形DEGH,连接AH,则tan∠HAB等于()A.3B.C.2D.9、(3分) 如图,△ABC的内切圆与三边分别切于点D,E,F,下列结论正确的是()A.∠EDF=∠BB.2∠EDF=∠A+∠CC.2∠A=∠FED+∠EDFD.∠AED+∠BFE+∠CDF>180°10、(3分) 已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),(0,3),对称轴在y轴右侧,则下列结论:①a<0;②抛物线经过(1,0);③方程ax2+bx+c=1有两个不相等的实数根;④-3<a+b<3.正确的有()A.①③B.①②③C.①③④D.③④二、填空题(本大题共 6 小题,共 18 分)11、(3分) 计算:(2-sin45°)0-=______.12、(3分) 若关于x的一元二次方程x2+mx+2n=0有一个根是-2,则m-n=______.13、(3分) 如图,把大正方形平均分成9个小正方形,其中有2个已涂黑,剩余的7个小正方形分别用1,2,3,…,7表示,并写在卡片上,任抽一张,将番号对应的小正方形涂黑,使3个涂黑的小正方形组成轴对称图形,这个事件的概率是______.14、(3分) 如图,AB是⊙O的直径,弦CD⊥AB于E.若CD=6cm,∠CAB=22.5°,则⊙O的半径为______.15、(3分) 如图,若抛物线y=x2与双曲线y=(x<0)上有三个不同的点A(x1,m),B(x2,m),C(x3,m),则当n=x1+x2+x3时,m与n的关系为______ .16、(3分) 如图,菱形ABCD的边长为4,∠B=120°.点P是对角线AC上一点(不与端点A重合),则线段AP+PD的最小值为______.三、计算题(本大题共 1 小题,共 6 分)17、(6分) 解方程:-=1.四、解答题(本大题共 8 小题,共 66 分)18、(6分) 如图,AB∥CD,延长BD到E,∠1+∠E=∠2,∠1+∠2=∠3.求证:BE=CD.19、(6分) 近年“微信”“支付宝”“网购”和“共享单车”给我们的生活带来了很多便利,某数学小组在校内对“你最认可的新事物”进行调查(抽到的同学从这4种中选1种).随机调査了m 人,并将调査结果绘制成如下统计图(尚未完善).(1)根据图中信息,可知m=______,n=______;(2)已知A,B两同学都最认可“微信”,C最认可“支付宝”,D最认可“网购”.从这4名同学中再抽取两名,请通过列表或画树状图,求抽到的两名同学最认可的新事物不一样的概率.20、(8分) 已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实数根x1和x2.(1)求实数k的取值范围;(2)当|x1-x2|=k时,求实数k的值.21、(8分) 如图,直线y=与双曲线数y=交于A,B两点,点A的纵坐标是2.(1)求反比例函数的解析式.(2)根据图象直接写出不等式>的解集.(3)将直线y=向上平移后,与y轴交于点C,与x轴交于点D.当四边形ABDC是平行四边形时求直线CD的解析式.22、(8分) 如图,AB是半⊙O的直径,点C,D在半圆上,CD=BD,过点D作EF⊥AC于E,交AB 的延长线于F.(1)求证:EF是⊙O的切线.(2)当BF=4,sinF=时,求AE的长.23、(10分) 某商店试销一款进价为60元/件的新童装,并与供货商约定,试销期间售价不低于进价,也不得高于进价的45%,同一周内售价不变.从试销记录看到,单价定为65元这周,销售了55件;单价定为75元这周,销售了45件.每周销量y(件)与销售单价x(元)符合一次函数关系.(1)求每周销量y(件)与销售单价x(元)之间的关系式.(2)商店将童装售价定为多少时,这周内销售童装获得毛利最大,最大毛利W是多少元?(3)若商店规划一周内这项销售获得毛利不低于500元,试确定售价x的范围.24、(10分) 如图,正方形ABCD的边长为2,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ.(1)直接写出线段AP和CQ的关系.(2)当A,O,P三点共线时,求线段DP的长.(3)连接PQ,求线段PQ的最小值.25、(10分) 如图,抛物线y=ax2+bx+4与x轴交于点A(-2,0)和点B(4,0).点C是抛物线第一象限上一点,CH⊥x轴于H.点D是BC的中点,DH与y轴交于点E.(1)求抛物线的解析式.(2)当C恰好是抛物线的顶点时,求点E的坐标.(3)当△CHB的面积是△EHB面积的时,求tan∠DHB的值.2019年四川省南充市中考数学模拟试卷(5月份)【第 1 题】【答案】D【解析】解:-30=-1,,-(-3)=3,-|-3|=-3,根据实数比较大小的方法,可得-3<-1<0<3,故最小的数是-|-3|.故选:D.实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【第 2 题】【答案】A【解析】解:A.(-x-y)(-x+y)=x2-y2,正确;B.,错误;C.x2-4x+3=(x-2)2-1,错误;D.x÷(x2+x)=,错误;故选:A.根据平方差公式和分式的加减以及整式的除法计算即可.此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.【第 3 题】【答案】D【解析】解:A、检测100只灯泡的质量情况,调查具有破坏性适合抽样调查,故A不符合题意;B、了解在南充务工人员月收入的大致情况,调查范围广适合抽样调查,故B符合题意;C、了解全市学生观看“开学第一课”的情况,调查范围广适合抽样调查,故C不符合题意;D、了解某班学生对“南充丝绸文化”的知晓率,适合用普查方式,符合题意;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.。
大连市第55中学09届初三数学学科第一次模拟试卷2009年4月一、选择题(本题8小题,每小题3分,共24分)1.在平面直角坐标系中,点P 的坐标为(46)-,,则点P 在( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.下列运算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 3.图1是小敏同学6次数学测验的成绩统计 表,则该同学6次成绩的中位数是( )A . 60分B . 70分C .75分D .80分4.下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a5.已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切6.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁 7.下面简单几何体的主.视图是(C ) 8.O 是边长为1的正△ABC 的中心,将△ABC 绕点O 逆时针方向旋转180°,得△A 1B 1C 1,则△A 1B 1C 1与△ABC 重叠部分(图中阴影部分)的面积为( ).A .33 B .43 C .63 D .83二、填空题(本题共8小题,每小题3分,共24分)9.若向南走2m 记作2m -,则向北走3m 记作 m .10.东东和爸爸到广场散步,爸爸的身高是176cm ,东东的身高是156cm ,在同一时刻爸爸的影长是88cm ,那么东东的影长是 cm .分数 测验1 测验2 测验3 测验4 测验5 测验6图1是度.12.下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是.13.如图,Rt △OAB 的直角边OA 在y 轴上,点B 在第一象限内,OA =2,AB =1,若将△OAB 绕点O 按顺时针方向旋转900,则点B的对应点的坐标是___________.14.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.如图,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB=6cm ,则AE = cm. 16.某市今年计划修建一条1500米的景观路,为了尽量减少施工对城市交通的影响,实际工作效率比原计划提高了20%,结果提前2天完成任务.设设原计划每天修路x 米,则根据题意可列方程 .三、解答题(本题共4小题,其中17、18题各9分, 19 题10分,20题12分,共40分)17.化简:aa a a a 21)242(22+⋅---18.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.输入x (2)⨯- 4+输出 A B CE D19.已知E 、F 是ABCD 的边AB 、CD 延长线上的点,且BE = DF ,线段EF 分别交AD 、BC于点M 、N .请你在图中找出一对全等三角形并加以证明.(写出主要推理依据) 解:我选择证明△__________≌△____________20.如图,有四张背面相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A ,B ,C ,D 表示); (2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.图 7F NMED CBA四、解答题(本题共3小题,21、22题各10分,其中23题8分,共28分)21.如图,二次函数)0(21≠++=a c bx ax y 顶点坐标为(1,4),与x 轴一个交点为(3,0)(1)求二次函数解析式; (2)若直线2212+-=x y 与抛物线交于A 、B 两点,求21y y ≥时x 的取值范围.22.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)23.武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇.冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A地到C地所用的时间.(2)求水流的速度.(3)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇.已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数关系式为11112y x=-+,假设群众上下船的时间不计,求冲锋舟在距离A地多远处与救生艇第二次相遇?x(分)五、解答题和附加题(本题共3小题,其中24题10分,25题14分,26题10分,共34分;附加题5分,全卷累积不超过150分,附加题较难,......建议考生最后答附加题..........)24.如图,直线334y x=+和x轴、y轴的交点分别为点B、A,点C是OA的中点,过点C向左方作射线CM⊥y轴,点D是线段OB上一动点,不和点B重合,DP⊥CM于点P,DE⊥AB于点E,连接PE.⑴求A、B、C三点的坐标;⑵设点D的横坐标为x,△BED的面积为S,求S关于x的函数关系式;⑶是否存在点D,使△DPE为等腰三角形?若存在,请直接写出所有满足要求的x的值;若不存在,说明理由.25.如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).(1)当t=1时,得P1、Q1两点,求过A、P1、Q1三点的抛物线解析式及对称轴l;(2)当t为何值时,PC⊥QC;此时直线PQ与⊙C是什么位置关系?请说明理由;(3)在(2)的条件下,(1)中的抛物线对称轴l上存在一点N,使得NP+NQ最小,求出点N的坐标.26.⑴ 如图1,已知正方形ABCD ,E 是AD 上一点,F 是BC 上一点,G 是AB 上一点,H 是CD 上一点,线段EF 、GH 交于点O ,∠EOH =∠C ,求证:EF =GH ; ⑵如图2,若将“正方形ABCD ”改为“菱形ABCD ”,其他条件不变,探索线段EF 与线段GH 的关系并加以证明; ⑶如图3,若将“正方形ABCD ”改为“矩形ABCD ”,且AD =mAB ,其他条件不变,探索线段EF 与线段GH 的关系并加以证明.附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由.B C H F HDF大连市第55中学09届初三数学学科第一次模拟试卷参考答案与评分标准(仅供参考....) 一、选择题(本题8小题,每小题3分,共24分)1.D . 2.B . 3.C . 4.D . 5.B . 6.B . 7.C .8.C . 二、填空题(本题共8小题,每小题3分,共24分)9.+3m .10.78cm .11.100.12.0. 13.(2,-1).14.-3.15.6.16.()2%20115001500=+-x x . 三、解答题(本题共4小题,其中17、18题各9分, 19 题10分,20题12分,共40分)17.化简:解:aa a a a 21)242(22+⋅--- =242--a a ·()21+a a ………………………………………………………………………3分 =()()222--+a a a ·()21+a a ………………………………………………………………6分=a1………………………………………………………………………9分 18.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x ,根据题意列方程,得()2.7152=+x ………………………………………………………………………5分2.11±=+x ………………………………………………………………………6分 解得2.01=x ,2.22-=x …………………………………………………………………7分 经检验2.22-=x 不符合题意,舍去,所以%202.0==x ………………………………8分答:这两年的年平均增长率为20%. ………………………………………………………9分 19.△DMF ≌△BNE ………………………………………………………………………1分 证明:四边形ABCD 是平行四边形∴DC ∥AB ,AD ∥BC (平行四边形的定义) ………………………………………3分 ∴∠F =∠E ,∠FDA =∠A (两直线平行,内错角相等) ∠A =∠CBE (两直线平行同位角相等)…………………………………………………6分 ∴∠FDA =∠CBE ………………………………………………………………………8分 因为DF =BE , ∴△DMF ≌△BNE (ASA )……………………………………………………………10分 注:方法不唯一,其它方法请参照给分20. 解法一:(1………………………………………………………………………6分 (2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,……………………8分 其中既是中心对称图形又是轴对称图形的有9种,………………………………………10分 故所求概率是169. ………………………………………………………………………12分解法二:(1)所以可能出现的结果:(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ).(2)由树状图可知,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种,故所求概率是169. 四、解答题(本题共3小题,21、22题各10分,其中23题8分,共28分)A B C D 开始第一次牌面的字母第二次牌面的字母21. 解:(1)设所求二次函数的解析式为21()y a x h k =-+,因为顶点坐标为(1,4),所以21(1)4y a x =-+,……………………………………………2分 过点(3,0),所以20(31)4a =-+,所以1a =-,…………………………………………4分 所以,21(1)4y x =--+,即2123y x x =-++ ……………………………………………6分(2)当12y y =时,223x x -++=122x -+,解得154x =254x =,……………………………………………………………8分由图象知,当54≤x≤54+时,21y y ≥.…………………………………………10分 22. 解:如图,过点A 作BC AD ⊥,垂足为D ,……………1分根据题意,可得︒=∠30BAD ,︒=∠60CAD ,66=AD .……2分在Rt △ADB 中,由ADBD BAD =∠tan , 得322336630tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD .………5分 在Rt △ADC 中,由ADCD CAD =∠tan , 得36636660tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD .……………8分 ∴2.152388366322≈=+=+=CD BD BC . ……………9分答:这栋楼高约为152.2 m . ……………10分23. 解:(1)24分钟 (1分)(2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩ ·································································································· (3分) D解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩ 答:水流速度是112千米/分. ························································································ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为56y x b =+ ····················································································································· (5分) 把(440),代入,得1103b =- ∴线段a 所在直线的函数解析式为511063y x =- ························································ (6分) 由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ·························································· (7分) 答:冲锋舟在距离A 地203千米处与救生艇第二次相遇.………………………… 8分 五、解答题和附加题(本题共3小题,其中24题10分,25题14分,26题10分,共34分;附加题5分,全卷累积不超过150分,附加题较难,建议考生最后答附加题................) 24.(1)将x =0代入343+=x y ,得y =3,故点A 的坐标为(0,3); ∵C 为OA 的中点,则C 点坐标为(0,1.5);将y =0代入343+=x y ,得x =-4,故点B 的坐标为(-4,0); 则A 、B 、C 三点的坐标分别为(0,3),(-4,0),(0,1.5); …………………………3分(2)由(1)得OB =4,OA =3,则由勾股定理可得,AB =5. …………………………4分x (分)∵点P 的横坐标为x ,故OD = -x ,则x BD +=4,又由已知得,∠DEB =∠AOB =90°, ∴53sin sin ===∠=∠AB OA BD DE ABO DBE ,534=+x DE ,)4(53x DE +=, 54cos cos ===∠=∠AB OB BD BE ABO DBE ,544=+x BE ,)4(54x BE +=, …………………………6分 ∴)4(53)4(5421x x S +⨯+⨯=. 2)4(256x S +=(04≤<-x ). …………………………7分 (3)符合要求的点有三个,x =0,-1.5,-1639. …………………………10分25.(1)222833y x x =-++,对称轴为直线:12x =…………………………4分 (2)当t =2时,PC ⊥QC ………………………………………………………7分此时直线PQ 与⊙C 相切,理由略………………………………………10分(3)N (12,203)……………………………………………………………14分 26.⑴ 如图1,已知正方形ABCD ,E 是AD 上一点,F 是BC 上一点,G 是AB 上一点,H 是CD 上一点,线段EF 、GH 交于点O ,∠EOH =∠C ,求证:EF =GH ;⑵如图2,若将“正方形ABCD ”改为“菱形ABCD ”,其他条件不变,探索线段EF 与线段GH 的关系并加以证明;⑶如图3,若若将“正方形ABCD ”改为“矩形ABCD ”,且AD =mAB ,其他条件不变,探索线段EF 与线段GH 的关系并加以证明.⑴略证:如图,过点F 作FM ⊥AD 于M ,过点G 作GN ⊥CD 于NB CH F HD FN N证△GNH ≌△FME∴EF =GH ……………………………………………………………3分 ⑵略证:如图,过点F 作FM ⊥AD 于M ,过点G 作GN ⊥CD 于N证△GNH ≌△FME∴EF =GH ……………………………………………………………6分 ⑶略证:如图,过点F 作FM ⊥AD 于M ,过点G 作GN ⊥CD 于N证△GNH ∽△FME ∴m FMGN EF GH == ……………………………………………………………10分附加题:已知平行四边形ABCD ,E 是AD 上一点,F 是BC 上一点,G 是AB 上一点,H 是CD 上一点,线段EF 、GH 交于点O ,∠EOH =∠C ,AD =mAB ,则GH =mEF略证:如图,过点F 作FM ⊥AD 于M , 过点G 作GN ⊥CD 于N 证△GNH ∽△FME ∴m FMGN EF GH == 即GH =mEF .注:命题正确1分,图形正确1分,证明过程3分,共计5分.D EF。