湖北省黄冈市罗田县2014-2015学年八年级下学期期中联考数学试题及答案
- 格式:doc
- 大小:181.00 KB
- 文档页数:6
2016-2017学年湖北省黄冈市罗田县八年级(下)期中数学试卷一、选择答案:(每题3分,共30分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥33.(3分)正方形面积为36,则对角线的长为()A.6 B.C.9 D.4.(3分)如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<a<c5.(3分)已知钝角三角形的三边为2、3、4,该三角形的面积为()A.B.C.D.6.(3分)直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.249.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为()A.6 B.8 C.10 D.1210.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°二、填空:(每题3分,共30分)11.(3分)▱ABCD中一条对角线分∠A为35°和45°,则∠B=度.12.(3分)矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为cm.13.(3分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为m.14.(3分)已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是cm,面积是cm2.15.(3分)在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是.16.(3分)如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.17.(3分)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF=度.18.(3分)有一块直角三角形的绿地,量得两直角边分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,扩充后等腰三角形绿地的周长.19.(3分)在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的动点,则PE和PC的长度之和最小是.20.(3分)观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n (n≥1)个等式写出来.三、解答题:(共60分)21.(3分)+2﹣(﹣).22.(3分).23.(6分)如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=E C.24.(6分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.25.(5分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?26.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.27.(6分)已知:如图,△ABC中,∠ACB=90°,点D、E分别是AC、AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.28.(7分)已知△ABC中,AB=20,AC=15,BC边上的高为12,求△ABC的面积.29.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.30.(10分)如图,在在四边形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B 点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t=秒时,四边形PQBA成为矩形.(3)当t为多少时,PQ=CD?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.参考答案与试题解析一、选择答案:(每题3分,共30分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.(3分)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥3【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选C.3.(3分)正方形面积为36,则对角线的长为()A.6 B. C.9 D.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.4.(3分)如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<a<c【解答】解:根据勾股定理,得a==;b==;c==.∵5<10<13,∴b<a<c.故选D.5.(3分)已知钝角三角形的三边为2、3、4,该三角形的面积为()A.B.C.D.【解答】解:如图所示:过点B作BD⊥AC于点D,设BD=x,CD=y,则AD=4﹣y,故在Rt△BDC中,x2+y2=32,故在Rt△ABD中,x2+(4﹣y)2=22,故9+16﹣8y=4,解得:y=,∴x2+()2=9,解得:x=,故三角形的面积为:×4×=.故选:D.6.(3分)直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定【解答】解:设另一直角边为a,斜边为a+1.根据勾股定理可得,(a+1)2﹣a2=92.解之得a=40.则a+1=41,则直角三角形的周长为9+40+41=90.故选C.7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则E C等于()A.1cm B.2cm C.3cm D.4cm【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=5cm,AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠AEB=∠BAE,∴BE=AB=3cm,∴EC=BC﹣BE=5﹣3=2cm;故选:B.8.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形AB CD的周长是()A.12 B.16 C.20 D.24【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.9.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为()A.6 B.8 C.10 D.12【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.10.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(45°+x°)=45°.答:∠BEF的度数是45°.二、填空:(每题3分,共30分)11.(3分)▱ABCD中一条对角线分∠A为35°和45°,则∠B=100度.【解答】解:∵▱ABCD中一条对角线分∠A为35°和45°,∴∠BAD=80°,∵四边形BACD是平行四边形,∴BC∥AD,∴∠B+∠BAD=180°,∴∠B=100°,故答案为:100.12.(3分)矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为24cm.【解答】解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=BD=A C.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为:24.13.(3分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为12m.【解答】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m.在Rt△ABC中,AB2+BC2=AC2,∴x2+52=(x+1)2,解得x=12,∴AB=12.∴旗杆的高12m.故答案是:12.14.(3分)已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是20cm,面积是24cm2.【解答】解:∵菱形的两条对角线长为8cm和6cm,∴菱形的两条对角线长的一半分别为4cm和3cm,根据勾股定理,边长==5cm,所以,这个菱形的周长是5×4=20cm,面积=×8×6=24cm2.故答案为:20,24.15.(3分)在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是.【解答】解:点A(﹣1,0)与点B(0,2)的距离是:=.故答案填:.16.(3分)如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.【解答】解:观察图形AB==,AC==3,BC==2∴AC2+BC2=AB2,∴三角形为直角三角形,∵直角三角形中斜边上的中线等于斜边的一半∴CD=.17.(3分)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF=90度.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴OA=OD,OE=OF,∠2=∠3,∵AD是△ABC的角平分线,∵∠1=∠2,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF,即∠AOF=90°.故答案为:90.18.(3分)有一块直角三角形的绿地,量得两直角边分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,扩充后等腰三角形绿地的周长32m或(20+4)m或m.【解答】解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有:AB=10,应分以下三种情况:①如图1,当AB=AD=10时,∵AC⊥BD,∴CD=CB=6m,∴△ABD的周长=10+10+2×6=32m.②如图2,当AB=BD=10时,∵BC=6m,∴CD=10﹣6=4m,∴AD==4m,∴△ABD的周长=10+10+4=(20+4)m.③如图3,当AB为底时,设AD=BD=x,则CD=x﹣6,由勾股定理得:AD==x解得,x=,∴△ABD的周长为:AD+BD+AB=m.故答案为:32m或(20+4)m或m.19.(3分)在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的动点,则PE和PC的长度之和最小是.【解答】解:如图所示:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PE+PC的最小值,∵BE=2,CE=1,∴BC=AB=2+1=3,在Rt△ABE中,∵AE===,∴PE与PC的和的最小值为.故答案为:.20.(3分)观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来.【解答】解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.三、解答题:(共60分)21.(3分)+2﹣(﹣).【解答】解:+2﹣(﹣)=2+2﹣3+=3﹣.22.(3分).【解答】解:原式===.23.(6分)如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=E C.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC∠BAD=∠BCD,∴AF∥EC,∴∠DAE=∠AEB,∵AE平分∠BAD,CF平分∠BCD,∴∠DAE=∠BAD,∠FCB=∠BCD,∴∠DAE=∠FCB=∠AEB,∴AE∥FC,∴四边形AECF为平行四边形,∴AF=CE.24.(6分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是平行四边形,证明你的结论;(2)当四边形ABCD的对角线满足互相垂直条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.【解答】解:(1)四边形EFGH的形状是平行四边形.理由如下:如图,连结B D.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、B D.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图,连结A C、B D.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直;菱形.25.(5分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【解答】解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里),∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远洋号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北方向航行.26.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD==,∴∠ACB=90°,由勾股定理得:AC=BC==,∴∠ABC=∠BAC=45°.27.(6分)已知:如图,△ABC中,∠ACB=90°,点D、E分别是AC、AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.【解答】证明:∵D,E分别为AC,AB的中点,∴DE为△ACB的中位线.∴DE∥B C.∵CE为Rt△ACB的斜边上的中线,∴CE=AB=AE.∴∠A=∠ACE.又∵∠CDF=∠A,∴∠CDF=∠ACE.∴DF∥CE.又∵DE∥BC,∴四边形DECF为平行四边形.28.(7分)已知△ABC中,AB=20,AC=15,BC边上的高为12,求△ABC的面积.【解答】解:作AD⊥BC于D,则AD为BC边上的高,AD=12.分两种情况:①高AD在三角形内,如图所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2,∴DC=9,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=16,∴BC=BD+DC=16+9=25,∴S△ABC=×25×12=150;②高AD在三角形外,如图所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2∴DC=9,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=16,∴BC=BD﹣DC=16﹣9=7,∴S△ABC=×7×12=42.故答案为:150或42.29.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.【解答】(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴AC=BC,EC=D C.(2分)∵∠ACE=∠DCE﹣∠DCA,∠BCD=∠ACB﹣∠DCA,∠ACB=∠ECD=90°,∴∠ACE=∠BC D.(3分)在△ACE和△BCD中,∴△ACE≌△BCD(SAS).(5分)(2)解:又∠BAC=45°∴∠EAD=∠EAC+∠BAC=90°,即△EAD是直角三角形(8分)∴DE===13.(10分)30.(10分)如图,在在四边形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P 从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B 点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=18cm;(2)当t=秒时,四边形PQBA成为矩形.(3)当t为多少时,PQ=CD?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.【解答】解:根据题意得:P A=2t,CQ=3t,则PD=AD﹣P A=12﹣2t,(1)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,∴DE=AB=8cm,AD=BE=12cm,在Rt△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC==6cm,∴BC=BE+EC=18cm.故答案为18;(2)∵AD∥BC,∠B=90°∴当P A=BQ时,四边形PQBA为矩形,即2t=18﹣3t,解得t=秒,故当t=秒时,四边形PQBA为矩形;故答案为;(3)①当P'Q'∥CD时,如图,∵AD∥BC,∴四边形CDP'Q'是平行四边形,∴P'Q'=CD,DP'=CQ',∴12﹣2t=3t,∴t=秒,②如图,梯形PDCQ是等腰梯形时,PQ=CD,易证,四边形PDEF是矩形,∴EF=DP=12﹣2t,易证,△CDE≌△QPF,∴FQ=CE=6,∴CQ=FQ+EF+CE=6+12﹣2t+6=3t,∴t=(4)△DQC是等腰三角形时,分三种情况讨论:①当QC=DC时,即3t=10,∴t=;②当DQ=DC时,=6,∴t=4;③当QD=QC时,3t•=5,∴t=.故存在t,使得△DQC是等腰三角形,此时t的值为秒或4秒或秒.。
湖北省黄冈中学2015年春季八年级期中考试数学试题时间:120分满分:120分一、选择题(每小题3分,共24分)1、对于圆的周长公式C=2πR,下列说法正确的是()A.C、π、R是变量,2是常量B.R是变量,C、π是常量C.C是变量,π、R是常量 D.C、R是变量,2、π是常量2、给出下列函数:①y=2x;②;③y=2x+l;④y=2x2+1.其中是一次函数的有()A.4个B.3个C.2个D.1个3、方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为()A.2,3,-6 B.2,-3,18C.2,-3,6 D.2,3,64、已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内,它的图象大致是()5、关于x的一元二次方程(m-2)x2+(2m-1)x+m2-4=0的一个根是0,则m的值是()A.2 B.-2C.2或者-2 D.6、点A(x1,y1)、B(x2,y2)是一次函数y=-x+2的图象上不同的两点,若t=(x1-x2)(y1-y2),则()A.t<0 B.t=0C.t>0 D.t≤07、为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如下表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)20 16 12 8人数24 18 5 3A.20,16 B.l6,20C.20,l2 D.16,l28、如图甲,在正方形ABCD的边上有一个动点P以2cm/s的速度,从点B开始B —C—D—A匀速运动,到点A停止.设点P移动时间为t,△ABP的面积为S,S 关于t的函数关系如图乙所示,下列结论:①图甲中的BC长是4cm;②图乙中的a的值是8cm2;③当t=l(s),S=3cm2;④当t为0.5s或5.5s时,S=2cm2.其中正确的序号是()A.①②③B.①②④C.①③④D.②③④二、填空题(每小题3分,共30分)9、有一组数据如下:3,a,4,6,7,它们的平均数是5,则这组数据的方差是_____.10、将长为30cm,宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的纸条总长度为y cm,则y与x的函数关系式为_______(不要求写出自变量的取值范围).11、商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.若有28元钱,则最多可以购买该商品的件数是______件.12、在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,下图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款_____元.13、代数式的x2+2x+3最小值为______.14、已知是方程x2-2x+c=o的一个根,方程的另一个根是______.15、如图,直线y=kx+b经过点A(3,0),B(1,2),则关于x的不等式0≤kx+b<2x的解集为______.16、如图,点B、C分别在两条直线y=3x和y=kx上,点A、D是x轴上两点,已知四边形ABCD是长方形,且BC=2AB,则k的值为______.17、关于x的一元二次方程(k-1)x2+kx+l=0有实数根,则k的取值范围是______.18、如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=-2x +b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为______.三、解答题(共66分)19、选用适当的方法解下列方程(每3分,共18分)(1)(x+5)2=16(2)x2-2x-3=0(3)x2+2x+3=0(4)2x2-5x-7=0(5)(x+1)2-3(x+1)+2=0(6)(2x+1)2=9(x-3)220、(5分)三角形两边长分别是6和8,第三边长是关于x的方程x2-16x+60=0的一个实数根,求该三角形的第三条边长和周长.21、(5分)小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球时量筒中水面升高的高度;(2)放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?22、(8分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:(1)根据图中的数据填写下表:(2)从平均数和方差相结合看,分析谁的成绩好些.23、(6分)如图,直线与坐标轴交于A、B两点,C(4,-4),点P在y轴上,满足S△PAB=S△ABC,求点P的坐标.24、(7分)某公交公司的公共汽车和出租车每天从A市出发往返于A市和B市两地,出租车比公共汽车多往返一趟,如图表示出租车距A市的路程y(单位:千米)与所用时间x(单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达B市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回A市早1小时.(1)请在图中画出公共汽车距A市的路程y(千米)与所用时间x(小时)的函数图象;(2)两车在途中相遇__________次(直接写出答案);(3)求两车最后一次相遇时,距A市的路程.25、(8分)某学校计划租用6辆客车送240名师生参加一年一度的武汉杂技节,感受杂技艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.甲种客车乙种客车载客量(人/辆)45 30租金(元/辆)280 200若领队老师从学校预支租车费用1650元,试问预支的租车费用能否有结余?若有结余,最多可结余多少元?26、(9分)矩形ABCD在如图所示的直角坐标系中,点A的坐标为(0,3),BC=2AB,直线l经过点B,交AD于点P1,此时直线l的函数表达式是y=2x+1.(1)求BC,AP1的长;(2)沿x轴正半轴平移直线l,分别交AD,BC边于点P,E.①当四边形BEPP1是菱形时,求平移的距离;②当直线l把矩形ABCD分成两部分的面积之比为3∶5时,求点P的坐标.答案与解析:1、D C随半径R的变化而变化,∴C、R是变量,2、π是常量.2、B 形如y=kx+b(k≠0)的函数是一次函数,①②③符合一次函数特征.④y=2x2+1是二次函数.3、B 整理后方程2x2=3(x-6)得 2x2-3x+18=0,二次项系数、一次项系数和常数项分别为2,-3,18.4、A 一次函数y=kx+b,y随着x的增大而减小,知k<0,排除C、D.又kb<0,所以b>0,直线与y轴交于正半轴,选A.5、B 将x=0代入(m-2)x2+(2m-1)x+m2-4=0,得m2-4=0,m=±2.又方程是一元二次方程,所以m-2≠0,故得m=-2.6、A 一次函数y=-x+2的值随x增大而减小,不妨设x1<x2,则y1>y2,所以x1-x2<0,y1-y2>0,知t=(x1-x2)(y1-y2)<0.选A.7、A 因为分数为20分的人数最多,所以众数是20;24<18+5+3,故中位数是16.故选A.8、B 由图甲、乙知,从B点→C点所经过的时间为2s,则从B点→C点所经过的路程为2×2=4cm,∴BC的长是4m,①正确;由图甲知a=S△APB=AB·BC=×4×4=8(cm2),②正确;当t=l(s),BP=2cm,S△ABP=AB·BP=×4×2=4cm2,③不正确;当t为0.5s时,BP=1cm,S△APB=AB·BC=×4×1=2(cm2),当t为5.5s时,AP=12-2t=1cm,S△APB=AB·AP=×4×1=2(cm2),④正确.9、2解析:3+a+4+6+7=5×5,a=5,.10、y=27x+3解析:y=30x-3(x-1)=27x+311、10解:设可以购买x件这样的商品.3×5+(x-5)×3×0.8≤28解得x≤,∴最多可以购买该商品的件数是10.12、16解析:50×20%+20×10%+10×10%+5×60%=16(元),平均每人捐款16(元).13、2解析:x2+2x+3=(x+1)2+2≥2,最小值是2.14、解析:设方程另一根为x0,由根与系数的关系得+ x0=2,x0=.15、1<x≤3解析:作y=2x的图象与直线y=kx+b交于B点,x>1时2x>kx+b,又0≤kx+b时,x≤3,故得不等式0≤kx+b<2x的解集是1<x≤3.16、解析:设A(a,0),D(b,0),则B(a,3a),C(b,kb).AB=CD,得 3a=kb; BC=AD,得 b-a=kb-3a.又BC=2AB,得kb-3a=2×3a.∴b-a=6a,b=7a,代入3a=kb, 3a=7ka,∵a≠0,∴k=.17、k≠1解析:即∴k≠1.18、3≤b≤6解析:由题意可知当直线y=-2x+b经过A(1,1)时b的值最小,即-2×1+b=1,b=3;当直线y=-2x+b过C(2,2)时,b最大即2=-2×2+b,b=6,故能够使黑色区域变白的b的取值范围为3≤b≤6.19、(1)解:x+5=±4,∴x1=-1,x2=-9.(2)解:x2-2x=3,x2-2x+1=4,(x-1)2=4,x-1=±2,∴x1=3,x2=-1.(3)解:x2+2x=-3,x2+2x+1=-2,(x+1)2=-2.∵(x+1)2≥0,∴该一元二次方程无实数根.(4)解:a=2,b=-5,c=-7,△=b2-4ac=25-4×2×(-7)=81>0,(5)解:x2+2x+1-3x-3+2=0x2-x=0x(x-1)=0∴x1=0,x2=1.(6)解:(2x+1)2-9(x-3)2=0[(2x+1)+3(x-3)]·[(2x+1)-3(x-3)]=0∴(5x-8)(10-x)=0∴,x1=10.20、x2-16x+60=0,x2-16x+82=4,(x-8)2=4x-8=±2∴x1=10,x2=6.①当x=10时,6+8>10,∴三角形周长为6+8+10=24.②当x=6时,6+6>8,∴三角形周长为6+6+8=20.答:该三角形第三条边长为10或6.当第三边长为10时,周长为24;当第三边长为6时,周长为20.21、(1)∵放入了3个小球时,水面上升了36-30=6(cm),∴放入1个小球时,水面上升6÷3=2(cm);∴放入1个小球时,量筒中水面增高2cm.(2)y=2x+30(3)2x+30>49,x>9.5.∵x为整数,∴至少放入10个小球时有水溢出.22、(1)由两图中信息可知,甲的平均成绩为:(5+6+7+6+6)=6(环),乙射靶的环数分别为3,6,6,7,8,其中6环出现两次,故乙的众数为6环,由甲的平均环数=6(环)知,[(5-6)2+(6-6)2+(7-6)2+(6-6)2+(6-6)2]=0.4,补充完整的表格如下:(2)甲、乙两人射靶成绩的平均数都是6,但甲的方差比乙的方差要小,说明甲的成绩较为稳定,所以甲的成绩比乙的成绩要好些.23、解:∵直线与坐标轴交于A、B两点,∴令x=0,得y=4,∴B(0,4),∴OB=4,令y=0,得x=8,∴A(8,0),∴OA=8.设BC交x轴于点D,BC解析式为y=kx+b,∵BC过B(0,4),C(4,-4),∴BC的函数解析式为y=-2x+4.令y=0,-2x+4=0,x=2,∴D(2,0),∴AD=8-2=6,,.设P坐标为(0,m),BP=|m-4|,∴,|m-4|=6,m-4=±6,∴m=10或-2.∴P的坐标为(0,10)或(0,-2).24、(1)如图所示.(2)由图可知,两车在途中相遇两次.(2)由图可知,两车在最后一次相遇时5<x<6,设出租车在4至6小时的函数解析式为y=kx+b,由图可知,图象过(4,0),(6,150)∴出租车4至6小时的解析式为y=75x-300.设公共汽车在5至7小时时的函数解析式为y=mx+n,由图可知,图象过(5,150),(7,0),∴公共汽车5至7小时时函数解析式为y=-75x+525,联立方程组∴两车最后一次相遇时,距A市112.5km.25、解:设租用甲种客车x辆,则租用乙种客车(6-x)辆,解得4≤x≤.由题意知x应取整数,∴x=4或5.设需要租金共y元,y与x的函数关系式为y=280x+200(6-x)=80x+1200∵80>0,∴y随x增大而增大,∴当x=4时,y值最小,最小值为80×4+1200=1520(元),结余数额:1650-1520=130(元).∴能有结余,最多可结余130元.26、(1)∵B在y轴上且l经过点B,∴令x=0,y=1.∴B(0,1).∵A(0,3),∴AB=3-1=2,∴BC=2AB=4.∵ABCD是矩形,∴P1纵坐标为3.令y=3,2x+1=3,x=1,∴P1坐标为(1,3),∴AP1=1.(2)①由(1)知,AB=2,AP1=1,.∵四边形BEPP1是菱形,∴BP1=BE=PP1=PE=.∴平移距离是.②∵矩形ABCD的面积是8,且直线l把矩形ABCD分成两部分的面积之比值为3∶5,∴S四边形PECD=5或者S四边形PECD=3,当S四边形PECD=5时,设P(m,3),AP=m,则BE=m-1,, m=3,得P(3,3).当S四边形PECD=3时,,m=2 得P(2,3).∴P(3,3)或P(2,3).。
2014-2015学年度第二学期八年级数学期中考试卷(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确的答案前面的字母编号写在相应的题号下。
1.下列式子是分式的是( )A.2x B.11+x C.y x +2 D.πxy2 2. 使分式2-x x有意义的x 的取值范围是( )A. 2x =B.2x ≠C.2x =-D.2x ≠-3. 某种感冒病毒的直径是0.00000012米,用科学记数法表示为( )米.A .71.210-⨯ B .71012.0-⨯ C .6102.1-⨯ D .61012.0-⨯ 4.点)0,2(在( )A.x 轴上B.y 轴上C.第一象限D.第四象限 5.点P (5,4-)关于x 轴对称点是( )A .(5,4) B.(5,4-) C.(4,5-) D.(5-,4-) 6.若点P(3,-1m )在第二象限,则m 的取值范围是( )A. m <1B. m <0C. m >0D. m >1 7.函数23-=x y 的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限8.在同一坐标系中,函数x ky =和3+=kx y )0(≠k 的图像大致是( )9. 在平行四边形ABCD 中,A B C D ∠∠∠∠∶∶∶的值可以是( ) A.1234∶∶∶ B.1221∶∶∶ C.2211∶∶∶ D.2121∶∶∶ 10.下列说法错误的是( )学校: 班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分E A .平行四边形的对角相等 B.平行四边形的对角互补 C .平行四边形的对边相等 D.平行四边形的内角和是360°11.如图1,在平行四边形ABCD 中,CA ⊥AB ,若AB=3,BC=5,则平行四边形的面积等于( )A .6 B. 10 C. 12 D. 1512. 如图2,a b ∥,下列线段中是a b ,之间的距离的是( )A.AB B.AE C.EF D.BC图2 13.已知2111=-b a ,则b a ab -的值是( ) A .21 B.21- C.2 D.2-14.当一次函数32-=x y 的图像在第四象限时,自变量x 的取值范围是( ) A.0<x <23 B.x >0 C.x <23D.无法确定二、填空题:(每小题4分,共16分)15. 若分式方程212-=--x x m x 有增根,则这个增根是=x 16.若反比例函数xky = 的图象经过点(1,-2),则此函数的解析式为 。
2014-2015学年八年级下学期期中数学试卷一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对3.函数中,自变量x的取值范围是( )A.B.C.D.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠D D.AB∥DC,∠B=∠D5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.467.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.58.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C.D.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=__________时,分式的值为0.12.,﹣的最简公分母是__________.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于__________.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为__________.15.如果分式方程无解,则m=__________.16.已知﹣=3,则代数式的值为__________.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为__________.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是__________.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形__________A.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为__________cm/s,a﹦__________cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:、、的分母中均不含有字母,因此它们是整式,而不是分式.、+1分母中含有字母,因此是分式.故选:A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对考点:中点四边形.分析:因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=G F=FE,∴四边形EFGH为菱形.故选:C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.3.函数中,自变量x的取值范围是( )A.B.C.D.考点:函数自变量的取值范围.分析:根据当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.解答:解:由,得3﹣2x>0,解得x<,故选:B.点评:本题考查了函数自变量的范围,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠DD.AB∥DC,∠B=∠D考点:平行四边形的判定.分析:根据平行四边形的判定定理进行判断即可.解答:解:A、根据两组对边分别相等的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形为平行四边形,故此选项符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠B=∠D,∴AD∥BC,∴根据两组对边分别平行四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.点评:此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为0的整式,结果不变,可得答案.解答:如果把分式中的m和n都扩大3倍,那么分式的值不变,故选:A.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,结果不变.6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=7,∵△OCD的周长为23,∴OD+OC=23﹣7=16,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=32,故选A.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.5考点:一元二次方程的解;一元二次方程的定义.分析:根据一元二次方程的定义得到m﹣1≠0;根据方程的解的定义得到m2﹣1=0,由此可以求得m的值.解答:解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,∴m2﹣1=0且m﹣1≠0,解得m=﹣1.故选:C.点评:本题考查了一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C. D.考点:由实际问题抽象出分式方程.分析:关键描述语是:“提前2天完成绿化改造任务”.等量关系为:原计划的工作时间﹣实际的工作时间=2.解答:解:若设原计划每天绿化(x)m,实际每天绿化(x+10)m,原计划的工作时间为:,实际的工作时间为:方程应该为:﹣=2.故选:A.点评:此题主要考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找相等关系.本题主要用到的关系为:工作时间=工作总量÷工作效率.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个考点:分式的值;约分.分析:首先化简分式可得,要使它的值为整数,则(x﹣1)应是3的约数,即x﹣1=±1或±3,进而解出x的值.解答:解:∵,∴根据题意,得x﹣1=±1或±3,解得x=0或x=2或x=﹣2或x=4,故选D.点评:此题考查分式的值,此类题首先要正确化简分式,然后要保证分式的值为整数,则根据分母应是分子的约数,进行分析.10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,因为QN取得最大值是OB 时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时AM=3,从而求得M的坐标(3,4).解答:解:如图,过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,∵MP≤OA,QN≤OB,∴当点N与点B重合,QN取得最大值OB时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时△MON的面积最大,周长最短,∵=,即=,∴AM=3,∴M(3,4).故选B.点评:本题考查了直角梯形的性质,坐标和图形的性质,轴对称的性质等,作出辅助线是本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=﹣1时,分式的值为0.考点:分式的值为零的条件.分析:根据分式值为零的条件得x+1=0且x﹣2≠0,再解方程即可.解答:解:由分式的值为零的条件得x+1=0,且x﹣2≠0,解得:x=﹣1,故答案为:﹣1.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.12.,﹣的最简公分母是4x3y.考点:最简公分母.分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答:解:,﹣的最简公分母是4x3y;故答案为:4x3y.点评:此题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于12.考点:菱形的性质;非负数的性质:偶次方;非负数的性质:算术平方根.分析:由a、b满足,即可求得a与b的值,又由菱形的两条对角线长为a和b,根据菱形的面积等于对角线积的一半,即可求得答案.解答:解:∵a、b满足,∴,解得:a=4,b=6,∵菱形的两条对角线长为a和b,∴菱形的面积为:ab=12.故答案为:12.点评:此题考查了菱形的性质以及非负数的非负性.注意掌握菱形的面积等于对角线积的一半是关键.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为6.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB.解答:解:∵EF是△ABD的中位线,∴AB=2EF=6,又∵AB=CD,∴CD=6.故答案为:6.点评:本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键.15.如果分式方程无解,则m=﹣1.考点:分式方程的解.专题:计算题.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评:本题考查了分式方程无解的条件,是需要识记的内容.16.已知﹣=3,则代数式的值为﹣.考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理得到x﹣y=﹣3xy,原式变形后代入计算即可求出值.解答:解:∵﹣==3,即x﹣y=﹣3xy,∴原式===﹣,故答案为:﹣点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.考点:菱形的性质;勾股定理.专题:几何图形问题.分析:根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC 的长.解答:解:∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC=,故答案为:.点评:根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是x1=c,x2=+3.考点:分式方程的解.专题:计算题.分析:根据题中方程的解归纳总结得到一般性规律,所求方程变形后确定出解即可.解答:解:所求方程变形得:x﹣3+=c﹣3+,根据题中的规律得:x﹣3=c﹣3,x﹣3=,解得:x1=c,x2=+3,故答案为:x1=c,x2=+3点评:此题考查了分式方程的解,归纳总结得到题中方程解的规律是解本题的关键.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.考点:分式的化简求值.专题:计算题.分析:(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m=0代入计算即可求出值.解答:解:(1)原式=﹣=﹣;(2)原式=•=•=,当m=0时,原式=﹣1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)先变形,再提公因式即可;(2)先把系数化为1,再配方法即可.解答:解:(1)整理得:(x﹣5)2+2(x﹣5)=0;(x﹣5)(x﹣5+2)=0,x﹣5=0或x﹣3=0,解得x1=5,x2=3;(2)把二次项系数化为1得,x2﹣2x﹣3=0,x2﹣2x=3,x2﹣2x+1=4,(x﹣1)2=4,x﹣1=±2;解得x1=﹣1,x2=3.点评:本题考查了解一元二次方程,用到的方法有:提公因式法和配方法,是常见题型,要熟练掌握.21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB 即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.解答:解:(1)①如图所示;②直线CD如图所示;(2)∵由图可知,AD=BC,AD∥BC,∴四边形ABCD是平行四边形.∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.考点:矩形的性质;线段垂直平分线的性质;作图—基本作图.分析:(1)分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)首先证得△COF≌△AOE,然后由线段垂直平分线的性质,证得AF=CF,即可证得结论.解答:(1)解:如图:分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠OCF=∠OAE,在△OCF和△OAE中,,∴△COF≌△AOE(ASA),∴AE=CF,∵EF是AC的垂直平分线,∴AF=CF,∴AE=AF.点评:此题考查了矩形的性质、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?考点:分式方程的应用.分析:根据实际比计划提前了4天这一等量关系列出方程求解.解答:解:设原来每天加固x平方米,则熟练后每天加固(1+25%)x平方米,由题意得:=解得:x=60经检验x=60是方程的解,∴﹣4=22答:原来每天能加固60平方米校舍,实际上加固校舍花了22天时间.点评:本题考查了分式方程的应用,解题的关键是找到等量关系.24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形CA.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.考点:等腰梯形的性质;等腰直角三角形;平行四边形的性质;菱形的性质;矩形的性质.专题:新定义.分析:(1)有和谐四边形的定义即可得到菱形是和谐四边形;(2)首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠ABC的度数.解答:解:(1)∵菱形的四条边相等,∴连接对角线能得到两个等腰三角形,∴菱形是和谐四边形;(2)解:∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形,在等腰Rt△ABD中,∵AB=AD,∴AB=AD=BC,如图1,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠ABC=60°.如图2,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠ABC=90°;如图3,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠BAC=∠BCF=15°,∴∠ABC=150°,综上:∠ABC的度数可能是:60°90°150°.点评:此题考查了等腰直角三角形的性质,等腰三角形的性质、矩形的性质、正方形的性质,菱形的性质,此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为1cm/s,a﹦6cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.考点:二次函数综合题;动点问题的函数图象.专题:压轴题.分析:(1)根据点E时S最大,判断出2秒时点P运动至点B,点Q运动至点C,然后根据点P的速度求出AB,再根据3秒时,S=0判断出点P与点Q重合,然后根据追击问题的等量关系列出方程求出点Q的速度即可得解;(2)①求出3秒时点P、Q在点C重合,再求出点P到达点D的时间为5秒,到达点A 的时间为6秒,然后分3<t≤5时表示出PQ,然后根据三角形的面积公式列式整理即可;5<t≤6时,表示出AP、DQ,然后利用三角形的面积公式列式整理即可;②根据函数解析式作出图象即可.解答:解:(1)由图可知,2秒时点P运动至点B,点Q运动至点C,∵点P的速度为3cm/s,∴AB=3×=6cm,3秒时,S=0判断出点P与点Q重合,设点Q的速度为xcm/s,则3x+6=3×3,解得x=1,此时,BC=2×1=2cm,a=×6×2=6cm2,故答案为:1,6;(2)∵(6+3)÷3=3s,3÷1=3s,∴3秒时点P、Q在点C重合,点P到达点D的时间为:(6+3+6)÷3=5s到达点A的时间为:(6+3+6+3)÷3=6s,①若3<t≤5,则PQ=3t﹣t﹣6=2t﹣6,S=×(2t﹣6)×3=3t﹣9;若5<t≤6,则AP=(6+3+6+3)﹣3t=18﹣3t,DQ=(6+3)﹣t=9﹣t,S=×(18﹣3t)×(9﹣t)=t2﹣t+81;所以,S=;②函数图象如图2所示.点评:本题是二次函数综合题型,动点问题函数图象,主要利用了路程、速度、时间三者之间的关系,根据图2判断出2秒时点P、Q的位置是解题的关键,也是本题的难点,根据3秒时,点P、Q重合利用追击问题等量关系求出点Q的速度也很重要.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)考点:相似形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(3)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8,当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t;(2)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM(AAS).∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(3)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。
湖北省黄冈中学2015年春季八年级期中考试数学试题时间:120分满分:120分一、选择题(每小题3分,共24分)1、对于圆的周长公式C=2πR,下列说法正确的是()A.C、π、R是变量,2是常量B.R是变量,C、π是常量C.C是变量,π、R是常量 D.C、R是变量,2、π是常量2、给出下列函数:①y=2x;②;③y=2x+l;④y=2x2+1.其中是一次函数的有()A.4个B.3个C.2个D.1个3、方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为()A.2,3,-6 B.2,-3,18C.2,-3,6 D.2,3,64、已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内,它的图象大致是()5、关于x的一元二次方程(m-2)x2+(2m-1)x+m2-4=0的一个根是0,则m的值是()A.2 B.-2C.2或者-2 D.6、点A(x1,y1)、B(x2,y2)是一次函数y=-x+2的图象上不同的两点,若t=(x1-x2)(y1-y2),则()A.t<0 B.t=0C.t>0 D.t≤07、为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如下表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)20 16 12 8人数24 18 5 3A.20,16 B.l6,20C.20,l2 D.16,l28、如图甲,在正方形ABCD的边上有一个动点P以2cm/s的速度,从点B开始B —C—D—A匀速运动,到点A停止.设点P移动时间为t,△ABP的面积为S,S 关于t的函数关系如图乙所示,下列结论:①图甲中的BC长是4cm;②图乙中的a的值是8cm2;③当t=l(s),S=3cm2;④当t为0.5s或5.5s时,S=2cm2.其中正确的序号是()A.①②③B.①②④C.①③④D.②③④二、填空题(每小题3分,共30分)9、有一组数据如下:3,a,4,6,7,它们的平均数是5,则这组数据的方差是_____.10、将长为30cm,宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的纸条总长度为y cm,则y与x的函数关系式为_______(不要求写出自变量的取值范围).11、商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.若有28元钱,则最多可以购买该商品的件数是______件.12、在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,下图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款_____元.13、代数式的x2+2x+3最小值为______.14、已知是方程x2-2x+c=o的一个根,方程的另一个根是______.15、如图,直线y=kx+b经过点A(3,0),B(1,2),则关于x的不等式0≤kx+b<2x的解集为______.16、如图,点B、C分别在两条直线y=3x和y=kx上,点A、D是x轴上两点,已知四边形ABCD是长方形,且BC=2AB,则k的值为______.17、关于x的一元二次方程(k-1)x2+kx+l=0有实数根,则k的取值范围是______.18、如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=-2x +b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为______.三、解答题(共66分)19、选用适当的方法解下列方程(每3分,共18分)(1)(x+5)2=16(2)x2-2x-3=0(3)x2+2x+3=0(4)2x2-5x-7=0(5)(x+1)2-3(x+1)+2=0(6)(2x+1)2=9(x-3)220、(5分)三角形两边长分别是6和8,第三边长是关于x的方程x2-16x+60=0的一个实数根,求该三角形的第三条边长和周长.21、(5分)小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球时量筒中水面升高的高度;(2)放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?22、(8分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:(1)根据图中的数据填写下表:(2)从平均数和方差相结合看,分析谁的成绩好些.23、(6分)如图,直线与坐标轴交于A、B两点,C(4,-4),点P在y轴上,满足S△PAB=S△ABC,求点P的坐标.24、(7分)某公交公司的公共汽车和出租车每天从A市出发往返于A市和B市两地,出租车比公共汽车多往返一趟,如图表示出租车距A市的路程y(单位:千米)与所用时间x(单位:小时)的函数图象.已知公共汽车比出租车晚1小时出发,到达B市后休息2小时,然后按原路原速返回,结果比出租车最后一次返回A市早1小时.(1)请在图中画出公共汽车距A市的路程y(千米)与所用时间x(小时)的函数图象;(2)两车在途中相遇__________次(直接写出答案);(3)求两车最后一次相遇时,距A市的路程.25、(8分)某学校计划租用6辆客车送240名师生参加一年一度的武汉杂技节,感受杂技艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.甲种客车乙种客车载客量(人/辆)45 30租金(元/辆)280 200若领队老师从学校预支租车费用1650元,试问预支的租车费用能否有结余?若有结余,最多可结余多少元?26、(9分)矩形ABCD在如图所示的直角坐标系中,点A的坐标为(0,3),BC=2AB,直线l经过点B,交AD于点P1,此时直线l的函数表达式是y=2x+1.(1)求BC,AP1的长;(2)沿x轴正半轴平移直线l,分别交AD,BC边于点P,E.①当四边形BEPP1是菱形时,求平移的距离;②当直线l把矩形ABCD分成两部分的面积之比为3∶5时,求点P的坐标.答案与解析:1、D C随半径R的变化而变化,∴C、R是变量,2、π是常量.2、B 形如y=kx+b(k≠0)的函数是一次函数,①②③符合一次函数特征.④y=2x2+1是二次函数.3、B 整理后方程2x2=3(x-6)得 2x2-3x+18=0,二次项系数、一次项系数和常数项分别为2,-3,18.4、A 一次函数y=kx+b,y随着x的增大而减小,知k<0,排除C、D.又kb<0,所以b>0,直线与y轴交于正半轴,选A.5、B 将x=0代入(m-2)x2+(2m-1)x+m2-4=0,得m2-4=0,m=±2.又方程是一元二次方程,所以m-2≠0,故得m=-2.6、A 一次函数y=-x+2的值随x增大而减小,不妨设x1<x2,则y1>y2,所以x1-x2<0,y1-y2>0,知t=(x1-x2)(y1-y2)<0.选A.7、A 因为分数为20分的人数最多,所以众数是20;24<18+5+3,故中位数是16.故选A.8、B 由图甲、乙知,从B点→C点所经过的时间为2s,则从B点→C点所经过的路程为2×2=4cm,∴BC的长是4m,①正确;由图甲知a=S△APB=AB·BC=×4×4=8(cm2),②正确;当t=l(s),BP=2cm,S△ABP=AB·BP=×4×2=4cm2,③不正确;当t为0.5s时,BP=1cm,S△APB=AB·BC=×4×1=2(cm2),当t为5.5s时,AP=12-2t=1cm,S△APB=AB·AP=×4×1=2(cm2),④正确.9、2解析:3+a+4+6+7=5×5,a=5,.10、y=27x+3解析:y=30x-3(x-1)=27x+311、10解:设可以购买x件这样的商品.3×5+(x-5)×3×0.8≤28解得x≤,∴最多可以购买该商品的件数是10.12、16解析:50×20%+20×10%+10×10%+5×60%=16(元),平均每人捐款16(元).13、2解析:x2+2x+3=(x+1)2+2≥2,最小值是2.14、解析:设方程另一根为x0,由根与系数的关系得+ x0=2,x0=.15、1<x≤3解析:作y=2x的图象与直线y=kx+b交于B点,x>1时2x>kx+b,又0≤kx+b时,x≤3,故得不等式0≤kx+b<2x的解集是1<x≤3.16、解析:设A(a,0),D(b,0),则B(a,3a),C(b,kb).AB=CD,得 3a=kb; BC=AD,得 b-a=kb-3a.又BC=2AB,得kb-3a=2×3a.∴b-a=6a,b=7a,代入3a=kb, 3a=7ka,∵a≠0,∴k=.17、k≠1解析:即∴k≠1.18、3≤b≤6解析:由题意可知当直线y=-2x+b经过A(1,1)时b的值最小,即-2×1+b=1,b=3;当直线y=-2x+b过C(2,2)时,b最大即2=-2×2+b,b=6,故能够使黑色区域变白的b的取值范围为3≤b≤6.19、(1)解:x+5=±4,∴x1=-1,x2=-9.(2)解:x2-2x=3,x2-2x+1=4,(x-1)2=4,x-1=±2,∴x1=3,x2=-1.(3)解:x2+2x=-3,x2+2x+1=-2,(x+1)2=-2.∵(x+1)2≥0,∴该一元二次方程无实数根.(4)解:a=2,b=-5,c=-7,△=b2-4ac=25-4×2×(-7)=81>0,(5)解:x2+2x+1-3x-3+2=0x2-x=0x(x-1)=0∴x1=0,x2=1.(6)解:(2x+1)2-9(x-3)2=0[(2x+1)+3(x-3)]·[(2x+1)-3(x-3)]=0∴(5x-8)(10-x)=0∴,x1=10.20、x2-16x+60=0,x2-16x+82=4,(x-8)2=4x-8=±2∴x1=10,x2=6.①当x=10时,6+8>10,∴三角形周长为6+8+10=24.②当x=6时,6+6>8,∴三角形周长为6+6+8=20.答:该三角形第三条边长为10或6.当第三边长为10时,周长为24;当第三边长为6时,周长为20.21、(1)∵放入了3个小球时,水面上升了36-30=6(cm),∴放入1个小球时,水面上升6÷3=2(cm);∴放入1个小球时,量筒中水面增高2cm.(2)y=2x+30(3)2x+30>49,x>9.5.∵x为整数,∴至少放入10个小球时有水溢出.22、(1)由两图中信息可知,甲的平均成绩为:(5+6+7+6+6)=6(环),乙射靶的环数分别为3,6,6,7,8,其中6环出现两次,故乙的众数为6环,由甲的平均环数=6(环)知,[(5-6)2+(6-6)2+(7-6)2+(6-6)2+(6-6)2]=0.4,补充完整的表格如下:(2)甲、乙两人射靶成绩的平均数都是6,但甲的方差比乙的方差要小,说明甲的成绩较为稳定,所以甲的成绩比乙的成绩要好些.23、解:∵直线与坐标轴交于A、B两点,∴令x=0,得y=4,∴B(0,4),∴OB=4,令y=0,得x=8,∴A(8,0),∴OA=8.设BC交x轴于点D,BC解析式为y=kx+b,∵BC过B(0,4),C(4,-4),∴BC的函数解析式为y=-2x+4.令y=0,-2x+4=0,x=2,∴D(2,0),∴AD=8-2=6,,.设P坐标为(0,m),BP=|m-4|,∴,|m-4|=6,m-4=±6,∴m=10或-2.∴P的坐标为(0,10)或(0,-2).24、(1)如图所示.(2)由图可知,两车在途中相遇两次.(2)由图可知,两车在最后一次相遇时5<x<6,设出租车在4至6小时的函数解析式为y=kx+b,由图可知,图象过(4,0),(6,150)∴出租车4至6小时的解析式为y=75x-300.设公共汽车在5至7小时时的函数解析式为y=mx+n,由图可知,图象过(5,150),(7,0),∴公共汽车5至7小时时函数解析式为y=-75x+525,联立方程组∴两车最后一次相遇时,距A市112.5km.25、解:设租用甲种客车x辆,则租用乙种客车(6-x)辆,解得4≤x≤.由题意知x应取整数,∴x=4或5.设需要租金共y元,y与x的函数关系式为y=280x+200(6-x)=80x+1200∵80>0,∴y随x增大而增大,∴当x=4时,y值最小,最小值为80×4+1200=1520(元),结余数额:1650-1520=130(元).∴能有结余,最多可结余130元.26、(1)∵B在y轴上且l经过点B,∴令x=0,y=1.∴B(0,1).∵A(0,3),∴AB=3-1=2,∴BC=2AB=4.∵ABCD是矩形,∴P1纵坐标为3.令y=3,2x+1=3,x=1,∴P1坐标为(1,3),∴AP1=1.(2)①由(1)知,AB=2,AP1=1,.∵四边形BEPP1是菱形,∴BP1=BE=PP1=PE=.∴平移距离是.②∵矩形ABCD的面积是8,且直线l把矩形ABCD分成两部分的面积之比值为3∶5,∴S四边形PECD=5或者S四边形PECD=3,当S四边形PECD=5时,设P(m,3),AP=m,则BE=m-1,, m=3,得P(3,3).当S四边形PECD=3时,,m=2 得P(2,3).∴P(3,3)或P(2,3).。
12014-2015学年第二学期八年级期中数学试题姓名 班级 考号 得分:(考试时间:100分钟 满分:120分)一. 填空题(每空3分,共30分)1. 用科学记数法表示-0.000043为 。
2.计算:计算()=⎪⎭⎫⎝⎛+--1311 ; 232()3y x=__________; a b b b a a -+-= ; yx x x y xy x 22+⋅+= 。
3.当x 时,分式51-x 有意义;当x 时,分式11x 2+-x 的值为零。
4.反比例函数xm y 1-=的图象在第一、三象限,则m 的取值范围是 ;在每一象限内y 随x 的增大而 。
5. 如果反比例函数x my =过A (2,-3),则m= 。
6. 设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 . 7.如图由于台风的影响,一棵树在离地面m 6处折断,树顶落在离树干底部m 8处,则这棵树在折断前(不包括树根)长度是 m.8. 三角形的两边长分别为3和5,要使这个三角形是直角三角 A D形,则第三条边长是 .9. 如图若正方形ABCD 的边长是4,BE=1,在AC 上找一点使PE+PB 的值最小,则最小值为 。
C210.如图,公路PQ 和公路MN 交于点P,且∠NPQ=30°,公路PQ 上有一所学校A,AP=160米,若有一拖拉机沿MN 方向以18米∕秒的速度行驶并对学校产生影响,则造成影响的时间为 秒。
二.单项选择题(每小题3分,共18分)11.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个 12.下面正确的命题中,其逆命题不成立的是( )A.同旁内角互补,两直线平行B.全等三角形的对应边相等C.角平分线上的点到这个角的两边的距离相等D.对顶角相等13.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A . 1.5,2,3a b c ===B . 7,24,25a b c ===C . 6,8,10a b c === D. 3,4,5a b c === 14.在同一直角坐标系中,函数y=kx+k 与(0)ky k x=≠的图像大致是( )15.如图所示:数轴上点A 所表示的数为a ,则a 的值是(A .16.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ).A .3B .4C .5D .63三、解答题:17.(10分)计算:(1)xy y x y x ---22 (2)22111a a a a a ++---18.(8分)先化简代数式1121112-÷⎪⎭⎫⎝⎛+-+-+a a a a a a ,然后选取一个使原式有意义的a 的值代入求值.19.(10分)解方程: (1)1233x x x=+-- (2)482222-=-+-+x x x x x4/ 2mm20.(6分)已知:如图,四边形ABCD ,AB=8,BC=6,CD=26,AD=24,且AB ⊥BC 。
OABCD2014—2015学年度第二学期期中考试初二年级数学试卷考试时间:100分钟 满分:100分一、选择题 (每小题3分,共30分)1.下列各组长度的线段能组成直角三角形的是( ) A .a =2,b =3,c =4 B .a =4,b =4,c =5 C .a =5,b =6,c =7 D .a =5,b =12,c =132.下面各条件中,能判定四边形是平行四边形的是( )A.对角线互相垂直B.对角线互相平分C.一组对角相等D.一组对边相等3.直角三角形一条直角边长为8 cm ,它所对的角为30°,则斜边为( ) A. 16 cm B. 4cm C. 12cm D. 8 cm 4.用配方法解方程0262=+-x x 时,下列配方正确的是( )A .9)3(2=-xB .7)3(2=-xC .9)9(2=-xD . 7)9(2=-x 5.顺次连结菱形各边中点所围成的四边形是( )A .一般的平行四边形B .矩形C .菱形D .等腰梯形6.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为( )A .6B .3C .33D .637.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.如图,□ABCD 中,∠DAB 的平分线AE 交CD 于E ,AB=5, BC=3,则EC 的长( ) A. 1 B. 1.5 C. 2 D. 39.直角三角形两直角边的长度分别为6和8,则斜边上的高为( )CBAED年级 班级 姓名 学号装 订 线3A.10B.5C. 9.6D.4.810.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围 是 ( )A.1k >-B. 1k >-且0k ≠C.1k <D. 1k <且0k ≠二、填空题(每小题3分,共30分)11.命题“菱形是对角线互相垂直的四边形”的逆命题是 . 12.梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 米. 13.如果菱形的两条对角线长为cm 10与cm 12,则此菱形的面积______2cm . 14.在ABC ∆中,∠C=090,AC=12,BC=5,则AB 边上的中线CD= . 15.一个正方形的面积为81cm 2,则它的对角线长为 cm.16. 已知□ABCD 的周长是24,对角线AC 、BD 相交于点O ,且△OAB 的周长比△OBC 的周长大4,则AB= .17.若关于x 的一元二次方程 220x x k -+=的一个实数根为2,则k 的值为________.18.如下图,已知OA=OB ,那么数轴上点A 所表示的数是____________.19.若(m -2)22-m x+x -3=0是关于x 的一元二次方程,则m 的值是______.20. 如图,⊿ABC 的周长为16,D, E, F 分别为AB, BC, AC1-30-1-2-4231B A A的中点,M, N, P 分别为DE, EF, DF 的中点,则⊿MNP 的周长为 。
八年级(下)期中数学试卷一、细心选一选,你一定准!(每小题3分,共30分;每小题只有一个选项符合题意)1.下列式子是分式的是()A.B.C.+y D.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣63.化简的结果是()A.B.C.D.4.分式方程的解是()A.﹣1 B.1 C.﹣2 D.25.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A.B.C.D.6.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A. B. C.D.7.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm8.把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的()A.3倍B.6倍C.9倍D.18倍9.在一直角坐标系中,点A、点B的坐标分别为(﹣6,0)、(0,8),则坐标原点O到线段AB的距离为()A.6 B.8 C.10 D.4.810.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是()A.1 B.2 C.4 D.8二、填空题(共6小题,每小题3分,满分18分)11.已知点M(a,1)在双曲线上,则a=.12.如图,已知OA=OB,那么数轴上点A所表示的数是.13.如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为.14.已知,则=.15.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是.16.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD 的面积为60,则△DEC的面积为.三、认真做一做,你一定棒!(共52分.写出详细的解答或证明过程)1)计算:;(2)化简:.18.解方程:.19.如图,反比例函数y=(k≠0)和一次函数y=ax+b(a≠0)的图象交于A(4,),B(﹣2,n)两点.(1)根据图象写出:当x为何值时,一次函数值大于反比例函数值;(2)求反比例函数的解析式和n的值.20.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和走高速公路的平均速度分别是多少?21.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?22.如图,CD是AB上的高,AC=4,BC=3,DB=.(1)求CD的长;(2)△ABC是直角三角形吗?请说明理由.23.如图,梯形ABCD中,AD∥BC,∠ABC=45°,∠ADC=120°,AD=DC,AB=2,求BC的长.参考答案与试题解析一、细心选一选,你一定准!(每小题3分,共30分;每小题只有一个选项符合题意)1.下列式子是分式的是()A.B.C.+y D.考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,+y,的分母中均不含有字母,因此它们是整式,而不是分式.的分母中含有字母,因此是分式.故选:A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣6考点:科学记数法—表示较小的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:0.000 021=2.1×10﹣5.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.化简的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:先把x2﹣9因式分解得到最简公分母为(x+3)(x﹣3),然后通分得到,再把分子化简后约分即可.解答:解:原式=﹣===.故选B.点评:本题考查了分式的加减法:先把各分母因式分解,确定最简公分母,然后进行通分化为同分母的分式,再把分母不变,分子相加减,然后进行约分化为最简分式或整式.4.分式方程的解是()A.﹣1 B.1 C.﹣2 D.2考点:解分式方程.分析:方程两边乘最简公分母x,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x,得2+x﹣1=2x,解得x=1.检验:把x=1代入x=1≠0.∴原方程的解为:x=1.故选B.点评:本题考查了解分式方程,解题的关键是注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.5.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A.B.C.D.考点:反比例函数的应用.专题:数形结合.分析:根据实际意义,写出函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.解答:解:根据题意有:v•t=s;故v与t之间的函数图象为反比例函数,且根据实际意义v>0、t>0,其图象在第一象限.故选:C.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A. B. C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;B、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确;C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m<0,相矛盾,故错误;D、由函数y=x+m的图象可知m=0,由函数y=的图象可知m<0,相矛盾,故错误.故选B.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm考点:翻折变换(折叠问题).分析:在Rt△ABC中,可求出AB的长度,根据折叠的性质可得出AE=EB=AB.解答:解:∵AC=6cm,BC=8cm,∴AB==10cm,∵由折叠的性质得,∠B=∠DAE,DE⊥AB,∴AE=EB=AB=5cm.故选B.点评:本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.8.把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的()A.3倍B.6倍C.9倍D.18倍考点:勾股定理.分析:设原来直角三角形的两直角边为a、b,斜边为c,根据勾股定理得出a2+b2=c2,即可求出答案.解答:解:设原来直角三角形的两直角边为a、b,斜边为c,则根据勾股定理得:a2+b2=c2,所以(3a)2+(3b)2=9(a2+b2)=9c2=(3c)2,即把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的3倍,故选A.点评:本题考查了勾股定理的应用,能正确根据勾股定理进行计算是解此题的关键,注意:直角三角形的两直角边的平方和等于斜边的平方.9.在一直角坐标系中,点A、点B的坐标分别为(﹣6,0)、(0,8),则坐标原点O到线段AB的距离为()A.6 B.8 C.10 D.4.8考点:勾股定理;坐标与图形性质.分析:在直角坐标系中利用勾股定理求出线段AB的长,然后利用面积相等的方法求得原点到线段AB的距离.解答:解:在坐标系中,OA=6,OB=8,∴由勾股定理得:AB==10,设点O到线段AB的距离为h,∵S△ABO=OA•OB=AB•h,∴6×8=10h,解得h=4.8.故选D.点评:本题考查了勾股定理的知识,利用面积相等求直角三角形的斜边上的高是长采用的方法.10.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是()A.1 B.2 C.4 D.8考点:反比例函数系数k的几何意义.分析:设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd﹣ab=2,即可得出答案.解答:解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=4,∴ab﹣cd=4,∴ab﹣cd=8,∴k1﹣k2=8,故选D.点评:本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab﹣cd=8是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)11.已知点M(a,1)在双曲线上,则a=2.考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征求解.解答:解:∵点M(a,1)在双曲线上,∴a•1=2,∴a=2.故答案为2.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,已知OA=OB,那么数轴上点A所表示的数是﹣.考点:勾股定理;实数与数轴.分析:首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是﹣.解答:解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是﹣.故答案为:﹣.点评:熟练运用勾股定理,同时注意根据点的位置以确定数的符号.13.如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为.考点:反比例函数综合题.分析:首先过A作AC⊥x轴,利用直角三角形30°角所对的直角边等于斜边的一半可得AC的长,再利用勾股定理算出OC的长,即可得到A点的坐标,最后利用待定系数法求出反比例函数关系式即可.解答:解:过A作AC⊥x轴,∵∠AOB=30°,∴,∵OA=6,∴AC=3,在Rt△ACO中,OC2=AO2﹣AC2,∴,∴A点坐标是:(3,3),设反比例函数解析式为,∵反比例函数的图象经过点A,∴,∴反比例函数解析式为.点评:此题主要考查了直角三角形的性质,勾股定理的应用,以及待定系数法求函数关系式,解决问题的关键是求出A点坐标.14.已知,则=﹣.考点:比例的性质.分析:根据题意设x=3a,y=4a,z=5a,进而代入求出即可.解答:解:∵,∴设x=3a,y=4a,z=5a,∴===﹣.故答案为:﹣.点评:此题主要考查了比例的性质,假设出未知数进而代入求出是解题关键.15.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是①③④.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题;数形结合.分析:①将两函数解析式组成方程组,即可求出A点坐标;②根据函数图象及A点坐标,即可判断x>2时,y2与y1的大小;③将x=1代入两函数解析式,求出y的值,y2﹣y1即为BC的长;④根据一次函数与反比例函数的图象和性质即可判断出函数的增减性.解答:解:①将组成方程组得,,由于x>0,解得,故A点坐标为(2,2).②由图可知,x>2时,y1>y2;③当x=1时,y1=1;y2=4,则BC=4﹣1=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.可见,正确的结论为①③④.故答案为:①③④.点评:本题考查了反比例函数与一次函数的交点问题,知道函数图象交点坐标与函数解析式组成的方程组的解之间的关系是解题的关键.16.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为.考点:翻折变换(折叠问题).分析:由AD=8,且△AFD的面积为60,即可求得AF与DF的长,由折叠的性质,可得CD=DF,然后在Rt△BEF中,利用勾股定理即可求得CE的长,继而求得△DEC的面积.解答:解:∵四边形ABCD是矩形,∴∠A=∠B=90°,BC=AD=8,CD=AB,∵△AFD的面积为60,即AD•AF=60,解得:AF=15,∴DF==17,由折叠的性质,得:CD=DF=17,∴AB=17,∴BF=AB﹣AF=17﹣15=2,设CE=x,则EF=CE=x,BE=BC﹣CE=8﹣x,在Rt△BEF中,EF2=BF2+BE2,即x2=22+(8﹣x)2,解得:x=,即CE=,∴△DEC的面积为:CD•CE=×17×=.故答案为:.点评:此题考查了矩形的性质、折叠的性质、勾股定理以及三角形面积问题.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意折叠中的对应关系.三、认真做一做,你一定棒!(共52分.写出详细的解答或证明过程)1)计算:;(2)化简:.考点:实数的运算;分式的混合运算;零指数幂.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用乘法法则计算,第四项利用乘方的意义计算即可得到结果;(2)原式第一项约分后,相减即可得到结果.解答:解:(1)原式=5+1﹣1+1=6;(2)原式=﹣=0.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.考点:解分式方程.分析:观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边都乘以(x+1)(x﹣1),得4﹣(x+1)(x+2)=﹣(x2﹣1),整理,3x=1,解得x=.经检验,x=是原方程的解.故原方程的解是x=.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.如图,反比例函数y=(k≠0)和一次函数y=ax+b(a≠0)的图象交于A(4,),B(﹣2,n)两点.(1)根据图象写出:当x为何值时,一次函数值大于反比例函数值;(2)求反比例函数的解析式和n的值.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)观察函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的取值范围即可;(2)先根据反比例函数图象上点的坐标特征把A点坐标代入y=可求出k,从而得到反比例函数解析式,然后把B(﹣2,n)代入反比例函数解析式即可求出n的值.解答:解:(1)根据图象可得:当x>4或﹣2<x<0时,一次函数的值大于反比例函数的值;(2)把A(4,)代入y=得k=4×=6,所以反比例函数的解析式为y=把B(﹣2,n)代入y=得﹣2n=6,解得n=﹣3.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.20.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和走高速公路的平均速度分别是多少?考点:分式方程的应用.分析:设小汽车原来的平均速度为x千米/时,走高速公路的平均速度是1.5x千米/时,根据题意可得,小汽车不走高速公路走120千米的路程所用的时间=走高速公路150千米所用时间+1小时10分钟,据此列方程求解.解答:解:设小汽车原来的平均速度为x千米/时,走高速公路的平均速度是1.5x千米/时,根据题意,得,解这个方程,得:x=60.经检验:x=60是所列方程的解,这时1.5x=1.5×60=90且符合题意.答:小汽车原来的平均速度是60千米/时,走高速公路的平均速度是90千米/时.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.21.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?考点:反比例函数综合题.专题:综合题;压轴题.分析:(1)根据反比例函数图象上的点的横纵坐标的乘积为函数的系数和△OAM的面积为1可得k=2,即反比例函数的解析式为y=.(2)由正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点求得A为(2,1).要使PA+PB最小,需作出A点关于x轴的对称点C,并连接BC,交x轴于点P,P为所求点.A点关于x轴的对称点C(2,﹣1),而B为(1,2),故BC的解析式为y=﹣3x+5,即可求得P点的坐标.解答:解:(1)设A点的坐标为(a,b),则b=∴ab=k∵ab=1,∴k=1∴k=2,∴反比例函数的解析式为y=.(3分)(2)根据题意画出图形,如图所示:得=x,解得x=2或x=﹣2,∵点A在第一象限,∴x=2把x=2代入y=得y=1,∴A为(2,1)(4分)设A点关于x轴的对称点为C,则C点的坐标为(2,﹣1).令直线BC的解析式为y=mx+n∵B点的横坐标为1,B为反比例函数在第一象限图象上的点,∴xy=2,∴y=2,∴B为(1,2),将B和C的坐标代入得:,解得:∴BC的解析式为y=﹣3x+5(6分)当y=0时,x=,∴P点为(,0).(7分)点评:本题考查反比例函数和一次函数解析式的确定、图形的面积求法、轴对称等知识及综合应用知识、解决问题的能力.有点难度.22.如图,CD是AB上的高,AC=4,BC=3,DB=.(1)求CD的长;(2)△ABC是直角三角形吗?请说明理由.考点:勾股定理的逆定理;勾股定理.分析:(1)在△CDB中利用勾股定理计算出CD长即可;(2)首先利用勾股定理计算出AD2,再计算出AD,然后可得AB长,再利用勾股定理逆定理可证出△ABC是直角三角形.解答:解:(1)∵CD是AB上的高,∴,∴CD=;(2)△ABC是直角三角形理由是:∵,∴,∵,又∵32+42=52,∴△ABC是直角三角形.点评:此题主要考查了勾股定理和勾股定理逆定理,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.23.如图,梯形ABCD中,AD∥BC,∠ABC=45°,∠ADC=120°,AD=DC,AB=2,求BC的长.考点:梯形.专题:计算题.分析:过点A作AE⊥BC于点E,过点D作DF⊥BC,则AD=EF,再分别求出BE、CF的长,即可得出答案.解答:解:过点A作AE⊥BC于点E,过点D作DF⊥BC,则AD=EF,∵∠ABC=45°,AB=2,∴BE=AE=2,又∠ADC=120°,∴∠CDF=30°,∴AD=DC==,CF=,∴BC=BE+EF+CF=2+=2+2.点评:本题考查了梯形的知识,难度不大,注意熟练应用梯形的性质是关键.。
2014-2015学年度第二学期期中考试试卷初二数学班级______分层班________ 姓名______________ 学号_________ 成绩___________注意:时间100分钟,满分120分一、选择题(本题共30分,每小题3分)1. 一元二次方程2410x x +-=的二次项系数、一次项系数、常数项分别是( ). A .4,0,1B .4,1,1C .4,1,-1D .4,1,02. 由下列线段a ,b ,c 不能..组成直角三角形的是( ). A .a =1,b =2,c =3 B .a =1, b =2, c =5 C .a =3,b =4,c =5 D .a =2,b=c =33. 如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连结AB 、AD 、CD ,则四边形ABCD 一定是( ). A .平行四边形 B .矩形C .菱形D .正方形4. 下列各式是完全平方式的是( ). A. 224x x ++B. 269x x -+C. 244x x --D. 232x x -+5. 正方形具有而矩形不一定具有的性质是( ). A .四个角都是直角 B .对角线互相平分 C .对角线相等 D .对角线互相垂直6. 如图,数轴上点M 所表示的数为m ,则m 的值是( ).AB .CD7. 已知平行四边形ABCD 的两条对角线 AC 、BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为( ).A. (3,-2)B. (2,-3)C. (-3,2)D. (-2,-3)8. 某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则由题意可列方程为( ). A. 100)1(1442=-x B. 144)1(1002=-xC. 100)1(1442=+x D. 144)1(1002=+x9. 如图,平行四边形ABCD 的两条对角线相交于点O ,E 是AB边的中点,第16题图图中与△ADE 面积相等的三角形(不包括...△.ADE ...)的个数为( ). A . 3 B . 4 C . 5 D . 610. 如图,在长方形ABCD 中,AC 是对角线,将长方形ABCD 绕点B 顺时针旋转90°到长方形GBEF 位置,H 是EG 的中点,若AB =6,BC =8, 则线段CH 的长为( ).A .52B .41C .102D .21 二、填空题(本题共24分,每小题3分)11. 已知2x =是一元二次方程2280x ax ++=的一个根,则a 的值为 .12. 如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连接AC 和BC ,并分别找出它们的中点M 和N .如果测得MN =15m ,则A ,B 两点间的距离为 m .13. 如图,在□ABCD 中,CE ⊥AB 于E ,如果∠A =125°,那么∠BCE = °.14. 若把代数式223x x --化为2()x m k -+的形式,其中m 、k 为常数,则m +k = .15.如图,在□ABCD 中,E 为AB 中点,AC BC ⊥,若CE =3,则CD = .16. 如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为 .17. 如图,菱形ABCD 的周长为40,∠ABC =60°,E 是AB 的中点,点P 是BD 上的一个动点, 则P A+PE 的最小值为___________.班级______分层班________ 姓名________ 学号______第17题图第12题图第13题图第15题图8. 如图:在平面直角坐标系中,A 、B 两点的坐标分别为 (1,5)、(3,3), M 、N 分别是x 轴、y 轴上的点. 如果以点A 、B 、M 、N 为顶点的四边形是平行四边形, 则M .的坐标...为 .三、解答题(本题共26分,第19题每小题5分,第20、21题每小题5分,第22题每小题6分) 19. 解方程:(1) x 2(3)25-=; (2) 2610x x -+=.解: 解:20. 如图,在□ABCD 中,已知AD =16cm ,AB =12cm ,DE 平分∠ADC 交BC 边于点E , 求BE 的长度. 解:21. 一个矩形的长比宽多1cm ,面积是90cm 2,矩形的长和宽各是多少? 解:22. 已知:关于x 的一元二次方程2(21)20x m x m +++=.B(1)求证:无论m 为何值,此方程总有两个实数根;(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明:(2)解:四、解答题(本题共20分,第23题6分,第24、25题每小题7分)23.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连结CE .(1) 求证:BD =EC ; (2) 若∠E =57°,求∠BAO 的大小.(1)证明:(2)解:班级______分层班________ 姓名_____ 学号____24. 已知:关于x 的一元二次方程2251(21)0422a x a x a +++++=有实根. (1)求a 的值;(2)若关于x 的方程23210kx x k a ----=的所有根均为整数,求整数k 的值. 解:(1) (2)25. 阅读下列材料:问题:如图1,在□ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理解决问题.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.(1)证明:(2)解:线段EG、AG、BG之间的数量关系为____________________________.班级______分层班________姓名_____学号____图1图2五、解答题(本题共20分,第26、27题每小题6分,第28题8分)26.已知a 是方程2520x x +-=的一个根,则代数式22109a a +-的值为___________;代数式32635a a a ++-的值为___________.27.如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n . ①四边形A 2B 2C 2D 2是 形; ②四边形A 3B 3C 3D 3是 形; ③四边形A 5B 5C 5D 5的周长是 ; ④四边形A n B n C n D n 的面积是 .28.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC .求证:BD 是四边形ABCD 的和谐线;(2)图2和图3中有三点A 、B 、C ,且AB =AC , 请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,保........留作图痕迹,不写作法..........); (3)四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数. (1)证明:B图1(2)在方框内用尺规作图,..........保留作图痕迹,不写作法...........(3)解:图3图2初二数学 答案及评分参考标准班级_____ 姓名_____ 学号_____ 成绩_____一、选择题(本题共30分每小题3分,)三、解答题(本题共26分,第19题每小题5分,第20、21题每小题5分,第22题每小题6分) 19. 解方程(1)x 2(3)25-=解: 35x -=± ----------------------------3分 ∴ 1282x x ==-, ------------------------5分(2) 2610x x -+=解: 261x x -=- -----------------------1分 2698x x -+= -----------------------2分2(3)8x -= --------------------3分3x -=± --------------4分∴13x =+23x =- --------------5分 另解:1a =,6b =-,1c =,--------------------------1分()224641132b ac -=--⨯⨯= -----------------2分x 3=± ------------------- 4分∴ 13x =+23x =- --------------5分20. 如图,在□ABCD 中,已知AD =16cm ,AB =12cm , DE 平分∠ADC 交BC 边于点E ,求BE 的长度.解: ∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =12cm ,AD =BC =16cm , ---------2分 ∵AD ∥BC ∴∠ADE =∠DEC ,∵DE 平分∠ADC ,∴∠ADE =∠E DC , ∴∠DEC =∠EDC ,∴CE=CD =12cm , ----------4分 ∴BE=BC-CE =4cm. ----------5分21. 一个矩形的长比宽多1cm ,面积是90cm 2,矩形的长和宽各是多少?解:设矩形长为x cm ,则宽为(1x -)cm ,--------------1分 依题意得 (x 1)90x -=--------------3分解得1210,9x x ==-(不合题意,舍去)--------------4分 答:矩形的长和宽各是10cm 、9cm .--------------5分 22.已知:关于x 的一元二次方程2(21)20x m x m +++=. (1)求证:无论m 为何值,此方程总有两个实数根;(2)若x 为此方程的一个根,且满足06x <<,求整数m 的值. (1)证明: 2(21)412m m ∆=+-⨯⨯ 2441m m =-+ 2(21)m =-.∵2(21)m -≥0,即∆≥0,--------------1分∴无论m 为何值,此方程总有两个实数根.-----------2分(2)解:因式分解,得 (2)(1)0x m x ++=.于是得 20x m +=或10x +=.解得 12x m =-,21x =-. --------------4分∵10-<,而06x <<,∴2x m =-,即 026m <-<.∴30m -<<. ……………………………… 5分 ∵m 为整数,∴1m =-或2-. ……………………………… 6分B第19题B四、解答题(本题共20分,第23题6分,第24、25题每小题,7分) 23. 如图,已知菱形ABCD 的对角线相交于点O,延长AB 至点E,使BE=AB,连结CE. (1)求证:BD=EC;(2)若∠E =50°,求∠BAO 的大小. (1)证明:∵菱形ABCD ,∴AB=CD ,AB ∥CD ,……………………………1分 又∵BE=AB , ∴BE=CD ,BE ∥CD ,∴四边形BECD 是平行四边形,…………………………2分 ∴BD=EC …………………………3分 (2)解:∵平行四边形BECD ,∴BD ∥CE ,∴∠ABO=∠E=57°,…………………………4分 又∵菱形ABCD , ∴AC 丄BD ,∴∠BAO=90°…………………………5分 ∴∠BAO +∠ABO=90°∴∠BAO =90°-∠ABO=33°.………………………………6分24. 已知:关于x 的一元二次方程2251(21)0422a x a x a +++++=有实根. (1)求a 的值;(2)若关于x 的方程23210kx x k a ----=的所有根均为整数,求整数k 的值. 解:(1) ∵关于x 的一元二次方程2251(21)0422a x a x a +++++=有实数根. 22222514(21)4()42221(1)0a b ac a a a a a ∴-=+-++=-+-=--≥……………………1分 1a ∴=……………………………2分(2)由1a =得2330kx x k ---=当k=0时,所给方程为-3x-3=0,有整数根x= -1.……………………………3分 当k ≠0时,所给方程为二次方程,有(1)(3)0x kx k +--= 12331,1k x x k k+∴=-==+……………………………5分 1,3k x k ∴=±±、为整数……………………………6分综上0,1,3k =±±.……………………………7分 25. 阅读下列材料:问题:如图1,在□ABCD 中,E 是AD 上一点,AE =AB ,∠EAB =60°,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG . 求证:EG =AG +BG .小明同学的思路是:作∠GAH =∠EAB 交GE 于点H ,构造全等三角形,经过推理使问题得到解决.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明; (2)如果将原问题中的“∠EAB =60°”改为“∠EAB =90°”,原问题中的其它条件不变(如图2),请探究线段EG 、AG 、BG 之间的数量关系,并证明你的结论.图1 图2(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H , 则∠GAB=∠HAE .……………………1分 ∵∠EAB=∠EGB ,∠AOE=∠BOF , ∴∠ABG=∠AEH . 在△ABG 和△AEH 中OGAB HAE AB AEABG AEH⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH . ∵∠GAH=∠EAB=60°, ∴△AGH 是等边三角形. ∴AG=HG .∴EG=AG+BG ;……………………3分(2)线段EG 、AG 、BG 之间的数量关系是EG+BG =AG .……………………4分 证明:如图2,作∠GAH=∠EAB 交GE 的延长线于点H ,则∠GAB=∠HAE . ∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°. ∴∠ABG=∠AEH .……………………5分在△ABG 和△AEH 中,∴△ABG ≌△AEH .……………………6分 ∴BG=EH ,AG=AH . ∵∠GAH=∠EAB=90°,∴△AGH 是等腰直角三角形. ∴AG=HG ,∴EG+BG =AG .……………………7分五、解答题(本题共20分,第26、27题每小题6分,第28题8分)26.已知a 是方程2520x x +-=的一个根,则代数式22109a a +-的值为__-5____;代数式32635a a a ++-的值为___-3____. ……………………每空3分27.如图,四边形ABCD 中,AC =m ,BD =n ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n . ①四边形A 2B 2C 2D 2是 菱形;………1分 ②四边形A 3B 3C 3D 3是 矩形 ;………2分ABD1A1C1D 2A2C2D2B③四边形A 5B 5C 5D 5的周长是 4m n+ ;………4分 ④四边形A n B n C n D n 的面积是 12n mn+ .……6分28.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =120°,∠C =75°,BD 平分∠ABC .求证:BD 是四边形ABCD 的和谐线;(2)图2和图3中有三点A 、B 、C ,且AB =AC , 请分别在图2和图3方框内...作一个点D ,使得以A 、B 、C 、D 为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形(要求尺规作图,.......保留作图痕迹,不写作法...........); (3)四边形ABCD 中,AB =AD =BC ,∠BAD =90°,AC 是四边形ABCD 的和谐线,求∠BCD 的度数. (1)证:(1)∵AD ∥BC , ∴∠ABC+∠BAD=180°,∠ADB=∠DBC . ∵∠BAD=120°, ∴∠ABC=60°. ∵BD 平分∠ABC , ∴∠ABD=∠DBC=30°, ∴∠ABD=∠ADB , ∴△ADB 是等腰三角形.…………………1分 在△BCD 中,∠C=75°,∠DBC=30°, ∴∠BDC=∠C=75°, ∴△BCD 为等腰三角形,∴BD 是四边形ABCD 的和谐线;……………………2分 (2)由题意作图为:图2,图3 ……………………4分(在方框内用.....尺规作图,..... 保留作图痕迹,....... 不写作法....)解(3)∵AC 是四边形ABCD 的和谐线,图1图3图2∴△ACD 是等腰三角形. ∵AB=AD=BC ,如图4,当AD=AC 时, ∴AB=AC=BC ,∠ACD=∠ADC ∴△ABC 是正三角形, ∴∠BAC=∠BCA=60°. ∵∠BAD=90°, ∴∠CAD=30°, ∴∠ACD=∠ADC=75°, ∴∠BCD=60°+75°=135°.……………………5分 如图5,当AD=CD 时, ∴AB=AD=BC=CD . ∵∠BAD=90°, ∴四边形ABCD 是正方形, ∴∠BCD=90°……………………6分 如图6,当AC=CD 时 法(一):过点C 作CE ⊥AD 于E ,过点B 作BF ⊥CE 于F , ∵AC=CD .CE ⊥AD , ∴AE=AD ,∠ACE=∠DCE . ∵∠BAD=∠AEF=∠BFE=90°, ∴四边形ABFE 是矩形. ∴BF=AE . ∵AB=AD=BC , ∴BF=BC , ∴∠BCF=30°. ∵AB=BC , ∴∠ACB=∠BAC . ∵AB ∥CE , ∴∠BAC=∠ACE , ∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.……………………8分 法(二): 作DM ⊥AD ,作BM ⊥AB ,则四边形ABMD 是正方形 ∴BC=B M ∵AC=CD ∴∠CA D=∠CDA ∴∠BAC=∠C DM在△AB C和△DMC中AB BAC CDM AC ⎧⎪∠∠⎨⎪⎩=DM ==CD∴△ABC ≌△D MC.B∴BC=CM,∠BCA=∠MCD∴△BCM为等边三角形∴∠CMD=150o∵MC=MD∴∠MCD=∠MDC=15o∴∠BCD=∠BCM-∠MCD=60°-15=45o……………………8分。
罗田县初中2015年春季期中联考
八年级数学科试题
一、选择答案:(每题3分,共30分)
1、下列二次根式中,是最简二次根式的是( ) A.xy 2 B.
2ab C.2
1 D.422
x x y + 2、已知233x x +=-x 3+x ,则( )
A.x ≤0
B.x ≤-3
C.x ≥-3
D.-3≤x ≤0 3、如图,菱形ABCD 中对角线相交于点O ,且OE ⊥AB , 若AC=8,BD=6,则OE 的长是( )
A. 2.5
B.5
C. 2.4
D.不清楚
4、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2
+338=10a +24b +26c ,则此三角形为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定 5、已知钝角三角形的三边为2、3、4,该三角形的面积为( ) A .
5134 B. 5154 C. 4135 D. 315
4
6、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 ( ) A 、450a 元
B 、225a 元
C 、150a 元
D 、300a 元
7、如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在A 1处,已知OA=3,AB=1,则点A 1的坐标是( )
A 、(2323,)
B 、(323,)
C 、(2323,)
D 、(2321,
)
8、如图,已知矩形ABCD ,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )
150° 20m
30m
第6题图
第8题图
A B
C
D P R
E F
y
A 1
A
B C
O
x
第7题
A. 线段EF 的长逐渐增大
B. 线段EF 的长逐渐减少
C. 线段EF 的长不变 D .线段EF 的长不能确定
9、如图,在△ABC 中,∠ACB=90°,AC=12,BC=5,AM=AC ,BN=BC ,则MN 的长为( ) A.2 B.2.6 C.3 D.4
10、如图,在正方形纸片ABCD 中,E ,F 分别是AD ,BC 的中点,沿过点B 的直线折叠,使点C 落在EF 上,落点为N ,折痕交CD 边于点M ,BM 与EF 交于点P ,再展开.则下列结论中:①CM=DM ;②∠ABN =30°;③
AB 2=3CM 2;④△PMN 是等边三角形.正确的有( )
A 、1个
B 、2个
C 、3个
D 、4个
二、填空:(每小题3分,共30分)
11、最简二次根式12+b 与1
7--a b 是同类二次根式,则a=_______ ,b=_________。
12、若直角三角形的两边长为a 、b ,且满足962+-a a +|b-4|=0,则该直角三角形的第三边长为 。
13、若5+7的小数部分是a,则a= 。
14、在△ABC 中,AB=13,BC=10,BC 边上的中线AD=12,则AC= 。
15、在Rt △ABC 中,若斜边AB =2,则AB 2+BC 2+CA 2
=____。
16、如图,平行四边形ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米。
17、 如图,过矩形ABCD 的四个顶点作对角线AC,BD 的平行线,分别相交于E,F,G,H 四点,则四边形EFGH 为 。
18、在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△
ODP 是腰长
为5的等腰三角形时,点P 的坐标为 。
19、已知正方形ABCD ,以CD 为边作等边
△CDE ,则∠AED
的度数是 。
10题
A B C
M N
9题
20、 观察下列各式:111111
12,23,34, (334455)
+
=+=+=请你找出其中规律,
并将第n (n ≥1)个等式写出来 。
三、 解答题:(共60分)
21、计算(每小题3分,共6分) (1). 483316
122+- (2). 2764148÷⎪⎭
⎫ ⎝⎛+
22、(6分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD . (1)试判断四边形OCED 的形状,并予以证明; (2)若AB =6,BC =8,求四边形OCED 的面积。
23、(6分)如图,在矩形ABCD 中,AE 平分∠BAD ,∠1=15°。
(1)求∠2的度数. (2)求证:BO =BE .
24、(7分)有一只喜鹊在一棵3m 高的小树上觅食,它的巢筑在距离该树24m•的一棵大树上,大树高14m ,
且巢离树顶部1m .当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s ,那它至少需要多少时间才能赶回巢中?
25、(7分)如图,点E 、F 是正方形ABCD 内两点,且BE =AB ,BF =DF ,∠EBF =∠CBF ;求∠BEF 的度数。
B
A E
C
D
F
26、(8分)校车安全是近几年社会关注的话题,安全隐患主要是超载和超速。
某地对校车做了一个速度测试。
如图先在笔直的公路l 旁选取一点A ,在公路l 上确定点B 、C ,使得AC ⊥l ,∠BAC=60°,再在AC 上确定点D ,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B 到C 匀速行驶用时10秒,问这辆车在本路段是否超速?说明理由。
(参考数据:41.12=,73.13=)
27、(8分)如图,在菱形ABCD 中,AB=4cm ,∠ADC=120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,求t 的值。
28、(12分)在平面直角坐标系xOy 中,边长为5的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O ),顶点C 、D 都在第一象限。
(1)当点A 坐标为(4,0)时,求点D 的坐标; (2)求证:OP 平分∠AOB ;
(3)直接写出OP 长的取值范围(不要证明)。
A
C D
B
l
参考答案
一、选择题: ADCCD; CACDC. 二、填空题: 11、 3,2; 12、 5或7; 13、 7-2; 14、 13; 15、 8; 16、 3; 17、 菱形;
18、 (3,4)或(2,4)或(8,0); 19、 15°或75°; 20、 2
1
)
1(21++=++
n n n n ; 三、解答题:
21、(1)143 ;(2)
12
2
16+ ; 22、(1)略; (2)24; 23、(1)∠2=30°; (2)略; 24、 5.2秒; 25、45度; 26、没有超速; 27、 3
4
秒;
28、(1)(7,4);
(3)。