吸收塔浆液浓度对脱硫系统安全、经济运行的影响
- 格式:doc
- 大小:15.50 KB
- 文档页数:3
吸收塔浆液密度高对脱硫系统的影响及控制措施兰江【摘要】摘要:介绍了珙县电厂2×600 MW机组脱硫系统自投运以来,脱硫吸收塔浆液密度高对脱硫系统安全、稳定运行及达标排放的影响,针对现场实际进行分析,并提出对吸收塔密度高的控制措施,通过一系列改进措施后效果明显,使脱硫系统安全可靠性得到明显的提高,有效地保证了脱硫效率和投运率。
【期刊名称】四川电力技术【年(卷),期】2013(000)002【总页数】4【关键词】关键词:湿法脱硫;浆液密度;影响;投运率;措施0 引言随着国家和地方省市一系列节能减排政策的出台,对火电厂烟气脱硫系统的正常稳定运行和达标排放要求越来越高,如何保证脱硫系统的安全稳定运行对火电厂而言至关重要。
在石灰石-石膏湿法烟气脱硫中,吸收塔浆液密度是确保脱硫系统安全、经济及稳定运行的重要参数,吸收塔浆液密度控制不当会给脱硫系统带来严重的后果。
珙县电厂2×600 MW机组烟气脱硫系统自投运以来,由于各种因素造成吸收塔浆液密度居高不下,严重影响脱硫装置的安全稳定运行。
对吸收塔浆液密度高的危害、原因进行认真分析,并有针对性地提出控制解决措施,从而确保脱硫系统的安全稳定运行。
1 脱硫系统概况珙县电厂2×600 MW机组烟气脱硫项目是与主机同步建设的工程,由中国华电工程(集团)有限公司引进的M.E.T烟气脱硫技术,采用石灰石-石膏湿法,进行全烟气脱硫,采用一炉一塔模式,无GGH,引风机和增压风机合用,设计脱硫效率不低于96.2%。
1号、2号炉脱硫装置分别于2011年2月、8月与主机同步完成168 h试运。
2 石灰石-石膏湿法烟气脱硫工艺珙县电厂2×600 MW机组烟气脱硫工程采用一炉一塔的石灰石-石膏湿法脱硫工艺。
从锅炉出来的烟气经电除尘器除尘,再经引风机升压后直接进入吸收塔内,原烟气在吸收塔内与喷淋层喷射的浆液逆向接触,原烟气中的SO2与被吸收塔浆液循环泵打入喷淋层喷淋下来的石灰石/石膏浆液逆流接触发生化学反应,生成亚硫酸钙(CaSO3),并被氧化风机鼓入的空气强制氧化成硫酸钙,结晶后生成石膏(CaSO4·2H2O),经过处理的烟气经除雾器除去液滴后以50℃左右的温度进入烟囱排向大气。
脱硫系统运行中常见问题及处理1 引言石灰石-石膏湿法烟气脱硫工艺是目前较为成熟的脱硫工艺,被广泛应用于火电厂烟气净化处理系统中,我公司三四期脱硫系统陆续投入运行,在调试及运行过程中出现了一些问题,也是其它电厂经常遇到的问题。
2 吸收塔溢流问题2.1 吸收塔溢流现象调试及运行中吸收塔会发生浆液溢流现象,而且此现象很普遍。
溢流现象不是连续的,而且有一定的规律性,表面现象来看,很不好解释。
例如我公司#5吸收塔溢流管线标高为11150mm,溢流排水管线位置13110mm,上面呼吸孔标高为14000mm。
系统停运时液位正常,运行中液位显示10000mm时溢流口开始间歇性溢流,并从呼吸孔排出泡沫。
对液位计、溢流口几何高度进行校验,没有发现问题。
当液位降低到8.5米左右,烟气会从塔体溢流口冒出,造成浆液从呼吸孔喷出。
2.2 原因分析DCS显示的液位是根据差压变送器测得的差压与吸收塔内浆液密度计算得来的值,而不是吸收塔内真实液位。
由于循环泵、氧化风机的运行,而且水中杂质(有机物,盐类等)、氧量较大,而引起浆液中含有大量气泡、或泡沫,从而造成吸收塔内浆液的不均匀性,由于浆液密度表计取样来自吸收塔底部,底部浆液密度大于氧化区上部浆液密度,造成仪表显示偏低。
我公司脱硫用水采自机组循环水排污水,水质较差,有机物较高可达30~40,CL-含量超过1100 mg/l。
此时吸收塔内液位超过了表计显示液位,此时塔内液位已经达到了溢流口的高度,再加上脉冲扰动、氧化空气鼓入、浆液的喷淋等因素的综合影响而引起的液位波动,并且浆液液面随时发生变化,导致吸收塔间歇性溢流。
2.3 处理方案2.3.1 确定合理液位调试期间确定合理的运行液位,根据现场运行条件,人为降低运行控制液位计显示液位,使塔内实际液位仅高于塔体溢流口高度,防止烟气泄露。
修正吸收塔浆液密度来提高液位计显示液位,控制液位在塔体溢流口至溢流排水口标高之间。
2.3.2 加入消泡剂尽管确定液位仅高于塔体溢流口高度,也难免吸收塔浆液泡沫从呼吸孔冒出。
浆液品质及性能对湿法脱硫系统脱硫率影响武纪原【摘要】围绕如何确保火电站脱硫系统脱硫效率的问题,在介绍脱硫原理的基础上定性分析了系统中浆液参数对脱硫效率的影响,以及发生异常的主要处理措施,并有针对性地介绍了实际运行中应采取的预防措施.【期刊名称】《江苏电机工程》【年(卷),期】2016(035)001【总页数】3页(P92-94)【关键词】湿法脱硫;浆液;品质【作者】武纪原【作者单位】江苏新海发电有限公司,江苏连云港222023【正文语种】中文【中图分类】X773某公司1号炉采用SG-3049/28.25-M548型锅炉,与其配套的烟气脱硫设备采用中环(中国)工程有限公司建设安装的石灰石-石膏湿法脱硫系统,脱硫吸收塔采用五层喷淋、三级除雾的逆流喷淋技术,配置5台浆液循环泵,3台氧化风机。
经过一段时间的运行,塔内浆液出现过吸收效率急剧下降的情况,影响了机组安全稳定运行。
脱硫系统脱硫率受许多因素影响,浆液品质及性能是最直接的影响因素,文中就影响浆液品质及性能的因子展开讨论,并对浆液品质异常的情况,提出相应处理和预防措施。
石灰石主要成分为CaCO3,将CaCO3含量≥90% (CaCO3粒度要求为通过325目标准筛达90%以上)的石灰石粉与水混合搅拌制成吸收烟气中SO2的浆液,浆液经浆液循环泵在吸收塔内循环,烟气中SO2从吸收塔喷淋区下部进入塔内,与均匀喷出的浆液逆流接触,同浆液中CaCO3反应生成CaCO3·1/2H2O,小颗粒状态转移至吸收塔中下部浆液中,利用氧化风机鼓入的氧气强制氧化成CaSO4·2H2O,它是石膏的主要成分。
当CaSO4·2H2O聚集并成长为大颗粒晶体,利用石膏排出泵将吸收塔下部结晶的石膏抽出,送往石膏旋流站,进行一级脱水的旋转分离。
细颗粒的浆液溢流返回吸收塔,而浓缩较粗颗粒的浆液送往真空皮带过滤机进行浆液脱水,形成石膏。
吸收塔中化学反应的主要方程式:1号锅炉脱硫系统如图1所示。
湿法脱硫浆液密度高对粉尘的影响及控制摘要:影响脱硫净烟气粉尘的排放影响因素较多,但分析主要是在数学模型或是仿真环境下进行,缺少在已建成的实际生产环境中的分析总结,对实际生产的指导意义不大。
针对这一问题,本文主要研究在实际生产环境下,通过控制吸收塔浆液密度,从而保证净烟气粉尘浓度能达到超低排放标准,提供可行的短期和长期解决办法。
同时为实际生产中寻找并建立吸收塔浆液控制指标过饱和比Q,来有效的控制吸收塔浆液密度,能够容易简单的提供控制方向。
关键词:脱硫浆液密度;粉尘浓度;过饱和比;石膏脱水效果;引言目前我国有近92%的火力发电厂脱硫系统采用石灰石—石膏湿法脱硫工艺,和飞灰粉尘。
吸收过程中可能蒸发析出工艺是通过与烟气进行逆向接触吸收SO2细小的晶体颗粒,被烟气直接携带出,使得脱硫后的烟气中粉尘颗粒物含量反而增加。
【2】荷兰Meij 等通过分析脱硫出口颗粒物组成发现,其中飞灰、石膏组分分别占别占 40%、10%,而脱硫浆液液滴蒸发形成的固体颗粒却占到了50%。
【2】潘丹萍等实验研究发现细颗粒物形貌及元素组成与脱硫浆液中晶体相关,主要。
【1】Nielsen 等通过现场测试发现,石灰石-石膏法脱硫工艺对组分为 CaSO4颗粒物的总质量脱除率可达 50%~80%,但亚微米级微粒质量浓度反而增加了20%~100%,而且钙元素含量明显提高。
通过这些研究得知脱硫出口粉尘的组成和控制方向。
吸收塔浆液密度的高低,直接会影响结晶颗粒的大小,这其中就要引入过饱和度的概念,当浆液过饱和度较高时会引起石膏晶体爆发成核而导致晶体颗粒过细,产生结垢增加设备磨损,降低脱硫效率,石膏脱水困难,以及粉尘排放不能达标。
实际生产中工况相对客观,许多条件已经被约束,所以控制主要指标就变成了吸收塔浆液密度。
1、试验方法及现象分析1.1实例生产环境概述试验机组为2×350MW超临界机组,一炉一套湿法脱硫装置,全烟气脱硫,脱硫效率不小99.15%,保证烟塔出口SO排放浓度不高35mg/Nm3,粉尘浓度不高2于10mg/Nm3。
浅析影响脱硫效率的因素近年来,大气质量变差,随着人们对良好环境的渴望,国家对环保的要求越来越严格。
许多火电厂已建和正建脱硫装置(FGD),进一步净化烟气,使其达到排放标准。
国内大部分采用了石灰石-石膏湿法脱硫。
对2×50MW机组烟气脱硫(FGD)装置脱硫效率的几项参数进行研究分析,查找出影响土力学的几个主要因素,并提出解决措施,使之达到最优的脱硫效率。
石灰石-石膏湿法脱硫的基本原理:烟气经过电除尘后由增压风机送入吸收塔内。
烟气中的SO2与吸收塔喷淋层喷下的石灰石浆液发生反应生成HSO3-,反应如下:SO2+H2O→H2SO3,H2SO3→H++HSO3-。
其中部分HSO3-在喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化,反应如下:HSO3- +1O2→HSO4-,HSO4-→H++SO42-。
吸收塔内浆液被2引入吸收塔内中和氢离子,使浆液保持一定的PH值。
中和后的浆液在吸收塔内循环。
反应如下:Ca2++CO32-+2H++SO42-+H2O→CaSO4·2H2O+CO2↑,2H++CO32-→H2O+CO2↑。
脱硫后的烟气经吸收塔顶部的除雾器去除水分后,被净化的烟气经烟囱排向大气中,生成的石膏副产品留作他用。
从此可以看出,浆液的PH值、烟气的性质、吸收剂的质量、液气比、等是影响脱硫效率的主要因素。
○1吸收塔浆液的PH值。
PH值是影响脱硫效率、脱硫产物成分的关键参数。
PH值太高,说明脱硫剂用量大于反应所需量,造成脱硫剂的利用率降低。
当PH值>6时,虽然SO2的吸收好,但是Ca2+浓度减小,影响Ca2+析出,同时也容易使设备堵塞和结垢。
而PH值太低,则影响脱硫效率,不能使烟气中SO2的含量达到预期的效果。
当PH值<4时,几乎就不吸收SO2。
所以必须在运行中监测好PH值,及时加减脱硫剂,保证脱硫效率的同时,也提高脱硫剂的利用率和脱硫产物的品质。
一般PH值控制在5~6之间。
浅谈脱硫吸收塔密度高的危害、原因及处理方法随着国家和地方省市一系列节能减排政策的出台,对火电厂烟气脱硫系统的正常稳定运行和达标排放要求越来越高,如何保证脱硫系统的安全稳定运行对火电厂而言至关重要。
在石灰石-石膏湿法烟气脱硫中,吸收塔浆液密度是确保脱硫系统安全、经济及稳定运行的重要参数,吸收塔浆液密度控制不当会给脱硫系统带来严重的后果。
我厂自投运以来,由于环保管控超低排放发生过造成吸收塔浆液密度居高不下的情况,严重影响脱硫装置的安全稳定运行。
我厂采用石灰石-石膏湿法烟气脱硫工艺,一炉一塔脱硫装置,共2套。
该工艺以石灰石浆液为脱硫剂,采用相应的液气比对烟气进行洗涤,脱除二氧化硫。
脱硫效率≥99.6%(设计硫分按1.2%计算),出口二氧化硫浓度控制在25mg/Nm3以下。
该套FGD系统由以下子系统组成:烟气及吸收塔系统、石膏脱水系统(包括石膏旋流系统、滤布圆盘脱水系统和石膏库)、石灰石浆液制备系统、脱硫公用系统(包括工艺水系统、压缩空气系统、闭式冷却水系统、排放系统)。
锅炉燃烧后产生的烟气经电袋除尘器进行除尘净化处理后,自引风机出口烟道引出,进入FGD系统从吸收塔侧面进气口进入吸收塔,烟气在吸收塔内与雾状浆液逆流接触,处理后的烟气在吸收塔顶部排至除雾器除去烟气中的液滴,随后净化处理后的烟气通过吸收塔出口水平烟道进入湿式电除尘器,经湿式电除尘器去除SO3等气溶胶类物质和细颗粒物后最终经烟囱排入大气。
石灰石粉通过制浆系统制成石灰石浆液,不断地补充至吸收塔。
脱硫副产品为含有固体石膏的浆液,由石膏排出泵从吸收塔浆液池中打至石膏旋流器和滤布圆盘脱水机,经过脱水后,得到含水量不大于10%的石膏,再外运至厂外用于综合利用。
为了平衡整个系统中的氯离子的浓度,以及避免浆液中杂质对石膏纯度和含水量的影响,经废水旋流设备分离后的脱硫废水直接排至废水零排放系统进行处理。
吸收塔(SO2吸收及氧化)系统包括吸收塔本体、除雾装置、喷淋装置、浆液循环系统、氧化空气系统及石膏排出系统等。
火电厂湿法烟气脱硫石膏脱水问题分析摘要:随着环保意识的日益增强,火电厂的烟气脱硫技术成为了公众关注的焦点。
其中,湿法烟气脱硫技术以其高效、稳定的性能在火电厂中得到了广泛应用。
然而,该技术在应用过程中却面临着石膏脱水的问题。
本文将对火电厂湿法烟气脱硫石膏脱水问题进行深入分析,探究其产生的原因及影响,以期为解决这一问题提供参考。
关键词:火电厂;湿法烟气脱硫;石膏脱水引言在火电厂的脱硫过程中,吸收塔内的浆液会与烟气中的二氧化硫发生化学反应。
这个反应会生成亚硫酸钙和硫酸钙。
随后,这些物质经过氧化、结晶和脱水的过程,最终形成脱硫石膏。
然而,如果脱水环节进行得不彻底,就会产生含有较高水分的湿石膏。
这种情况不仅影响了石膏的质量,还可能对整个脱硫系统的稳定运行构成威胁,甚至可能导致系统出现故障。
1.火电厂湿法烟气脱硫石膏脱水问题的成因在火电厂的湿法烟气脱硫过程中,石膏脱水是关键环节之一。
然而,这一环节经常会出现多种问题,导致石膏脱水效果不佳,影响整个脱硫过程的效率和效果。
首先,在湿法烟气脱硫过程中,吸收塔内产生的石膏浆液的品质对石膏脱水效果具有重要影响。
如果浆液中的杂质过多,例如:飞灰、重金属离子等,这些杂质会阻碍石膏晶体之间的凝聚,导致石膏晶体粒径过小,脱水效果变差。
此外,浆液中的Cl离子也是影响石膏脱水的关键因素。
Cl离子含量过高会导致石膏含水率增加,进一步影响石膏的品质和脱水效果。
其次,设备因素也是影响石膏脱水效果的重要方面。
在火电厂的实际运行过程中,由于设备老化、磨损或者设计不合理等原因,容易出现设备故障,如滤布堵塞、滤饼厚度不均、真空泵效率下降等问题。
这些设备问题不仅会影响石膏的脱水效果,还会对整个脱硫系统的稳定运行造成威胁。
最后,除了上述因素外,操作条件也是不可忽视的影响因素。
例如:在石膏脱水过程中,温度、压力、pH值等参数的控制对石膏的结晶和脱水效果具有重要影响。
如果这些参数控制不当,可能会导致石膏脱水效果不佳,甚至产生二次污染[1]。
电厂烟气脱硫吸收塔浆液氯离子浓度异常分析及调控措施摘要:火力发电厂为了实现环保达标排放,烟气脱硫一般采用石灰石/石灰-石膏法烟气脱硫技术,一般由吸收剂制备系统、烟气吸收及氧化系统、脱硫副产物处置系统、脱硫废水处理系统、烟气系统、自控和在线监测系统等组成。
锅炉烟气经进口挡板门进入脱硫增压风机,通过烟气换热器后进入吸收塔,洗涤脱硫后的烟气经除雾器除去带出的小液滴,再通过烟气换热器从烟囱排放。
脱硫副产物经过旋流器、真空皮带脱水机脱水成为脱水石膏。
吸收塔的浆液品质是保证脱硫效果最主要因素,吸收塔内浆液氯离子含量增大时,将会对脱硫系统运行产生很大影响,一方面会导致吸收塔内浆液品质恶化,严重时浆液会超泡溢流,影响脱硫效率;另一方面浆液氯离子增大,会造成吸收塔内部设备的腐蚀,对设备造成损坏。
所以脱硫浆液氯离子增大时,及时防止吸收塔浆液中氯离子浓度高的措施。
关键词:浆液;氯离子;措施随着我国环保法律法规的日益健全,以及对环保工作的普遍重视,烟气脱硫的应用进展迅速,火电企业多数已装设或正在增设烟气脱硫装置,为缓解日益严重的酸雨问题做出了贡献。
石灰石-石膏湿法脱硫工艺是一个气液化学吸收工艺,其原理是利用石灰石作吸收剂与烟气中的 SO2发生化学反应,反应生成的亚硫酸钙被氧化空气氧化并结晶后生成CaSO4·2H2O,经脱水后得到脱硫副产品石膏,从而达到脱除烟气中 SO2的目的。
脱硫系统工况复杂,系统内冷热交替,酸碱交融,气液固三相传质剧烈,若要维持脱硫系统稳健运行,需要脱硫系统内各物种各司其职,有机配合。
运行发现,脱硫浆液中氯离子很容易富集,不仅会增加产生石膏的含氯量,影响脱硫石膏品质,还会干扰脱硫塔内的主要反应,造成反应紊乱,脱硫率下降,严重时还会造成设备腐蚀、浆液起泡等问题,使脱硫运行经济性大幅降低。
目前,国内学者针对浆液氯离子的研究主要停留在氯离子对脱硫系统的影响分析上。
一、吸收塔浆液中氯离子的来源吸收塔浆液中氯离子来源主要有吸收剂石灰石、工艺水及燃煤烟尘。
吸收塔浆液浓度对脱硫系统安全、经济运行的影响
1 吸收塔浆液浓度高容易引起石膏结垢吸收塔浆液浓度一般按设计控制在20-25%左右,但是现场由于种种原因控制不到位,如:石膏排出泵故障、石膏旋流站故障、真空皮带脱水系统故障、水平衡控制不好、石膏品质较差难以脱水等种种原因造成石膏排出困难,因而吸收塔浆液浓度升高,有的吸收塔浆液浓度甚至高达50%以上。
还有的电厂吸收塔浆液密度计频繁损坏或堵塞,造成运行过程中无法准确观测浆液密度,从而无法准确的进行石膏排出,也会造成吸收塔浆液浓度升高。
吸收塔浆液浓度升高后会给脱硫系统带来一系列的影响,下面简单的进行分析。
溶解是指溶液中的固体离解成离子的过程,沉淀是指溶液中的离子结合成固体的过程。
一种物质在浆液中是溶解还是沉淀取决于溶液中该种物质的离子组分及离子组分浓度。
例如对于石膏来说,其沉淀速率的快慢受如下因素影响:Rg = kaCV (RSG - 1)其中:Rg :石膏沉淀速率K:速率常数a: 每单位重量石膏的活性表面积C: 石膏固体的浓度V: 反应槽体积RSG: 石膏相对饱和度从石膏沉淀速率来看,石膏浓度直接与沉淀速率成正比,但石膏能不能沉淀,还取决于石膏的相对饱和度RSG。
当吸收塔的石膏浆液中的CaSO4·2H2O 过饱和度大于 1 时,石膏就开始沉淀,但此时沉淀优先在自己的晶种上沉淀。
但当过饱和度大于或等于1.4 时,溶液中的CaSO4 就会在吸收塔内各组件表面析出结晶形成石膏垢。
石膏过饱和度为[Ca2+]、[SO42-]和[H2O]2的乘积与Ksp的比值。
石膏过饱和度越大,结垢形成的速度就越快,仅当过饱和度1.4 时才不容易在吸收塔内各组件表面析出结晶形成石膏垢。
要使石膏过饱和度1.4,需适当地设计吸收塔内石膏浆液浓度、液气比和提高氧化率。
日本三菱的试验认为液气比越小,石膏过饱和度越高,使石膏过饱和度1.4 的最低液气比为11。
2 吸收塔浆液浓度高会引起很多系统问题 2.1 对设备、管道及电耗的影响当浆液浓度升高时,造成密度大、循环泵电流增加、电机线圈温度升高,从而造成循环泵、石膏排出泵等工作负荷增大,电耗增加。
浆液浓度升高后对循环泵、石膏排出泵、吸收塔搅拌器、浆液循环管道、石膏排出管道等冲刷、磨损增加。
2.2 对石膏脱水、废水系统的影响 2.2.1吸收塔浆液浓度高,造成石膏旋流站底流必然增高,相应的会增加。