2015学年北京市燕山区七年级下学期期末考试数学试题(含答案)
- 格式:doc
- 大小:288.50 KB
- 文档页数:8
七年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法来选取正确答案.1.下列各式的计算中,正确的是()A.﹣2﹣2=﹣4 B.(+1)0=0 C.(﹣)﹣3=27 D.(m2+1)0=12.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°(第2题) (第5题)3.若3x=a,3y=b,则3x﹣2y等于()A.B.2ab C.a+D.4.若分式方程=2+有增根,则a的值为()A.4 B.2 C.1 D.05.如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元.下列命题:①2007年我国财政收入约为61330(1﹣19.5%)亿元;②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有()A.3个B.2个C.1个D.0个6.计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣17.已知多项式ax+b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,则a b的值为()A.﹣2 B.2 C.﹣1 D.18.为保证某高速公路在2013年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.+=B.+=C.﹣=D.+=9.下列不等式变形中,一定正确的是()A.若ac>bc,则a>b B.若a>b,则ac2>bc2C.若ac2>bc2,则a>b D.若a>0,b>0,且,则a>b10.不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤3二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:2x3﹣8xy2=.12.芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00000201kg,用科学记数法表示10粒芝麻的重量为.13.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线a∥b,b∥c,则a∥c;(5)两条直线被第三条直线所截,同位角相等.其中正确的是.14.如果关于x的不等式(a﹣1)x>a+5和2x>4的解集相同,则a的值为.15.如果x2﹣2(m﹣1)x+m2+3是一个完全平方式,则m=.16.如果记y ==f (x ),并且f (1)表示当x =1时y 的值,即f (1)==;f ()表示当x =时y 的值,即f ()==;…那么f (1)+f (2)+f ()+f (3)+…+f (n +1)+f()= (结果用含n 的代数式表示).三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以) 17.解下列方程(组):(1) (2)﹣2=.18.计算:(1)()﹣1﹣4×(﹣2)﹣2+(﹣π+3.14)0﹣()﹣2(2)用简便方法计算:1252﹣124×126﹣2101×(﹣0.5)99.19.解不等式组,并从其解集中选取一个能使下面分式有意义的整数,代入求值.20.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.21.设b=ma是否存在实数m,使得(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)能化简为2a2,若能,请求出满足条件的m值;若不能,请说明理由.22.某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.23.(1)已知a、b、c是△ABC的三边长,试判断代数式(a2+b2﹣c2)2与4a2b2的大小.(2)已知a、b、c是△ABC的三边长,且3a3+6a2b﹣3a2c﹣6abc=0,则△ABC是什么三角形?24.为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?参考答案一、仔细选一选1.解:A、﹣2﹣2=﹣,错误;B、(+1)0=1,错误;C、(﹣)﹣3=﹣27,错误;D、(m2+1)0=1,正确;故选D2.解:∵a∥b,∴∠1=∠3,∵∠2+∠3=45°,∴∠2=45°﹣∠3=45°﹣∠1=20°.故选C3.3x﹣2y=3x÷32y=3x÷32y=3x÷(3y)2=a÷b2=.故选A.4.解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选:A5.解:①2007年的财政收入应该是,不是2007年我国财政收入约为61330(1﹣19.5%)亿元,所以①错.②因为是正增长所以2009年比2007年和2008年都高,所以②错.③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.所以③正确.故选C.6.解:1÷=1××(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m﹣1.故选B.7.解:∵(ax+b)(2x2﹣x+2)=2ax3+(2b﹣a)x2+(2a﹣b)x+2b,又∵展开式中不含x的一次项,且常数项为﹣4,∴,解得:,∴a b=(﹣1)﹣2=1,选D.8.解:设规定的时间为x天,由题意得,+=.故选D.9.解:A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.分母越大,分数值越小,故此选项错误.故选C.10.解:根据题意可知a﹣1≤3即a+2≤5,所以a≤3,又因为3<x<a+2,即a+2>3,所以a>1,所以1<a≤3,故选:D.二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).12.解:0.00000201=2.01×10﹣6,故答案为:2.01×10﹣6.13.解:(1)在同一平面内,不相交的两条直线叫做平行线;故错误;(2)经过直线外一点,有且只有一条直线与已知直线平行;故错误;(3)在同一平面内,垂直于同一条直线的两直线平行;故错误;(4)直线a∥b,b∥c,则a∥c;故正确;(5)两条平行直线被第三条直线所截,同位角相等,故错误.其中正确的是(4).14.解:由2x>4得x>2,∵两个不等式的解集相同,∴由(a﹣1)x>a+5可得x>,∴=2,解得a=7.故答案为:7.15.解:∵x2﹣2(m﹣1)x+m2+3是一个完全平方式,∴(m﹣1)2=m2+3,即m2﹣2m+1=m2+3,解得:m=﹣1,故答案为:﹣116.解:∵根据题意,f(2)==,f()==;f(3)==,f()==;…f(n+1)=,f()==;∴f(1)+f(2)+f()+f(3)+…+f(n+1)+f()=+++++…++=+1+1+…+1=故答案为:+n.三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以)17.解:(1)方程组整理得:,①×6+②×5得:57x=﹣38,解得:x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为;(2)去分母得:x﹣2x+6=3,解得:x=3,经检验x=3是增根,分式方程无解.18.解:(1)原式=2﹣4×+1﹣9=﹣7;(2)原式=1252﹣(125﹣1)×(125+1)﹣2×(﹣2×0.5)99=1252﹣1252+1+2=3.19.解:,由①得,x<2,由②得,x>﹣3,所以,不等式组的解集是﹣3<x<2,÷﹣=×﹣=﹣=,分式有意义,则x2﹣1≠0,3x≠0,解得x≠±1,x≠0,所以,使得分式有意义的整数只有﹣2,代入得:原式===.20.解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:不能化简为2a2,理由:∵设b=ma,∴(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)=4a2﹣4ab+b2﹣a2+4b2+4ab+4a2=7a2+5b2=7a2+5(ma)2=7a2+5m2a2=(7+5m2)a2=2a2,故7+5m2=2,解得:5m2=﹣5,不合题意,错误.22.解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)如图:(4)21000×=2520(人)全市本届学生中“最喜欢足球运动”的学生约有2520人;23.解:(1)(a2+b2﹣c2)2﹣4a2b2第11页(共11页)=(a 2+b 2﹣c 2+2ab )(a 2+b 2﹣c 2﹣2ab )=[(a +b )2﹣c 2][(a ﹣b )2﹣c 2]=(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +c ),∵a ,b ,c 是三角形ABC 三边,∴a +b +c >0,a +b ﹣c >0,a ﹣b ﹣c <0,a ﹣b +c >0,∴(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +C )<0,即值为负数,(a 2+b 2﹣c 2)2<4a 2b 2(2)3a 3+6a 2b ﹣3a 2c ﹣6abc =0,可得:a (a ﹣c )(a +2b )=0,所以a =c ,所以△ABC 是等腰三角形.24.解:(1)设我校购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,由题意,得,∴解方程组得:答:购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元.(2)设我校购进A 种纪念品x 个,购进B 种纪念品y 个,由题意,得则,解得,解得:20≤y ≤25 ∵y 为正整数∴y =20,21,22,23,24,25答:共有6种进货方案;(3)设总利润为W 元,由题意,得W =20x +30y =20(200﹣2 y )+30y =﹣10y +4000(20≤y ≤25)∵﹣10<0,∴W 随y 的增大而减小,∴当y =20时,W 有最大值W 最大=﹣10×20+4000=3800(元)答:当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元.。
最新人教版七年级(下)期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算中,正确的是( )A 、x •x 2=x2 B 、(x +y )2=x 2+y 2 C .(x 2)3=x 6 D 、x 2+x 2=x 4 答案:C考点:整式的运算。
解析:A 、x •x 2=x1+2 =x 3,故错误; B 、(x +y )2=x 2+2xy +y 2,故错误;C .正确D 、x 2+x 2=2x 2,故错误; 2.一片金箔的厚度为0.000000091m ,用科学记数法表示0.000000091为( )A 、0.91×10﹣7B 、9.1×10﹣8C 、-9.1×108D 、9.1×108答案:B考点:科学记数法。
解析:把一个数表示成a 与10的n 次幂相乘的形式(1≤|a |<10,n 为整数),这种记数法叫做科学记数法,所以,0.000000091=9.1×10﹣83.如果a <b ,下列各式中正确的是( )A 、ac 2<bc 2B 、11a b > C 、﹣3a >﹣3b D 、44a b > 答案:C考点:不等式的性质。
解析:A 、当c =0时,ac 2<bc 2不成立,故错误;B 、11a b> 当a 是负数,b 是正数时,不成立,故错误; C 、﹣3a >﹣3b 不等式两边乘以-3,不等号方向改变,故正确; D 、44a b > 不等式两边除以正数4,不等号方向不改变,故错误;4.下列长度的三条线段能组成三角形的是( )A 、1.5cm ,2cm ,2.5cmB 、2cm ,5cm ,8cmC.1cm,3cm,4cm D、5cm,3cm,1cm答案:A考点:构成三角形的条件。
解析:三角形的两边之和大于第三边,只有A满足。
北京市燕山地区2020-2021学年七年级下学期期末考试数 学2021年7月一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的(如图案1).下面四个图案中,可以通过平移图案1得到的是2.9的平方根是A .3 C .±3 D .3.在平面直角坐标系中,下列各点位于第四象限的是A .(2,3)B .(2,-3)C .(-2,3)D .(-2,-3) 4.下列调查中,不适合...采用全面调查(普查)方式的是 A .调查新冠疫情期间乘坐地铁的乘客体温情况 B .调查“祝融号火星车”零部件质量状况C .调查本校七年级(1)班学生观看电影《我和我的家乡》情况D .调查国产纯电动汽车蓄电池的续航里程情况5.如图,从人行横道线上的点P 处过马路,沿线路PB 行走距离最短,其依据的几何学原理是A .垂线段最短B .两点之间线段最短C .两点确定一条直线D .在同一平面内,过一点有且只有一条直线与已知直线垂直 6.已知a b <,则下列结论正确的是A .11a b +>+B .11a b ->-C .a b >--D .22a b > 7.如图,直线a ,b 被c ,d 所截,∠1+∠2=180°,∠3=60°,则∠4的度数为8.如图是老北京城一些地点的分布示意图,在图中,分别以正东,正北方向为x 轴,y 轴的正方向建立平面直角坐标系.如果表示东直门的点的坐标为(3.5,4),表示宣武门的点的坐标为(-2,-1),那么坐标原点所在的位置是A .天安门B .正阳门C .西直门D .阜成门9.我们定义一个关于实数a ,b 的新运算,规定:a *b =3a -2b ,例如,4*5=3×4-2×5.安定门德胜门景山故宫崇文门天安门西便门宣武门正阳门东便门朝阳门西直门阜成门东直门北若实数m 满足m *2<1,则m 的取值范围是 A .35m >B .53m >C .35m <D .53m < 10.我国是一个水资源严重短缺的国家,本世纪以来,我国政府相继采取了南水北调、推进海绵城市建设、水资源循环利用等一系列措施来缓解水资源匮乏对经济社会发展的制约.下面是根据国家统计局发布的有关信息绘制的统计图.根据统计图提供的信息,下列推断不合理...的是 A .2014-2019年,全国生活用水总量逐年增加 B .2014-2019年,全国用水总量大约每年增长2% C .2019年,全国农业用水总量约为工业用水总量的3倍 D .2019年,全国用水总量约为6020亿立方米 二、填空题(本题共24分,每小题3分) 11.请写出一个比-3小的无理数: .12.x 的5倍与3的和是非负数,用不等式表示为 .13.点A (m ,5)到x 轴和y 轴的距离相等,则点A 的坐标为 .14.已知110,=⎧⎨=-⎩x y 是方程为31mx y -=的解,则m 的值为 .15.如图,AB ⊥AC ,∠1=30°,要使AD ∥BC ,需再添加的一个条件为: .16.关于x 的不等式1ax b >+的解集为1x <-,请写出一组满足条件的实数a ,b 的值:a = ,b = .2019年全国用水结构统计2014—2019年全国生活用水总量统计图17.在“互联网+”时代,国家积极推动信息化技术与传统教学方式的深度融合,实现线上、线下融合式教学模式变革.为了解本校学生对融合式教学模式的喜爱程度,李校长对全校学生进行了问卷调查,并对调查结果按“非常喜欢”,“喜欢”,“一般”,“不喜欢”四个等级进行统计,以下是排乱的统计步骤: A .从扇形图中分析出学生对融合式教学模式的喜爱程度 B .发放调查问卷,并利用问卷星收集学生问卷数据 C .绘制扇形图来表示各等级所占的百分比 D .整理所收集的数据并绘制频数分布表正确的统计步骤的顺序是 .(用字母按顺序写出即可)18.我们知道“对于实数m ,n ,k ,若m =n ,n =k ,则m =k ”,即相等关系具有传递性.小捷由此进行联想,提出了下列命题:①对于实数a ,b ,c ,若a >b ,b >c ,则a >c ; ②对于直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a ⊥c ;③对于角α,β,γ,若α与β互为邻补角,β与γ互为邻补角,则α与γ互为邻补角; ④对于图形M ,N ,P ,若M 可以平移到N ,N 可以平移到P ,则M 可以平移到P . 其中所有真命题的序号是 .三、解答题(本题共46分.19题~20题,每题各4分;21题5分;22题6分;23题~25题,每题各5分;26题~27题,每题各6分) 19.计算:1-+-20.解不等式213≤-x ,并写出它的所有正整数解. 21.解方程组:317.x y x y -=⎧⎨+=⎩,22.解不等式组:4132(1)4,≤+⎧>⎪⎨⎪-⎩x x x ,并把它的解集在数轴上表示出来.23.如图,AD ⊥BC ,垂足为D ,EF ⊥BC ,垂足为点F ,∠E =∠3,求证:AD 是∠BAC 的平分线.请将下面的证明过程补充完整.证明:∵AD ⊥BC ,EF ⊥BC ,(已知) ∴∠4=∠5=90°,(垂直定义) ∴AD ∥EF ,( )∴∠E =∠2,( 两直线平行,同位角相等 ) ∠3= .( ) ∵ ,(已知) ∴ ,(等量代换)∴AD 是∠BAC 的平分线.(角平分线定义)24.每年的4月23日是联合国教科文组织确定的“世界读书日”,又称“世界图书和版权日”.红星中学在“世界读书日”开展“弘扬传统文化,阅读经典名著”主题活动,计划购置一批书籍.已知每本《诗经》25元,每本《论语》18元,该学校决定购买《诗经》和《论语》共100本,总费用不超过2000元,那么该学校最多可以购买《诗经》多少本?G F A BDCE5412325.为庆祝中国共产党建党100周年,使学生进一步了解中国共产党的历史,某学校组织了“党史百年天天读”活动,并进行了一次全校2000名学生都参加的书面测试,阅卷后,教学处随机抽取了100份答卷进行分析统计,发现考试成绩x (分)的最低分为50分,最高分为满分100分,且分数都为整数,并绘制了尚不完整的统计图表:请根据统计图表提供的信息,解答下列问题: (1) 在频数分布表中,a = ;b = ;(2) 请将频数分布直方图补充完整,并在图中标明相应数据;(3) 该校对成绩为90≤x ≤100的学生进行奖励,按成绩从高分到低分设一,二,三等奖,各奖项的人数占比如扇形统计图所示.① 在扇形图中,二等奖所在扇形的圆心角度数为 °; ② 请你估算全校获得一等奖的学生人数约为 人.26.如图,AB ∥CD ,直线MN 交AB 于点E ,交CD 于点F ,点P 是直线MN 上一个动点,过点P 作PG ⊥MN 交CD 于点G .(1) 当点P 运动到图1位置时, ① 依题意补全图1;② 判断∠PGD 与∠AEM 的数量关系,并说明理由;/分(2) 当点P运动到图2位置时,直接用等式表示出∠PGD与∠AEM的数量关系.(不需要证明)27.如图,在平面直角坐标系xOy中,点A(a-1,a+2)位于第一象限,将点A向下平移一定单位长度得到点B(1,0),以AB为边在AB右侧作正方形ABCD.(1) 求a的值及点D的坐标;(2) 横、纵坐标都是整数的点叫做整点.已知点M(-5,0),N(0,5),将正方形ABCD向左平移m(m>0)个单位长度,得到正方形A'B'C'D',记正方形A'B'C'D' 和△OMN重叠的区域(不含边界)为W.①当m=3时,区域W内的整点个数为;②若区域W内恰有3个整点,直接写出m的取值范围.北京市燕山地区2020-2021学年七年级下学期期末考试数学试题参考答案一、选择题(本题共30分,每小题3分)11.答案不唯一,如,π-,… 12.530≥+x 13.(±5,5) 14.-315.答案不唯一,如,∠B =60°;∠ACB =30°;∠1=∠ACB ;… 16.答案不唯一,如,a =-1,b =0 17.B D C A 18.①④三、解答题(本题共46分.19题~20题,每题各4分;21题5分;22题6分;23题~25题,每题各5分;26题~27题,每题各6分.)19+321-- ……………………3分 ……………………4分20.解:移项,得2x ≤4, ……………………1分系数化为1,得x ≤2,∴不等式的解集是x ≤2, ……………………2分 ∴它的所有正整数解为1,2. ……………………4分21.解:(1)解法一:317.x y x y -=⎧⎨+=⎩,①②①+②得,4x =8,x =2. ……………………2分 把x =2代入②得,2+y =7,解得,y =5. ……………………4分 ∴原方程组的解是25.,=⎧⎨=⎩x y ……………………5分解法二:317.x yx y-=⎧⎨+=⎩,①②,由①得,y=3x-1,③……………………1分把③代入②得,x+3x-1=7,解得,x=2.……………………2分把x=2代入③得,y=3×2-1=5.……………………4分∴原方程组的解是25.,=⎧⎨=⎩xy……………………5分解法三:317.x yx y-=⎧⎨+=⎩,①②由②得,y=7-x,③……………………1分把③代入①得,3x-(7-x)=1,4x=8,x=2.……………………2分把x=2代入③得,y=7-2=5.……………………4分∴原方程组的解是25.,=⎧⎨=⎩xy……………………5分22.解:4132(1)4xxx+⎧>⎪⎨⎪-⎩,≤①.②解不等式①,得4x+1>3x,……………………1分x>-1.……………………2分解不等式②,得2x-2≤4,……………………3分x≤3,……………………4分∴不等式组的解集是-1<x≤3.……………………5分解集在数轴上表示如图:……………………6分23.证明:∵AD⊥BC,EF⊥BC,(已知)∴∠4=∠5=90°,(垂直定义)∴AD∥EF,(同位角相等,两直线平行)……………………1分∴∠E =∠2,( 两直线平行,同位角相等 )∠3= ∠1 .( 两直线平行,内错角相等 ) ……………………3分 ∵ ∠E =∠3 ,(已知) ∴ ∠1=∠2 ,(等量代换)∴AD 是∠BAC 的平分线.(角平分线定义) ……………………5分 24.解:设该学校购买《诗经》x 本, ……………………1分由题意得,25x +18(100-x )≤2000, ……………………2分 解得,x ≤2007. ……………………3分 ∵x 为正整数,且2007=4287, ∴x 最大为28, ……………………4分∴该学校最多可以购买《诗经》28本. ……………………5分 25.解:(1) a = 20 ;b = 0.26 ; ……………………2分(2) 补全频数分布直方图如图:……………………3分(3) ①108; ……………………4分 ② 40. ……………………5分26.解:(1) ①依题意补全图1; ……………………1分② ∠PGD +∠AEM =90°. ……………………2分 理由如下;方法一:如图,过点P 作PH ∥AB ,∴∠AEM =∠1. ……………………3分 ∵AB ∥CD ,∴PH ∥CD ,∴∠PGD =∠2.……………………4分 ∵PG ⊥MN ,∴∠MPG =90°,即∠1+∠2=90°,∴∠PGD +∠AEM =90°.……………………5分 方法二:如图,∵AB ∥CD ,∴∠AEM =∠CFP .……………………3分 ∵PG ⊥MN ,∴∠GPF =90°, (4)分 ∴∠PGD +∠CFP =90°,∴∠PGD +∠AEM =90°.……………………5分 (2) ∠PGD -∠AEM =90°.……………………6分 H21E MGDC P AB N FE MG DC PA BNF27.解:(1)∵点A (a -1,a +2)向下平移得到点B (1,0),∴a -1=1,∴a =2, ……………………1分∴点A 坐标为(1,4),∴正方形ABCD 的边长AB =AD =4. ……………………2分 ∵AD ∥x 轴,∴点D 的坐标为(5,4). ……………………3分(2)① 3; ……………………4分② 2<m ≤3,或6≤m <7. ……………………6分说明:与参考答案不同,但解答正确相应给分.。
2023北京燕山初一(下)期末数 学一、选择题。
(本题共20分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的。
1.π的相反数是( )A.B.﹣C.﹣πD.π2.在下面的四个图案中,可以通过平移如图图案得到的是( )A.B.C.D.3.如图,点O在直线AB上,OC⊥OD,若∠BOD=40°,则∠AOC的度数是( )A.120°B.130°C.140°D.150°4.党的二十大报告提出“深化全民阅读活动”.某校开展了“书香浸润心灵阅读点亮人生”读书系列活动.为了解学生的课外阅读情况,从全校2000名学生记录的一周的课外阅读时间(单位:小时)中随机抽取了200名学生课外阅读时间(单位:小时)进行统计,在这个问题中以下说法正确的是( )A.200名学生一周的课外阅读时间是样本B.200名学生是总体C.此调查为全面调查D.样本容量是20005.在数轴上表示不等式2x﹣6<0的解集,正确的是( )A.B.C.D.6.两位同学在讨论一个一元一次不等式.强强说:“不等式在求解的过程中需要改变不等号的方向.”国国说:“不等式的解集为x≤5.”根据上面对话提供的信息,他们讨论的不等式是( )A.﹣2x≥﹣10B.2x<10C.﹣2x>10D.﹣2x≤﹣107.a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>﹣2B.|a|<|b|C.ab>0D.a<﹣b8.我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x人,物价为y钱,下列方程组正确的是( )A.B.C.D.9.小明用计算器求了一些正数的平方,记录如下表.x1515.115.215.315.415.515.615.715.815.916x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256下面有四个推断:①=1.51②一定有3个整数的算术平方根在15.5~15.6之间③对于小于15的两个正数,若它们的差等于0.1,则它们的平方的差小于3.01④16.22比16.12大3.23所有合理推断的序号是( )A.①②B.③④C.①②④D.①②③④10.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么A2023坐标为( )A.(2023,1)B.(2023,0)C.(1011,1)D.(1011,0)二、填空题。
七下期期末姓名: 学号 班级一、选择题:本大题共10个小题,每小题3分,共30分1.若m >-1,则下列各式中错误的...是 A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是A.±4B.=-4 3.已知a >b >0,那么下列不等式组中无解..的是 A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为A 先右转50°,后右转40°B 先右转50°,后左转40°C 先右转50°,后左转130°D 先右转50°,后左转50°5.解为12xy=⎧⎨=⎩的方程组是A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是A.1000 B.1100 C.1150 D.1200PCBA小刚小军小华1 2 37.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用•0,0表示,小军的位置用2,1表示,那么你的位置可以表示成A.5,4B.4,5C.3,4D.4,3二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3x+1的解集是________. 13.如果点Pa,2在第二象限,那么点Q-3,a 在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便即距离最近,请你在铁路旁选一点来建火车站位置已选好,说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.将所有答案的序号都填上 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.C BAD19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗请说明理由;22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.23.如图, 已知A-4,-1,B-5,-4,C-1,-3,△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点Px 1,y 1平移后的对应点为P′x 1+6,y 1+4;1请在图中作出△A′B′C′;2写出点A′、B′、C′的坐标.24.某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B 两种货厢的节数,有哪几种运输方案请设计出来.答案:一、选择题:共30分BCCDD,CBBCD二、填空题:共24分11.±7,7,-2 12. x≤613.三 14.垂线段最短;15. 40 16. 40017. ①②③ 18. x=±5,y=3三、解答题:共46分19. 解:第一个不等式可化为x-3x+6≥4,其解集为x≤1.第二个不等式可化为22x-1<5x+1,有 4x-2<5x+5,其解集为x>-7.∴原不等式组的解集为-7<x≤1.把解集表示在数轴上为:20. 解:原方程可化为896 27170 x yx y-=⎧⎨++=⎩∴8960 828680 x yx y--=⎧⎨++=⎩两方程相减,可得 37y+74=0,∴ y=-2.从而32x=-.因此,原方程组的解为322 xy⎧=-⎪⎨⎪=-⎩21. ∠B=∠C; 理由:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C22. 解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.所以∠CED=•∠AEF=55°,所以∠ACD=180°-∠CED-∠D=180°-55°-42=83°.23. A′2,3,B′1,0,C′5,1.24. 解:设甲、乙两班分别有x、y人.根据题意得810920 55515 x yx y+=⎧⎨+=⎩解得5548 xy=⎧⎨=⎩故甲班有55人,乙班有48人.25. 解:设用A型货厢x节,则用B型货厢50-x节,由题意,得解得28≤x≤30.因为x为整数,所以x只能取28,29,30.相应地5O-x的值为22,21,20.所以共有三种调运方案.第一种调运方案:用 A型货厢 28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,用B型货厢20节.人人教版七年级第二学期综合测试题二班别姓名成绩一、填空题:每题3分,共15分的算术平方根是2.如果1<x<2,化简│x-1│+│x-2│=________.3.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.4.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是________.二、选择题:每题3分,共15分6.点Pa,b在第四象限,则点P到x轴的距离是FDCBH EG A C.│a │ D.│b │ 7.已知a<b,则下列式子正确的是+5>b+5 B.3a>3b; C.-5a>-5b D.3a >3b8.如图,不能作为判断AB ∥CD 的条件是A.∠FEB=∠ECDB.∠AEC=∠ECD;C.∠BEC+∠ECD=180°D.∠AEG=∠DCH9.以下说法正确的是A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个角都是对顶角C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在同一直线上,这两个角互为对顶角 10.下列各式中,正确的是A.±34 B.34; C.±38±34三、解答题: 每题6分,共18分11.解下列方程组: 12.解不等式组,并在数轴表示:2525,4315.x y x y +=⎧⎨+=⎩ 236,145 2.x x x x -<-⎧⎨-≤-⎩13.若A2x-5,6-2x 在第四象限,求a 的取值范围. 四,作图题:6分① 作BC 边上的高② 作AC 边上的中线;五.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克8分六,已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|6分FDC B EA 八,填空、如图1,已知∠1 =∠2,∠B =∠C,可推得AB ∥CD;理由如下:10分∵∠1 =∠2已知,且∠1 =∠4 ∴∠2 =∠4等量代换∴CE ∥BF ∴∠ =∠3 又∵∠B =∠C 已知 ∴∠3 =∠B 等量代换 ∴AB∥CDFEDCBA2143图1 图2九.如图2,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.8分十、14分某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务;该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料万千克,乙种原料万千克,造价万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价万元;1利用现有原料,该厂能否按要求完成任务若能,按A、B两种花砖的生产块数,有哪几种生产方案请你设计出来以万块为单位且取整数;2试分析你设计的哪种生产方案总造价最低最低造价是多少人都版七年级数学下学期末模拟试题三1.若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为A、()3,3B、()3,3-C、()3,3-- D、()3,3-2.△ABC中,∠A=13∠B=14∠C,则△ABC是 A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3.商店出售下列形状的地砖:①正方形;②长方形;③正五边形;正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有. A1种 B2种 C3种 D4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是 A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x 6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是=1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=354D3E21C BA7. 一个四边形,截一刀后得到的新多边形的内角和将A 、增加180oB 、减少180oC 、不变D 、以上三种情况都有可能8. 如右图,下列能判定AB ∥CD 的条件有 个.1 ︒=∠+∠180BCD B ;221∠=∠;3 43∠=∠;4 5∠=∠B . .2 C9. 下列调查:1为了检测一批电视机的使用寿命;2为了调查全国平均几人拥有一部手机;3为了解本班学生的平均上网时间;4 为了解中央电视台春节联欢晚会的收视率;其中适合用抽样调查的个数有 A 、1个 B 、2个 C 、3个 D 、4个10. 某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 A .a >b B .a <b C .a =b D .与ab 大小无关11. 如果不等式⎩⎨⎧-b y x <>2无解,则b 的取值范围是A .b >-2B . b <-2C .b ≥-2D .b ≤-212. 某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果见上图.根据此条形图估计这一天该校学生平均课外阅读时为 A 时 B 时 C 时 D 时13. 两边分别长4cm 和10cm 的等腰三角形的周长是________cm 14. 内角和与外角和之比是1∶5的多边形是______边形15. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直;请把你认为是真命题的命题的序号填在横线上___________________16. 不等式-3≤5-2x <3 的正整数解是_________________.17. 如图.小亮解方程组 ⎩⎨⎧=-=+1222y x y x ●的解为 ⎩⎨⎧==★y x 5,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★= 18. 数学解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8…,观察以上规律并猜想第六个数是_______.19. 解方程组和解不等式组并把解集表示在数轴上8分 132522(32)28x y x x y x +=+⎧⎨+=+⎩ .2()4321213x x xx -<-⎧⎪⎨++>⎪⎩ 20. 如图,EF 1∠2∠明:∠DGA+∠BAC=180°.请将说明过程填写完成.5分解:∵EF 2∠_____________________________.又∵1∠=2∠,______∴1∠=3∠,________________________. ∴AB_____________________________21. 如图,在3×3的方格内,填写了一些代数式和数6分1在图中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值.2把满足1的其它6个数填入图2中的方格内.A2x y 4y32-332-3图(1)图(2)22.如图,AD为△ABC的中线,BE为△ABD的中线;81∠ABE=15°,∠BAD=40°,求∠BED的度数;2在△BED中作BD边上的高;3若△ABC的面积为40,BD=5,则点E到BC边的距离为多少23.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况收入取整数,单位:元,并绘制了如下的频数分布表和频数分布直方图.8分分组频数百分比600≤x<80025%800≤x<1000615%1000≤x<120045%9%1补全频数分布表.2补全频数分布直方图.3绘制相应的频数分布折线图.4请你估计该居民小区家庭属于中等收入大于1000不足1600元的大约有多少户24.四川5·12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间这批灾民有多少人7分25.学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:8分娃”和微章前,了解到如下信息:1求一盒“福娃”和一枚徽章各多少元2若本次活动设一等奖2名,则二等奖和三等奖应各设多少名26..情系灾区. 5月12日我国四川汶川县发生里氏级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.10分1学校如何安排甲、乙两种货车可一次性把这些物资运到灾区有几种方案2若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少最少运费是多少。
新七年级下册数学期末考试题及答案人教版七年级下学期期末考试数学试题数学试卷(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B2.下列运算正确的是()A、3a+2a=5a2B、2a2b﹣a2b=a2b C.3a+3b=3ab D、a5﹣a2=a3答案:B3.下列调查中,最适合采用全面调查的是()A、对全国中学生睡眠时间的调查B.了解一批节能灯的使用寿命C.对“中国诗词大会”节目收视率的调查D.对玉免二号月球车零部件的调查答案:D4.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A、90°B、110°C、108°D、100°答案:D5.买1本笔记本和3支水笔共需14元,买3本笔记本和1支水笔共需18元,则购买1本笔记本和1支水笔共需()A、3元B、5元C、8元D、13元答案:C6.将点A(2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B,则点B 的坐标是()A、(-1,3)B、(5,3)C、(﹣1,﹣5)D、(5,﹣5)答案:A7.不等式组215xx m-<⎧⎨<⎩的解集是x<3,那么m的取值范围是()A、m>3B、m≥3C、m<2D、m≤2答案:B8.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A、ab>0B、a+b<0C、|a|<|b|D、a﹣b>0答案:C二、填空题(每小题3分,共21分)9.16的平方根是.答案:±410.如图,直线a,b相交,若∠1与∠2互余,则∠3的度数为.答案:135°11.某小区地下停车场入口了栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=°.答案:12012.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是.答案:25013.已知关于x的不等式323x ax-≥⎧⎨-≥-⎩的整数解共有3个,则a的取值范围是.答案:0<a≤114.如图把“QQ笑脸”图标放在直角坐标系中,已知左眼A的坐标是(﹣2,3),右眼B 的坐标为(0,3),则嘴唇C点的坐标是.答案:(﹣1,1)15.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有人.答案:34016.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x为正整数,则x可以取的所有值是.答案:2或3三、解答题:17.(12分)计算题:(1|1|(2)解方程组21 239 x yx y-=⎧⎨+=⎩(3)解不等式组:解:(1)原式=3-21…………………………..4分18.(6分)已知5a+2的立方根是3,4b+1的算术平方根是3,c求a+b+c 的值.解:19.(6分)已知不等式组122561x nx m-<⎧⎨+>-⎩的解集是﹣6<x<3,求2m+n的值.解:20.(6分)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(,);B′(,)解:(1)如下图,(2)B(1,2),B’(3,5)21.(6分)如图,∠ADE=∠B,CD∥FG,证明:∠1=∠2.解:22.(8分)我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.解:(1)样本容量是:510%=50(2)850=16%,所以,m=16,1-0.1-0.16-0.24-0.2=0.3=30%,所以,n=30(3)答对9题人数:30%×50=15,答对10题人数:20%×50=10,如下图,23.(9分)某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案?解:(1)设购买一个足球需要x元,一个篮球需y元,则有x+2y=2702x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。
燕山地区2012—2013学年度第一学期七年级期末考试数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个....是符合题意的,请将正确答案前的字母填入下面的答题表中.题号 1 2 3 4 5 6 7 8 9 10 选项1.观察下面四幅图案中,能通过右面图案(1)平移得到的是A .B .C .D . (1)2.-3的相反数是A .3B .-3C .3D .-3 3.下列各式正确的是A .3--=3B .2(3)-=-9C .-3<-4D .-3<04.2012年10月11日,中国作家莫言被授予诺贝尔文学奖.莫言由此成为诺贝尔文学奖100多年历史上,首位获奖的中国作家,中国人为此欢欣鼓舞.某网站随即推出莫言作品在线阅读,在一周的时间里,点击量就达到156000人次,数字156000用科学记数法可以表示为 A .156×103B .0.156×106C .1.56×105D .15.6×1045.下列实数中,是无理数的是A .|-2|B .4C .38D .2 6.如图,直线a ∥b ,∠1=60°,那么∠2的度数是A .30°B .60°C .90°D .120°7.下列计算正确的是A .2523a a a =+B .422a a a =+C .b a b a b a 2222=+- D .32533=-a a8.若x =-1是关于x 的方程3x -2a =0的解,则a 的值为A .23-B .32- C .23 D .31初二数学试卷第1页(共8页) b12a 第6题图a -1x第9题图9.有理数a ,b 在数轴上的位置如图所示,则a +b 的值A .大于0B .小于0C .等于0D .小于a 10.如图,已知CD AB //,BC 平分ABE ∠, 若∠C =25°,则BED ∠的度数是A .50°B .37.5°C .25°D .12.5°二、填空题(本题共16分,每小题2分)11.64的算术平方根是 ; 64的立方根是 . 12.单项式y x 332-的系数是 ,次数是 . 13.如果∠1=∠2,且∠1的余角为40°,那么∠2的补角等于 °. 14.如图,若∠ =∠ ,则AB ∥CD .理由是: 角相等,两直线平行. 15. 如图,将一副三角板的直角顶点重合,可得∠1=∠2,理由是等角(或同角)的 ;若∠3=50°,则∠CAD = °.16.若12-a 和5-a 是一个正数m 的两个平方根,则a = ,m = . 17.按照如图所示的操作步骤,若输入x 的值为5,则输出的值为 .输入x→ 加上5 → 平方 → 减去3 → 输出18.如图⑴是边长为30 cm 的正方形纸板,裁掉阴影部 分后将其折叠成如图⑵所示的长方体纸盒,已知该长 方体的宽是高的2倍,则它的体积是 cm 3.三、解答题(本题共24分,19题12分,每小题各3分,20、21题各6分,每小题各3分) 19.计算:⑴ 37156+-+-; ⑵ )1574365(60-+⨯; 第10题图EACBD312DBAEC 第14题图312DCBEA 第15题图第18题图图⑵图⑴宽高长⑶ 4)2(5)2(32÷--⨯-; ⑷ 4-9+31-.20.化简:⑴ 3574+--x x ; ⑵ 5(a 2b -3ab 2)-2(a 2b +7ab 2). 21.解方程:⑴ 3512-=+x x ; ⑵ 314121-=+-x x .四、解答题(本题共20分,每小题5分)22.先化简,再求值:)32()3(222y x y x --+,其中1-=x ,51=y .23.列方程解应用题:7月21日,北京遭遇61年以来最强暴雨.当晚,小王和小李加入了“爱心车队”,将被困在首都机场的旅客义务送回家.已知他俩共运送旅客14人,小王运送旅客的人数比小李的2倍还多2人,求小王和小李各运送旅客多少人?24.已知:如图,△ABC 中,AC ⊥BC ,点D 、E 在AB 边上,点F 在AC 边上,DG ⊥BC 于G ,∠1=∠2.求证:EF ∥CD . 请将以下推理过程补充完整: 证明:∵ DG ⊥BC ,AC ⊥BC ,( 已知 )∴ ∠DGB =∠ACB =90º,( 垂直的定义 )∴ DG ∥AC ,( ) ∴ ∠2 = .( ) ∵ ∠1=∠2,( 已知 )∴ ∠1= ,( 等量代换 ) ∴ EF ∥CD .( )25.如图,四边形ABCD 中,(1)AB //DC ;(2)AD//BC ;(3)∠A =∠C .初二数学试卷第3页(共8页)12FED ACB321GF BACD E请你以其中两个为条件,另外一个为结论,写出一个正确的命题,并加以证明. 已知: 求证: 证明:五、解答题(本题共10分,每小题5分)26.如图,已知点D 、F 、E 、G 都在△ABC 的边上,EF ∥AD ,∠1=∠2,∠BAC =70°,求∠AGD 的度数.初二数学试卷第5页(共8页)ABCD27.七年级(1)班的同学到水库调查了解今年的汛情.水库一共有10个泄洪闸,现在水库水位已超过安全线,上游的河水仍以一个不变..的速度流入水库.同学们经过一天的观察和测量,做了如下记录:上午打开一个泄洪闸,在2小时内水位继续上涨了0.06米;下午再.打开2个泄洪闸,在随后的4小时内水位下降了0.1米.目前水位仍超过安全线1.2米.⑴求河水流入使水位上升的速度及每个泄洪闸可使水位下降的速度;⑵如果共打开5个泄洪闸,还.需几个小时水位能降到安全线?⑶如果防汛指挥部要求在6小时内使水位降到安全线,至少应该打开几个泄洪闸?初二数学试卷第7页(共8页)以下为草稿纸。
北京市燕山区2014~2015学年度七年级第一学期期末数学试卷2015.1(时间:100分钟 满分:100分)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表1.有理数6的相反数是( ) A.-6 B.6 C.61 D.-612.下列数轴画正确的是( )3.在32)5(,5,)5(),5(-------中正数有( )A.1个B.2个C.3个D.4个4.如图是一个正方体的表面展开图,则原正方体中与“我”字所在的面 相对的面上标的字是 A .爱 B .的C .学D.美5.单项式-2ab 的系数是A .1B .-1C .2D . 36.8点30分时,时钟的时针与分针所夹的锐角是( )A 、70° B、75°C、80°D、60°7.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( )展开A1-1B1 2C1 22- DAB C第7题图上折右折 沿虚线剪下8.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),按收方由密文→明文(解密),已知加密规则为明文a ,b ,c 对应的密文a+1,2b+4,3c+9,例如明文1,2,3对应的密文为2,8,18,如果接收的密文7,18,15,•则解密得到的明文为( ) A .4,5,6 B .2,6,7C . 6,7,2 D .7,2,6二、填空题(本题共24分,每小题3分)9. 现在网购越来越多地成为人们的一种消费方式,刚刚过去的2014年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破57000 000 000元,将57000 000 000元用科学记数法表示为.10.把两块三角板按如图所示那样拼在一起,那么∠ABC 的度数是11.若427y x m +-2z 与n y x 33-tz 是同类项,则=m ____, =n _____;t =12. 如图,∠AOB=90°,以O 为顶点的锐角共有个13.如图是小明家的楼梯示意图,其水平距离(即:AB 的长度)为)2(b a +米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了)3(b a -米.那么小明家 楼梯的竖直高度(即:BC 的长度)为米.14.方程413)12(2=++-x x a是一元一次方程,则=a ______________。
北师大版七年级数学(下册)期末水平测试卷2015学年度第二学期2015学年度第二学期期末测试A七年级数学第Ⅰ卷(选择题,共30分).,16. 如右上图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同), 假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于_______.三、解答题(第18、19、20题各8分,第17、21、22、23、24题各10分,计72分)17. 计算(10分)(1)(5分)()()23211+ 3.14++23⎛⎫⎪⎝⎭﹣﹣π-﹣﹣(2)(5分)先化简,再求值:22)())((2b a b a b a b ---++,其中3=-a ,21=b .18. 如图,直线m l ∥,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,则∠1+∠2的和是多少度?并证明你的结论.19. 如图,点B 在射线AE 上,∠CAE =∠DAE ,∠CBE =∠DBE .求证:AC=AD .20、某电视台的娱乐节目《周末大放送》有这样的翻牌游戏,数字的背面写有祝福与获奖金额数,游戏规则是:每次翻动正面一个数字,看看反面对应的内容,就可知是获奖金还是获得温馨祝福。
正面 反面(1)翻到奖金为1000元的概率是多少?(2)翻到奖金的概率是多少?(3)一选手准备在奇数中选择一个数字,他获得奖金的概率是多少?21. 在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物(1(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢? (3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?22. 如图(1),B 地在A 地的正东方向,某一时刻,乙车从B 地开往A 地,1小时后,甲车从A 地开往B 地,当甲车到达B 地的同时乙车也到达A 地. 如图(2),横轴x (小时)表示两车的行驶时间(从乙车出发的时刻开始计时),纵轴y (千米)表示两车与A 地的距离.问题:(1)A 、B 两地相距多少千米?(2)1l 和2l 两段线分别表示两车距A 地的距离y (千米)与行驶时间x (小时)之间的关系,请问哪一段表示甲车,哪一段表示乙车?(3)请问两车相遇时距A 地多少千米?23. 作图 (1)(4分)如图(1),把大小为4×4的正方形方格分割成两个全等图形(例如图1),请在下图中,沿着虚线画出两种不同的分法,把4×4的正方形方格分割成两个全等图形......(2)(3分)如图(2),∠AOB内部有两点M和N,请找出一点P,使得PM=PN,且点P到∠AOB两边的距离相等.(简单说明作图方法,保留作图痕迹)(3)(3分)如图(3),要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短,请在图中用点Q标出奶站应建地点.(简单说明作图方法,不用证明)24.资料:小球沿直线撞击水平格档反弹时(不考虑垂直撞击),撞击路线与水平格档所成的锐角等于..反弹路线与水平格档所成的锐角.以图(1)为例,如果黑球A沿从A到O方向在O点处撞击EF边后将沿从O到C方向反弹,根据反弹原则可知∠AOE=∠COF,即∠1=∠2.如图(2)和(3),EFGH是一个长方形的弹子球台面,有黑白两球A和B,小球沿直线撞击各边反弹时遵循资料中的反弹原则.(回答以下问题时将黑白两球均看作几何图形中的点,不考虑其半径大小)探究(1):黑球A沿直线撞击台边EF哪一点时,可以使黑球A经台边EF反弹一次后撞击到白球B?请在图(2)中画出黑球A的路线图,标出撞击点,并简单证明所作路线是否符合反弹原则,探究(2):黑球A沿直线撞击台边GH哪一点时,可以使黑球A先撞击台边GH反弹一次后,再撞击台边EF反弹一次撞击到白球B?请在图(3)中画出黑球A的路线图,标出黑球撞击GH边的撞击点,简单说明作法,不用证明.2013—2014学年第二学期期末测试A七年级(下)数学试卷 参考答案一、选择题答案(每小题3分,计30分)题号1 2 3 4 5 6 7 8 9 10 答案B D DC C BD A C C二、填空题答案(每小题3分,计18分) 第11题: 5101.2-⨯ 第12题: 135 第13题: 0第14题: 9 第15题: 12+=x y 第16题: 83三、解答题答案(第18、19各7分,20题8分,第17、21、22、23、24题各10分,计72分) 17.(第(1)小题5分,第(2)小题5分) (1)原式=1(2)解:原式=)2(222222b ab a b a b +---+ =2222222b ab a b a b -+--+=ab 2 ……………………(4分) 当 3=-a ,21=b 时,原式=3- ……………………(5分满) 18.解:o4521=+∠∠ ……………………(只写结论给2分) 证明:过点B 作直线n 平行于直线m∵m l ∥,m n ∥; ∴n l ∥ ∴32∠∠=,41∠∠=;又∵o 4543=+∠∠ ∴o4521=+∠∠ ………(7分满) 【注】:其他证明方法只要正确也给分.19.证明:∵∠ABC+∠CBE=180°,∠ABD+∠DBE=180°,∠CBE=∠DBE ,∴∠ABC=∠ABD , ………(2分)在△ABC 和△ABD 中, ………(5分)∴△ABC ≌△ABD (ASA ), ………(6分) ∴AC=AD . ………(7分满)20.(第(1)题2分,(2)(3)题各3分,共8分)(1)91 (2)94 (3)5321. (第(1)(2)题各4分,第(3)题2分,共10分)(1)上表反映了弹簧的长度y 与所挂物体质量x 之间的关系;所挂物体质量x 是自变量,弹簧的长度y 是因变量.(2)当所挂物体重量为3千克时,弹簧长24 cm ;不挂重物时,弹簧长18 cm. (3)当所挂重物为7千克时,弹簧长32 cm.22. (第(1)(2)题各2分,第(3)题6分,共10分) (1)A 、B 两地相距400千米.(2)线段1l 表示甲车距A 地的距离与行驶时间的关系,线段2l 表示乙车距A 地的距离与行驶时间的关系. (3)本题有多种解法,这里给出的是用方程解答的一种方法,其他解法只要正确也给分.解: 设两车相遇时距A 地x 千米,由图象知甲车的速度为100千米/小时,乙车速度为80千米/小时,然后根据题意可列方程为804001100x x -=+ 得:91600=x 答:两车相遇时距A 地91600千米.23. (第(1)题4分,第(2)(3)题各3分,共10分) (1)画法如图,这里给出的是4种参考答案,还有其他画法,只要画出两种正确的即可.(2)先连接MNAOB 的平分线交MN 的垂直平分线于点P ,交点P (3)如图,以直线m 为对称轴作点B 的对称点B ′,连接B ′A 交直线m于点Q ,点Q 即为奶站所建位置.24. (第(1)题6分,第(2)题4分,共10分)(1)作法:如图以直线EF 为对称轴作点B 的对称点B ′,连接B ′A 交EF 于点P ,连接PB , 则点P 为撞击点,AP 和PB 为黑球A 的路线.证明:证法一:B ′和B 关于直线EF 对称,点P 在EF 上,所以B ′P 和BP 也关于EF 对称 ∵∠2和∠3是对应角∴∠2=∠3参考答案第2页(共4页)又∵∠1=∠3 (对顶角相等)∴∠1=∠2,即符合反弹原则证法二:B′和B关于直线EF对称,所以EF垂直平分线段B′B (根据对称性质)∵点P在EF上∴PB=P B′(线段垂直平分线上的点到线段两端的距离相等)∴△PB B′是等腰三角形又∵PE⊥B′B∴∠2=∠3 (三线合一)剩下的步骤同证法一.………………(本问作图2分,作法2分,证明2分,共6分)(2)以直线EF为对称轴作点B的对称点B′,再以GH为对称轴作点B′的对称点M,连接AM交GH于点S,连接B′S交EF于点T,连接TB.则点S为GH边的撞击点,AS、ST、TB为黑球A的路线.………………(本问作图2分,作法2分)。
燕山地区2014学年度第二学期七年级数学期末考试一、选择题(本题共30分,每小题3分)1.9的平方根是 A .±3B .3C .-3D .92.不等式2x -4 ≤0的解集是 A .x <2B .x >2C .x ≤2D .x ≥23.在平面直角坐标系中,点P (-2,3)位于 A .第一象限 B .第二象限C .第三象限D .第四象限4.下列调查中,适合采用全面调查(普查)方式的是A .对长江水质情况的调查B .对端午节期间市场上粽子质量情况的调查C .对某班40名同学体重情况的调查D .对某类烟花爆竹燃放安全情况的调查 5.下列各数中,是无理数的是 A .16 B .3.14 C .311D .7 6.已知1,1x y =⎧⎨=-⎩是方程2x -ay =3的一组解,那么a 的值为 A .1 B .3 C .-3 D .-157.下列各式中,运算正确的是A .235a b ab +=B .220a b ab -=C .222(2)4ab a b =D .222()a b a b +=+ 8.如果a <b ,那么下列不等式成立的是A .a -b >0B .a -3>b -3C .1133a b > D .-3a >-3b9.若2(5)(20)x x x mx n -+=++,则m ,n 的值分别为 A .15m =-,100n =- B .15m =,100n =- C .25m =,100n =D .25m =,100n =-10.在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码,方便记忆.原理是:如对于多项式44y x -,因式分解的结果是22()()()x y x y x y -++,取99==y x ,时,各个因式的值是:()0x y -=,()18x y +=,22()162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式4229x x y -,取8x =,11y =时,用上述方法产生的密码不可能...是 A .643513 B .643153 C .641335 D .356413二、填空题(本题共18分,每小题3分)11.已知x 的一半与5的差小于3,用不等式表示为 .12.已知方程5x -y =7,用含x 的代数式表示y ,y = . 13.不等式2x +5>4x -1的正整数解是 . 14.点A (4,-3)到x 轴的距离为 . 15.若162++mx x 是完全平方式,则m = . 16.已知关于x ,y 的方程组34,3x y a x y a +=-⎧⎨-=⎩,其中-3 ≤ a ≤ 1,给出下列命题:① 5,1x y =⎧⎨=-⎩是方程组的解; ② 当a =-2时,x ,y 的值互为相反数; ③ 当a =1时,方程组的解也是方程x +y =4-a 的解; ④ 若x ≤ 1,则1 ≤ y ≤ 4.其中正确命题的序号是 .(把所有正确命题的序号都填上)三、解答题(本题共52分.第17题~18题,每题各6分,每小题各3分;第19题~26题,每题各5分)17.计算:(1) 34825-; (2) 232(2)x y xy ⋅÷.18.因式分解:(1) 24x -; (2) 2()()a a b b b a ---.19.解方程组:320,1.x y x y -=⎧⎨-=⎩20.解不等式组:2734532x x x +>⎧⎨-≤-⎩,,并把它的解集在数轴上表示出来.0 1 2 3 4-1 -2 -3 x3090120频数(人)0m (条)DC B A1201008060402021.先化简,再求值:24(1)(2)x x x ---,其中3x =.22.列方程组...解应用题: 随着人民生活水平的不断提高,外出采摘成了近郊旅游新时尚.端午节期间,小王一家去某农场采摘樱桃,已知A 品种樱桃采摘价格为80元/千克,B 品种樱桃采摘价格为60元/千克.若小王一家采摘A ,B 两种樱桃共8千克,共消费580元,那么他们采摘A ,B 两种樱桃各多少千克?23.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当0 ≤ m <5时为A 级,5 ≤ m <10时为B 级,10 ≤ m <15时为C 级,15 ≤ m <20时为D 级.现随机抽取部分符合年龄条件的青年人开展每人“日均发微博条数”的调查,根据调查数据整理并制作图表如下:m 频数 百分数 A 级(0 ≤ m <5)900.3B 级(5 ≤ m <10) 120 aC 级(10 ≤ m <15) b 0.2D 级(15 ≤ m <20)300.1请你根据以上信息解答下列问题:(1)在表中:a = ,b = ; (2)补全频数分布直方图;(3)若北京市常住人口中18~35岁的青年人大约有530万人,试估计其中“日均发微博条数”不少于10条的大约有多少万人.青年人日均发微博条数直方图青年人日均发微博条数统计表24.如图,在直角坐标系xOy 中,A (﹣1,0),B (3,0),将A ,B 同时分别向上平移2个单位,再向右平移1个单位,得到的对应点分别为D ,C ,连接AD ,BC . (1)直接写出点C ,D 的坐标:C ( , ) ,D ( , ) ; (2)四边形ABCD 的面积为 ; (3)点P 为线段BC 上一动点(不含端点),连接PD ,PO .求证:∠CDP +∠BOP =∠OPD .25.图①是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它平均分成形状和大小都一样的四块小长方形,然后按图②那样拼成一个正方形.(1)观察图②,请用两种不同的方法表示图②中阴影部分的面积:方法1: ; 方法2: ;(2)直接写出三个代数式2)(n m +,2)(n m -,mn 之间的等量关系:; (3)根据(2)中的等量关系,解决如下问题:若7=+b a ,5=ab ,求b a -的值.n nmmmm nn图①图②21OxPDC BAy26.在平面直角坐标系中,已知点A (-2,0),B (2,0),若在坐标轴上存在点C ,使得AC +BC =m ,则称点C 为点A ,B 的“m 和点”,例如当点C 的坐标为(0,0)时,有AC +BC =4,则称点C (0,0)为点A ,B 的“4和点”. 请根据上述规定回答下列问题:(1) 若点C 为点A ,B 的“m 和点”,且△ABC 为等边三角形,求m 的值;(2) 点E 是点A ,B 的“5和点”,且点E 在x 轴上,则点E 的坐标为 ; (3) 若点A ,B 的“m 和点”有且只有4个,则m 的取值范围是 .参考答案及评分标准 2014.07说明: 与参考答案不同,但解答正确相应给分. 一、选择题(本题共30分,每小题3分)ACBCD ACDBB二、填空题(本题共18分,每小题3分)11.3521<-x 12.75-x y = 13.1,214.3 15.±8 16.②③④三、解答题(本题共52分.17题~18题,每小题各3分;19题~26题,每题各5分)17.(1) 原式=522- ……………………2分=58. ……………………3分 (2) 原式=2324xy y x ÷⋅ ……………………1分=xy 4. ……………………3分18.(1) 42-x =)2)(2(-+x x ……………………3分 (2) 原式=)()(2b a b b a a -+- ……………………1分=)2)((b a b a +-. ……………………3分19.⑴解法一:⎩⎨⎧=-=-②.1①,023y x y x ,②×2得,2x -2y =2,③①-③得,x =-2; ……………………2分 把x =-2代入①得,02)2(3=--⨯y ,解得y =-3. ……………………4分∴方程组的解是⎩⎨⎧-=-=.3,2y x . ……………………5分解法二:⎩⎨⎧=-=-②.1①,023y x y x ,由②得,x =1+y ,③ ……………………2分 把③代入①得,3(1+y )-2y =0,解得y =-3. ……………………4分 把y =-3代入③得,x =-2.∴方程组的解是⎩⎨⎧-=-= .3,2y x . ……………………5分20.解:解不等式①,得x >-2, ……………………1分解不等式②,得3≤x , ……………………2分 ∴这个不等式组的解集是32≤<x -. ……………………3分在数轴上表示解集如图: ………5分21.原式=)44()44(22+---x x x x ……………………2分=444422-+--x x x x-3-2x 43210-1频数(人)3090120600m (条)DC B A12010080604020=432-x ……………………3分 当3=x 时,原式=4)3(32-⨯=5. ……………………5分 22.解:设小王一家采摘A 品种樱桃x 千克,B 品种樱桃y 千克,……………………1分依题意,得⎩⎨⎧=+=+.5806080,8y x y x ……………………3分解得⎩⎨⎧==.3,5y x ……………………4分答:小王一家采摘A 品种樱桃5千克,B 品种樱桃3千克. ……………………5分23.(1)在表中:a =0.4,b =60; ……………………2分(2)补全频数分布直方图如图; ……………………3分 (3)530×(0.2+0.1)=159(万人). ……………………5分24.(1) C (4,2),D (0,2); ……………………2分(2) 四边形ABCD 的面积为 8 ; ……………………3分 (3) 证明:如图,过点P 作PQ ∥AB , …………4分 由题意,CD ∥AB , ∴CD ∥PQ ,AB ∥PQ , ∴∠CDP =∠1,∠BOP =∠2,∴∠CDP +∠BOP =∠1+∠2=∠OPD . ……………………5分 25.(1) 2)(n m -; mn n m 4)(2-+; ……………………2分 (2) 2)(n m -=mn n m 4)(2-+; ……………………3分 (3) 2)(b a -=ab b a 4)(2-+=5472⨯-=29,∴ b a -=29±. ……………………5分26.(1) ∵ 点A (-2,0),B (2,0),∴AB =4,∵ △ABC 为等边三角形, ∴AC =BC =AB =4,∴ m =AC +BC =8. ……………………2分 (2) E (-2.5,0),或E (2.5,0). ……………………4分12Q 21OxP DC BA y(3) 4m.……………………5分。