无线通信的调制编码
- 格式:doc
- 大小:237.50 KB
- 文档页数:8
无线通信知识点总结一、无线通信概述无线通信是指通过无线电波传输信息的通信方式。
无线通信广泛应用于移动通信、卫星通信、无线局域网、物联网等各个领域。
无线通信技术的发展历程可以追溯至19世纪初,随着科学技术的进步和电子通信技术的发展,无线通信不断得到改进和完善,为人们的生活和工作带来了巨大便利。
二、无线通信基本原理1. 无线电波的发射与接收无线通信中的信息传输是通过无线电波进行的。
发射无线电波需要一个发射器,而接收无线电波需要一个接收器。
发射器将模拟信号或数字信号转换成无线电波,并通过天线进行辐射。
接收器则用天线接收无线电波,并将其转换成模拟信号或数字信号,被传输到接收端。
2. 调制与解调调制是将要传输的信息信号与载波信号结合在一起的过程。
调制技术主要包括幅度调制(AM)、频率调制(FM)和相移调制(PM)。
解调则是将接收到的调制信号分离成原始信息信号和载波信号的过程。
3. 多路复用多路复用是将多个信号通过同一信道进行传输的技术。
常见的多路复用技术包括频分复用(FDMA)、时分复用(TDMA)、码分复用(CDMA)等。
4. 数字调制数字调制是将数字信号转换成模拟信号的过程。
常见的数字调制方式有脉冲编码调制(PCM)和正交频分复用(OFDM)等。
5. 天线技术天线是无线通信中非常重要的组成部分,它能够将电磁波转化为电信号,或将电信号转化为电磁波。
常见的天线形式包括全向天线、定向天线和扇形天线等。
6. 信道编码信道编码是为了提高信道传输的可靠性而对数字信息进行编码的技术。
常见的信道编码技术包括奇偶校验码、卷积码和低密度奇偶校验(LDPC)码等。
7. 功率控制无线通信中的功率控制是指通过调整发射功率和接收灵敏度,使得通信质量能够得到最优化。
8. 频谱规划频谱是无线通信中的宝贵资源,频谱规划是为了合理分配和利用频谱资源,以满足不同通信系统的需求。
三、移动通信技术1. 2G技术2G技术(第二代移动通信技术)是指数字蜂窝移动电话系统,采用了GSM、CDMA、TDMA等技术。
无线通信技术中的编码与调制无线通信是一种通过无线电波传输信息的技术,而编码与调制则是在无线通信中至关重要的一部分。
编码与调制的目的是将数字信号转换为适合在无线信道上传输的模拟信号。
本文将详细探讨无线通信技术中的编码与调制,包括原理、步骤以及使用中的考虑因素等。
一、编码的原理和步骤编码是将数字信号转换为模拟信号的过程。
编码的原理可以简单概括为将数字信号映射到一组合适的模拟波形上。
编码有许多种方法,常见的编码方法包括曼彻斯特编码、差分曼彻斯特编码、振幅移移键控(ASK)编码、频移键控(FSK)编码、相移键控(PSK)编码等。
编码的步骤如下:1. 确定所需的编码方法。
根据传输的要求和通信系统的特性,选择适当的编码方法。
2. 将数字信号转换为基带信号。
将数字信号转换为适合进行编码的基带信号,通常是将数字信号转换为二进制信号。
3. 进行特定编码方法的映射。
根据选择的编码方法,将基带信号映射到模拟波形上,生成模拟信号。
二、调制的原理和步骤调制是将编码后的模拟信号转换为适合在无线信道上传输的信号的过程。
调制的原理是通过改变模拟信号的某些特性,如振幅、频率或相位,来实现信号的传输。
调制有许多种方法,常见的调制方法包括幅度调制(AM)、频率调制(FM)、相位调制(PM)等。
调制的步骤如下:1. 确定所需的调制方法。
根据通信系统的要求和信道的特性,选择适当的调制方法。
2. 将模拟信号进行调制。
通过改变模拟信号的某些特性,如振幅、频率或相位,将模拟信号进行调制,生成调制信号。
3. 将调制信号传输至无线信道。
将调制信号通过无线设备传输至无线信道,进而传输至接收端。
三、使用中的考虑因素在实际应用中,编码与调制需要考虑以下因素:1. 带宽效率。
编码与调制方法应尽可能提高带宽效率,即在有限的频谱资源下,能够传输更多的信息。
2. 抗噪声性能。
编码与调制方法应具有较好的抗噪声性能,能够在存在信道噪声的情况下保持信号的可靠传输。
3. 多路复用能力。
移动通信技术中调制和编码方案(MCS)定义了一个符号可以携带的有用位数,其中:MCS被定义为每个资源单元(RE)可以传输多少个可用比特(Bits)。
一、编码方案(MCS)取决于无线链路中信号质量:质量越好MCS 越高,RE中可传输bits越多;信号质量差则导致MCS越低,RE中可传输的有用比特越少。
通常MCS取决于数据的误块率(BLER)——以10%作为阈值。
为了在变化的无线条件下保持BLER不超过此值,gNB通过链路自适应算法分配调制和编码方案(MCS)并使用DCI(如DCI 1_0, DCI 1_1)经PDCCH信道把分配的MCS通知给终端(UE),二、编码方案内容包括调制和码率,其中:2.1调制:单个RE可以承载多少位比特(无论是有用位还是奇偶校验)。
5G(NR)支持QPSK、16QAM、64QAM和256QAM调制。
对于QPSK 每个RE可传输2位;对于16QAM每个RE可传输4位;对于64QAM 每个RE可传输6位;对于256QAM每个RE可传输8位;这些16、64和256被称为QAM调制阶数和编号可通过以下公式计算:2.2 码率:有用比特与总传输比特(有用+冗余比特)之间的比率;而添加冗余位是为了前向纠错(FEC)。
也就是物理层顶部的信息比特数与映射到物理层底部PDSCH比特数之间的比率;它是物理层添加的冗余的度量,低编码率对应于增加的冗余。
其具体可以下图表显示:三、5G(NR)调制和编码方案特性5G(NR)网络中MCS由gNB 基于链路适配算法调度,通过DCI告诉终端(UE);具体呈现为以下三点: •5G(NR)无线网络中PDSCH支持QPSK,16QAM,64QAM和256QAM调制;•MCS Index(0-31)中,保留MCS Index29,30和31用于重传•3GPPTS38.214为PDSCH MCS给出了三个表:64QAM表、256QAM表和低频谱效率64 QAM表,它们分别如下:o表5.1.3.1-1中只有非常好条件下使用;o表5.1.3.1-3为低频谱效率(Low SE)其中64QAM表适用于需要可靠数据传输应用,如URLLC类的应用程序。
无线通信系统的信道编码与调制技术无线通信系统是现代通信领域中至关重要的一部分。
通过无线通信系统,人们可以实现移动电话通信、无线互联网、卫星通信等。
而在无线通信系统中,信道编码与调制技术是实现高效传输和抗干扰的关键。
一、信道编码技术的作用和原理1. 信道编码的作用信道编码是一种将信息按照一定规则转换为编码信号,以便在信道中传输,并在接收端进行解码恢复原始信息的技术。
信道编码具有以下作用:- 提高错误控制能力:信道编码可以在一定程度上纠正由于信道噪声或干扰引起的传输错误。
- 提高传输效率:信道编码可以通过增加冗余信息,使得传输信号的频谱利用率更高,从而提高数据传输速率。
2. 信道编码的原理信道编码的原理是基于冗余编码的思想。
冗余编码通过在原始信息中引入冗余度,使得接收端在接收到有损的信号后,仍然能够从中恢复出原始信息。
常用的信道编码技术有:- 奇偶校验码:通过在信息中添加一个校验位,使得信息位的个数为偶数个或奇数个,可以检测并纠正传输中的错误。
- 海明码:通过在信息中引入冗余位,使得接收端可以检测并纠正多个错误位。
二、调制技术的作用和原理1. 调制技术的作用调制技术是将数字信号转化为模拟信号以便在传输中进行传播的关键技术。
调制技术具有以下作用:- 将数字信号转换为适合传输的模拟信号:数字信号具有离散的特点,无法直接在传输介质中传播,通过调制技术可以将数字信号转换为模拟信号,使得信号能够在传输介质中传输。
- 提高传输效率:调制技术可以将低频的数字信号转换为高频的模拟信号,从而提高传输效率。
- 提高抗干扰能力:调制技术可以将数据信息分散到不同频带上,使得信号在传输过程中更加抗干扰。
2. 调制技术的原理调制技术的原理是利用调制信号的频率、相位或振幅等特性来表示传输的信息。
常见的调制技术有:- 幅移键控调制(ASK):调制信号的幅度变化表示数字信号的逻辑状态。
- 频移键控调制(FSK):在不同的频率对应不同的数字信号。
UWB(Ultra-Wideband,超宽带)是一种通信技术,其调制和编码方式取决于具体的 UWB 标准和应用场景。
UWB 技术的主要特点是使用非常大的频带宽度,通常超过传统无线通信系统的频带宽度。
以下是 UWB 调制和编码的一般概述,但请注意,具体实现可能因 UWB 标准而异。
UWB 调制方式:1.脉冲位置调制(PPM,Pulse Position Modulation): UWB 系统常使用脉冲位置调制,其中信息通过脉冲的到达时间来传输。
不同的时间位置代表不同的信息符号。
2.脉冲振幅调制(PAM,Pulse Amplitude Modulation): UWB 中也可以使用脉冲振幅调制,即通过改变脉冲的振幅来传递信息。
3.脉冲宽度调制(PWM,Pulse Width Modulation):在 UWB 中,信息也可以通过调制脉冲的宽度来进行传输。
UWB 编码方式:1.直接序列扩频(DS-UWB):使用 DS-UWB 的系统采用扩频调制,通过在每个比特上应用一个长的码片(chips)序列来进行信息传输。
2.脉冲位置调制(PPM)编码:脉冲位置调制也可以看作一种编码方式,其中不同的位置表示不同的符号。
3.OFDM(Orthogonal Frequency Division Multiplexing):在某些 UWB 实现中,OFDM 技术也被用于多载波调制。
OFDM 将信号分成多个子载波,每个子载波都可以携带信息。
4.Time Hopping Impulse Radio(TH-IR):这是一种 UWB 实现方式,使用时间跳变脉冲信号。
信息通过在时间轴上的不同跳变位置进行编码。
请注意,UWB 技术在不同的应用场景和标准中可能有很大的差异,因此实际的调制和编码方式可能会因具体的 UWB 实现而异。
最常见的 UWB 标准之一是 IEEE 802.15.4a,但还有其他标准和自定义实现。
在了解特定 UWB 系统的调制和编码方式时,最好查阅相应的标准文档或制造商的技术规格。
无线通讯中的15个速率相关的概念介绍
1.传输速率:指数据在传输介质上的传输速度,通常以比特率或字节率表示。
2. 带宽:指通信信道的最大数据传输速率,通常以比特每秒(bps)表示。
3. 调制方式:指在传输数据时,将数字信号转化为模拟信号的
方法,如频移键控(FSK)、相位键控(PSK)等。
4. 码率:指每秒钟传输的比特数量,通常以波特率(Baud rate)表示。
5. 信道编码率:指在数字通信中,将原始数据编码为更复杂的
码字的速率。
6. 线性编码:指将原始数据线性组合成码字的编码方式,如差
分编码、曼彻斯特编码等。
7. 非线性编码:指将原始数据非线性地组合成码字的编码方式,如扰码、Turbo编码等。
8. 信噪比:指信号与噪声的比值,通常用分贝(dB)表示。
9. 失真:指传输过程中信号失真的程度,包括幅度失真、相位
失真等。
10. 自适应调制:指根据信道质量自动调整调制方式的技术。
11. 自适应调制编码:指根据信道质量自动调整调制方式和编码方式的技术。
12. 多天线技术:指通过使用多个天线来提高通信性能的技术,
如MIMO技术。
13. 频带:指信道传输的频率范围,常见的频带有2.4GHz和5GHz。
14. 路径损耗:指信号在传播过程中因信号衰减和散射而损失的信号功率。
15. 多径效应:指信号在传播过程中因反射、绕射等原因导致多条信号路径,使信号产生干扰和衰减的现象。
无线通信系统中的自适应调制与编码技术研究自适应调制与编码技术是无线通信系统中的关键技术之一,其主要目的是提高系统的传输效率和可靠性。
本文将从自适应调制与编码技术的基本概念、应用场景和研究现状等方面进行探讨。
一、自适应调制与编码技术的基本概念自适应调制与编码技术是利用信道的变化来调整信号的调制方式和编码方式,以实现在不同信道条件下的最佳传输效果。
其基本原理是根据信道质量的变化,动态地选择适合当前信道条件的调制方式和编码方案。
自适应调制与编码技术可以有效地提高无线通信系统的抗干扰性能和传输速率。
二、自适应调制与编码技术的应用场景1. 移动通信系统:在移动通信系统中,由于不同用户之间的信道条件可能存在差异,因此采用自适应调制与编码技术可以根据用户的实际情况动态地选择最佳的调制方式和编码方案,提高系统的传输效率和覆盖范围。
2. 高速无线通信系统:在高速无线通信系统中,信道的条件会随着传输距离、速度和环境因素的改变而发生变化。
采用自适应调制与编码技术可以根据实时信道状态选择合适的调制方式和编码方案,以提高系统的可靠性和数据传输速率。
3. 阵列天线系统:在阵列天线系统中,由于每个天线之间的信道条件可能存在差异,采用自适应调制与编码技术可以根据不同天线的实际情况选择最佳的调制方式和编码方案,提高系统的传输性能和频谱利用率。
三、自适应调制与编码技术的研究现状目前,关于自适应调制与编码技术的研究主要集中在以下几个方面:1. 自适应调制算法:研究如何根据信道状态信息动态地选择合适的调制方式。
常用的自适应调制算法包括最大后验概率调制、软判决调制和群摆调制等。
2. 自适应编码算法:研究如何根据信道质量的变化动态地选择最佳的编码方案。
常用的自适应编码算法包括自适应调制编码、自适应前向纠错编码和自适应调制解调编码等。
3. 系统性能分析:研究自适应调制与编码技术在不同信道条件下的传输性能。
通过理论分析和仿真实验,评估系统在误码率、传输速率和频谱利用率等方面的性能。
无线通信技术中的编码方法在无线通信技术中,编码方法是用来将原始信息转换成数字信号的过程。
它是信息传输的关键步骤,可以提高信号的抗干扰能力、提高数据传输速率,并保证数据的正确性。
下面将介绍几种常见的无线通信编码方法。
一、调幅编码(AM)调幅编码是一种常见的模拟调制方法,通过改变载波信号的幅度来传输信息。
在调幅编码中,以不同的幅度代表不同的原始信息。
这种编码方法简单、易于实现,但是对干扰和噪声非常敏感,并且数据传输速率较低。
二、频移键控编码(FSK)频移键控编码是一种数字调制方法,通过改变载波信号的频率来传输信息。
在FSK编码中,不同的频率代表不同的二进制数据。
这种编码方法使用广泛,特别适用于低速数据传输,由于频率切换较慢,对干扰和误差较为敏感。
三、相移键控编码(PSK)相移键控编码是一种数字调制方法,通过改变载波信号的相位来传输信息。
在PSK编码中,不同的相位代表不同的二进制数据。
这种编码方法具有较高的数据传输速率和较好的抗干扰能力,广泛应用于数字通信系统中。
四、正交振幅编码(QAM)正交振幅编码是一种同时利用幅度和相位变化来传输信息的数字调制方法。
它通过将正弦波分为多个相互正交的子信号,并通过改变子信号的幅度和相位来表示信息。
这种编码方法可以传输更多的信息,拥有更高的数据传输速率,但同时也需要更复杂的解码过程。
五、差分编码(Differential Encoding)差分编码是一种特殊的编码方法,它通过记录信号的变化来传输信息。
在差分编码中,每个信号相对于前一个信号的变化来表示信息。
这种编码方法具有较好的抗噪性能,可以提高数据传输的可靠性。
六、迪布拉编码(Dibit Encoding)迪布拉编码是一种二进制编码方法,将每个比特映射到一个迪比特上。
迪比特是两个比特的编码,用来表示四种可能的状态,以提高数据传输的可靠性。
七、波码编码(Pulse Code Modulation)波码编码是一种常用的数字编码方法,用于将模拟信号转换为数字信号。
4g和5g通信所采用的信源编码和信道编码4G和5G通信所采用的信源编码和信道编码是不同的,具体如下:1. 4G通信所采用的信源编码4G通信系统采用了多种信源编码方式,其中最常用的是AMR (Adaptive Multi-Rate)编码。
AMR编码是一种自适应多速率语音编解码器,其主要作用是将语音转化为数字数据,并通过无线网络传输。
AMR编码可以根据网络质量自适应调整传输速率,从而提高语音质量。
2. 4G通信所采用的信道编码4G通信系统采用了Turbo编码和LDPC(Low Density Parity Check)编码两种主要的信道编码方式。
Turbo编码是一种迭代式卷积码,能够有效地提高数据传输速率和距离性能。
LDPC编码则是一种基于图像理论的低密度奇偶校验码,具有低复杂度、高效率等优点。
3. 5G通信所采用的信源编码5G通信系统引入了新型的波形调制方式和多路访问技术,因此在信源编解码方面也进行了改进。
5G通信系统主要采用Polar Coding(极化编解码)技术进行数据压缩和解压缩。
Polar Coding是一种基于极化理论的新型编码方式,具有高效率、低复杂度等优点。
4. 5G通信所采用的信道编码5G通信系统主要采用了LDPC编码和Polar Coding两种信道编码方式。
与4G通信系统相比,5G采用了更加先进的LDPC编码技术,能够提高数据传输速率和距离性能。
此外,Polar Coding也可以应用于5G通信系统的信道编码中,进一步提高数据传输效率。
总之,4G和5G通信所采用的信源编码和信道编码各有不同,并且在技术上都进行了不断改进和优化,以满足不断增长的无线通信需求。
无线承载的概念无线承载是指在无线通信系统中,将用户的数据、语音、图像等信息通过无线信道传输的过程。
它是无线通信系统中的关键性概念,影响着无线通信系统的容量、质量和性能。
下面将从无线通信系统架构、无线信道特性、多址技术和调制编码等方面详细介绍无线承载的概念。
首先,无线承载与无线通信系统架构密切相关。
无线通信系统是由基站和移动终端组成的,基站负责与移动终端的通信,将用户的数据传输到目的地。
基站通过无线信道与移动终端进行通信,这个过程中就涉及到了无线承载。
无线承载可以分为下行承载和上行承载,下行承载是指从基站到移动终端的数据传输,上行承载是指从移动终端到基站的数据传输。
在无线通信系统中,无线承载起着承载数据的功能,承载着用户的信息。
其次,无线承载的概念还与无线信道特性密切相关。
无线信道是信息在空中传播的媒介,具有特殊的传输特性。
在无线通信系统中,无线信道是有限和容易受到干扰的资源,无线承载需要适应无线信道的特性来进行数据传输。
无线信道的特性包括路径损耗、多径效应、功率衰减、多径衰减等。
无线承载需要根据无线信道特性来选择适当的传输方式和技术,以提高无线通信系统的性能和效果。
再次,无线承载与多址技术密不可分。
多址技术是无线通信系统中实现多用户同时传输的一种技术手段。
在有限的频谱资源和无线信道中,多址技术可以实现多个用户同时传输数据,提高频谱的利用率和系统的容量。
常见的多址技术包括时分多址(TDMA)、频分多址(FDMA)和码分多址(CDMA)等。
多址技术是无线承载的重要组成部分,通过多址技术可以将用户的数据分配到不同的承载中,从而实现多用户的同时传输。
最后,无线承载还与调制编码相关。
调制编码是将数字信号转换为模拟信号并进行传输的过程,是无线通信中的重要环节。
调制编码通过对数字信号进行编码,将其映射到模拟信号空间中,然后将模拟信号通过无线信道传输。
调制编码可以提高信号的抗干扰性和传输效率,从而提高无线通信系统的性能。
二相编码调制
二相编码调制(Binary Phase Shift Keying,BPSK)是一种数字通信调制技术,用于在无线通信和数字通信领域中将数字信息编码成模拟信号。
BPSK中,数据被编码为不同相位的载波信号,具体过程如下:
1.数据编码:将数字信息转化为二进制比特序列。
每个比特
通常表示为1或0。
2.载波生成:生成一个正弦波载波信号,以固定频率和振幅
进行调制。
例如,正弦波的频率为f,振幅为A。
3.二进制输入与相位映射:根据数据编码的比特序列,将1
映射为一个相位偏移(通常是0度),将0映射为另一个相位偏移(通常是180度)。
这意味着每个比特在相位上有两种可能的值。
4.调制:将相位映射的结果应用于载波信号。
相位映射为1
的比特会在载波信号的相位上产生一个相位偏移,而相位映射为0的比特则不改变载波信号的相位。
5. 发送:通过信道将调制后的信号发送到接收端。
6. 接收:在接收端,接收到的信号经过解调和检测,将其转化为数字数据。
7.
解调:使用相干解调技术,将接收到的信号与本地的相干参考信号进行比较,以恢复原始的相位信息。
8. 检测:将恢复的相位信息转化为二进制数据,得到接收端的数字信息。
二相编码调制的优点之一是它相对简单,容易实现并能够在低信噪比环境中有效工作。
然而,它对信道噪声和多径效应相对敏感,并且传输速率通常较低。
因此,在实际应用中,BPSK通常与其他调制技术结合使用来提高性能和提供更高的数据传输速率。
在频带传输中采用的编码方式在频带传输中采用的编码方式在数字通信领域,频带传输是一种常见的数据传输方式,它通过将数据编码成模拟信号,并在频率范围内进行传输来实现。
而频带传输中采用的编码方式,对于数据传输的可靠性和效率至关重要。
本文将从编码方式的基本概念、应用领域和未来发展等方面进行全面评估,并据此撰写一篇有价值的文章。
1. 编码方式的基本概念在频带传输中,编码方式是将数字信号转换成模拟信号的重要手段。
常见的编码方式包括脉冲编码调制(PCM)、频移键控(FSK)、相移键控(PSK)等。
这些编码方式在不同的传输场景下具有各自的优势和特点,如PCM适用于长距离、高速率的数据传输,FSK适用于频率稳定的通信环境,PSK则适用于抗干扰能力较强的传输系统。
了解不同编码方式的基本原理和适用范围,有助于我们更好地选择和应用合适的编码方式,以提高传输的可靠性和效率。
2. 编码方式的应用领域编码方式在各种数字通信系统中都有着重要的应用。
在无线通信系统中,频率利用率是一项重要的指标,采用合适的编码方式可以有效提高频率利用率,实现更多数据的传输。
在音频和视频传输领域,PCM编码方式能够保证音视频信号的高保真度和抗干扰能力,从而实现高质量的音视频传输。
而在网络通信领域,使用PSK等编码方式可以提高传输效率和数据可靠性,保障通信数据的安全性。
对编码方式的了解和应用,对于不同领域的数字通信系统都具有重要的意义。
3. 未来发展趋势随着通信技术的不断发展和智能化水平的提高,编码方式也在不断进行创新和优化。
近年来,随着深度学习算法的应用,神经网络编码(NNC)等新型编码方式被提出并应用于通信系统中,以实现更高效的数据传输。
随着5G技术的商用和物联网技术的普及,对编码方式的要求也在不断提高,例如对低功耗、高速率、低时延等方面提出了新的挑战。
未来编码方式的发展趋势将是更加智能化、高效化和多样化,以满足不断增长的通信需求。
频带传输中采用的编码方式在数字通信领域中具有重要的地位和作用。
amc 自适应调制编码
AMC自适应调制编码是一种新兴的无线通信技术,它可以有效地在多径信道上传输信号,并具有高效性和低资源消耗的特点。
本文首先介绍了自适应调制编码的概念,然后着重介绍了AMC自适应调制编码的主要特征、原理和优势,最后介绍了AMC自适应调制编码的发展趋势以及它可以应用在什么地方。
自适应调制编码(AMC)是一种具有适应性,可以根据信道条件
来自动调整调制级别的调制编码技术。
不同于传统调制编码,AMC可以根据实时变化的信道特性,不断调整调制参数以维持传输的高效性,同时降低资源消耗。
特别是在多径信道中,AMC可以有效地调制和传输信号,提高数据传输的安全性和效率。
AMC自适应调制编码的主要优势包括:(1)低失真率AMC采用调制参数自适应的方式,可以根据当前信道情况来保持较低的误码率;(2)高效率AMC可以在维持高传输效率的同时,有效地减少调制失真,得到更好的调制效果;(3)节能效果AMC可以根据实际信道特征减少调制失真,节省资源;(4)可靠性AMC可以在不同的信道状况下,提供高经济性、高灵活性和高可靠性的信号传输性能。
AMC自适应调制编码的发展趋势是朝着更高的调制效率、更低的功耗消耗以及更低的发射功率等方向发展。
AMC技术可以用于宽带接入和多径传输中,为用户提供高效传输的服务。
此外,AMC技术还可以用于传输抗干扰信号,以增强无线信号传输的稳定性和安全性。
因此,AMC自适应调制编码是一款令人兴奋的新型无线通信技术,
它具备高效性、可靠性和节能性的特点,有望在智能网络中发挥更大的作用和价值。
但仍然有许多技术问题需要解决,未来的发展还有待观察。
通信原理编码
编码是指将信息转换为特定格式或规则的过程。
在通信原理中,编码是将要传输的信息转换为适合在通信信道中传输的信号的过程。
编码的目的是提高信号的质量和可靠性,减少错误和失真的发生,并最大限度地利用信道的带宽。
常见的编码方式包括以下几种:
1. 数字编码:将数字信号转换为二进制形式进行传输。
常见的数字编码方式包括二进制编码、格雷码等。
2. 数模转换:将模拟信号转换为数字信号的过程,便于数字设备处理和传输。
常见的数模转换方式包括脉冲编码调制(PCM)、脉冲幅度调制(PAM)等。
3. 模拟编码:将模拟信号转换为特定的编码形式进行传输。
常见的模拟编码方式包括频移键控调制(FSK)、相位键控调制(PSK)等。
4. 线码:将二进制数字序列转换为具有特定特性的信号形式,以便在传输中进行时钟恢复和错误检测。
常见的线码方式包括不归零编码(NRZ), 曼彻斯特编码等。
5. 奇偶校验:用于检测和纠正信息传输中的错误。
常见的奇偶校验方式有奇偶校验位、循环冗余校验(CRC)等。
通过合适的编码方式,可以确保信息的准确传输和可靠性,提
高通信系统的性能。
不同的应用场景和需求会选择不同的编码方式,以满足信息传输的要求。
一、基本概念●工作频率:433.92MHz●调制方式:ASK/OOK、FSK、GFSK●现有的大多数远程控制和接收器解决方案都使用ASK/OOK调试方法。
ASK是“振幅键控”,也称为“振幅键控”。
也称为“on键”,作为ook(on键)信号被记录。
ASK 是一种相对简单的调制方法。
幅移键控(ask)等效于模拟信号中的幅度调制,以将载波频率信号乘以二进制。
振幅偏移使用频率和相位作为常数,振幅作为变量。
信息比特以载波的振幅来传输。
如图所示,是ASK调制方式的典型的时域波形。
二、编码和解码以遥控器为例。
在明确调制方式之后,需要就遥控编码方式达成一致。
一组远程控制代码通常必须包含“指南/起始代码”、“用户代码”、“数据代码”、“结束代码”和“重复代码”,格式如下:决定了编码的构成之后,必须明确“逻辑0”和“逻辑1”的表现方法。
它们可以按照标准的编码方式,也可以进行自定义。
标准编码方法可以使用曼彻斯特编码或其他方法。
自定义编码方案时,可以参考下图所示的编码规则。
主要是电平序列和电平长度的组合。
三、参考例●根据测得的遥控码波形可知,在433MHz接收机输出的信号中,电平维持时间为20ms、9ms、1.6ms、700us。
逻辑1指示1.6ms高电平+700us低电平,逻辑0指示700us 高电平+1.6ms低电平,启动/启动代码指示9ms高电平,逻辑700us高电平+20ms 低电平的结束代码指示“重复代码”的启动。
●在编程中,检测并计数了700us的电平。
为了确保充分的容错性,计时器中断必须在100us以下。
显然,使用计时器中断进行处理是不合理的。
在本例中,将外部中断+计时器计数方式用于电平长采样。
外部中断由上升沿和下降沿触发,边缘触发模式根据中断中的当前等级进行切换。
计时器使用系统时钟(16.6MHz)除以64作为时钟源并且具有足以增加接收器的容错能力的分辨率。
●在数据采样逻辑中,确定下降沿处以当前高电平表示的逻辑值,上升确认在上述步骤中生成的逻辑值,如果逻辑值合法,则记录该逻辑值,如果逻辑值不合法,则丢弃该逻辑值,初始化接收器,并且等待下一数据。
无线通信网络中的信道编码与调制技术一、引言无线通信网络的快速发展对信道编码与调制技术的要求越来越高。
信道编码与调制技术作为无线通信网络中最基础的核心技术之一,对于提高信号传输质量和系统性能起着至关重要的作用。
本文将介绍无线通信网络中的信道编码与调制技术,并讨论其在不同网络中的应用。
二、信道编码技术无线通信网络中,信号在传输过程中会受到各种干扰和噪声的影响,因此必须采用信道编码技术来提高抗干扰能力和纠错能力。
信道编码主要包括前向纠错编码、交织编码、多址码等。
1. 前向纠错编码前向纠错编码(Forward Error Correction,FEC)通过在发送端对数据进行编码,使得接收端可以在不需要进行反馈的情况下进行差错检测和纠正。
常见的前向纠错编码算法有海明码、Viterbi算法等。
这些算法通过增加冗余信息,使得接收端可以通过纠错码来恢复原始数据。
前向纠错编码技术可以有效地提高信道传输的可靠性和抗干扰能力。
2. 交织编码交织编码(Interleaving)是一种将数据进行重新排列的技术,其目的是将原始数据序列中出现的错误分散到较大的时间间隔上,从而提高纠错能力。
交织编码主要通过改变数据的存储和发送顺序,使得接收端可以更好地利用冗余信息进行纠错。
常见的交织编码技术有布朗交织、随机交织等。
3. 多址码多址码(Multiple Access Code)是一种将多个用户的数据通过编码技术进行区分的方法。
多址码可以分为时分复用(Time Division Multiple Access,TDMA)、频分复用(Frequency Division Multiple Access,FDMA)、码分复用(Code Division Multiple Access,CDMA)等。
多址码技术可以使多个用户同时使用同一信道进行通信,提高信道的利用率。
三、信道调制技术在无线通信网络中,信号需要通过调制技术将数字信号转化为模拟信号来进行传输。
调制编码的种类及原理-概述说明以及解释1.引言1.1 概述调制编码是一种在通信过程中用于将信息从其原始形式转换成适合传输和存储的信号形式的技术。
它是通信领域中不可或缺的关键技术之一。
调制编码的种类繁多,每种种类都有其独特的应用和优势。
调制编码的目的是通过将原始的数字数据转换为模拟信号或数字信号,以便在信道中传输。
通过调制编码,可以将数字信号转换为模拟信号,从而可以通过模拟信道进行传输。
同时,调制编码还可以将数字信号转换为数字信号,以便通过数字信道进行传输,从而更好地兼容数字通信系统。
调制编码的原理是通过一定的编码规则将输入的数字信息转换为特定的信号模式。
这些信号模式可以是连续的模拟信号,也可以是离散的数字信号。
不同的调制编码方法采用不同的编码规则和映射方式,以便实现在不同信道条件下的高效、可靠的信息传输。
在本文中,我们将讨论几种常见的调制编码的种类和原理。
我们将介绍调幅调制(AM)、频率调制(FM)、相位调制(PM)等模拟调制编码,以及脉冲编码调制(PCM)、正交振幅调制(QAM)等数字调制编码。
我们将详细介绍每种调制编码的基本原理、优势和应用场景,以便读者更好地理解和运用调制编码技术。
通过对调制编码的种类和原理进行全面的介绍,读者将能够更好地理解和应用调制编码技术,并在实际的通信系统中进行选取和优化,从而实现高效、可靠的信息传输。
在接下来的章节中,我们将详细阐述每种调制编码的种类和原理,并总结其应用和优势。
1.2 文章结构本文主要分为引言、正文和结论三个部分。
在引言部分,我们将对调制编码的种类及原理进行一个简单的概述,介绍文章的结构和目的,让读者对文章有一个整体的了解。
在正文部分,我们将详细讨论调制编码的种类和原理。
首先,我们将介绍调制编码的种类,包括常见的调幅、调频和调相编码等,对每种编码方法进行详细的解释和分析。
然后,我们将探讨调制编码的原理,包括数字信号与模拟信号的转换过程、调制器和解调器的工作原理等。
无线通信的调制编码一、背景意义数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。
所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。
在现代数据通信过程中,想要数据传输的快速与完整,离不开强有力的通信保障。
无线电通信技术是现代通信系统的重要组成部分,如何利用现有先进的调制编码技术来实现高容量、高速率通信,是非常紧迫的任务和重点研究方向。
无线信道环境恶劣且难以预测。
无线电波传输不仅有传播路径损耗,并且受到多径效应、多普勒频移和阴影效应等不利因素的影响,极大地影响了通信质量。
为此人们不断研究各种先进的通信技术以提高无线通信的性能,试验结果表明,采用先进的调制和编码技术不仅能提高通信质量,而且节省功率资源。
本文将介绍几种现代调制与编码技术。
二、调制编码的几种技术1.信道编码技术几十年来,人们一直在寻求实现简单的编译码方法,期望能够逼近香农理论极限。
从早期的Hamming码、BCH 码、RS 码,到后来的卷积码、级联码,以及今天的Turbo 码和LDPC码,所能达到的性能与Shannon 限的距离在不断缩小。
这些先进的信道编码技术已经在通信领域广泛使用。
1.1RS编码RS码即里德-所罗门码,它是能够纠正多个错误的纠错码,RS码为(204,188,t=8),其中t是可抗长度字节数,对应的188符号,监督段为16字节(开销字节段)。
实际中实施(255,239,t=8)的RS编码,即在204字节(包括同步字节)前添加51个全“0”字节,产生RS码后丢弃前面51个空字节,形成截短的(204,188)RS码。
RS的编码效率是:188/204。
1.2卷积码卷积码非常适用于纠正随机错误,但是,解码算法本身的特性却是:如果在解码过程中发生错误,解码器可能会导致突发性错误。
为此在卷积码的上部采用RS码块, RS码适用于检测和校正那些由解码器产生的突发性错误。
所以卷积码和RS码结合在一起可以起到相互补偿的作用。
卷积码分为两种:(1)基本卷积码:基本卷积码编码效率为,η=1/2, 编码效率较低,优点是纠错能力强。
(2)收缩卷积码:如果传输信道质量较好,为提高编码效率,可以采样收缩截短卷积码。
有编码效率为:η=1/2、2/3、3/4、5/6、7/8这几种编码效率的收缩卷积码。
编码效率高,一定带宽内可传输的有效比特率增大,但纠错能力越减弱。
1.3Turbo 码Turbo 码又称并行级联卷积码,由法国C.Berrou 等人在1993 年ICC93国际通信会议上提出。
它巧妙地将卷积码和随机交织器结合在一起,实现了随机编码的思想。
Turbo 码采用简单的卷积码级联结构和最大后验概率迭代译码算法,取得了接近香农极限的纠错译码性能。
Turbo 码的一个重要特点是它的分量码采用递归系统卷积码,这也是它性能优越的一个重要原因。
另外,采用迭代译码的思想也是Turbo 码的一种重要特点,它的复杂性仅随着信息序列的大小而成线性增长。
通常采用MAP 译码算法,或者其简化算法Log-MAP 算法和Max-Log-MAP 算法,将大部分的乘法运算转化为加法运算,既减小了运算复杂度,又便于硬件实现。
Turbo 码技术已广泛应用,其许多关键技术已有了多种改进方案,使其性能更高,更有利于软硬件的实现。
Turbo码已被美国作为深空通信的标准,同时也被确定为第三代移动通信系统(IMT-2000)的信道编码方案之一,如3GPP 的WCDMA、CDMA2000 和中国的TD-SCDMA 均采用了Turbo 信道编码方案。
1.4交织码在实际应用中,比特差错经常成串发生,这是由于持续时间较长的衰落谷点会影响到几个连续的比特,而信道编码仅在检测和校正单个差错和不太长的差错串时才最有效(如RS只能纠正8个字节的错误)。
为了纠正这些成串发生的比特差错及一些突发错误,可以运用交织技术来分散这些误差,使长串的比特差错变成短串差错,从而可以用前向码对其纠错,例如:在DVB-C系统中,RS(204,188)的纠错能力是8个字节,交织深度为12,那么纠可抗长度为8×12=96个字节的突发错误。
实现交织和解交织一般使用卷积方式。
交织技术对已编码的信号按一定规则重新排列,解交织后突发性错误在时间上被分散,使其类似于独立发生的随机错误,从而前向纠错编码可以有效的进行纠错,前向纠错码加交积的作用可以理解为扩展了前向纠错的可抗长度字节。
纠错能力强的编码一般要求的交织深度相对较低。
纠错能力弱的则要求更深的交织深度。
一般来说,对数据进行传输时,在发端先对数据进行FEC编码,然后再进行交积处理。
在收端次序和发端相反,先做去交积处理完成误差分散,再FEC解码实现数据纠错。
根据信道的情况不同,信道编码方案也有所不同,在DVB-T里由于由于是无线信道且存在多径干扰和其它的干扰,所以信道很“脏”,为此它的信道编码是:RS+外交积+卷积码+内交积。
采用了两次交积处理的级联编码,增强其纠错的能力。
RS作为外编码,其编码效率是188/204(又称外码率),卷积码作为内编码,其编码效率有1/2、2/3、3/4、5/6、7/8五种(又称内码率)选择,信道的总编码效率是两种编码效率的级联叠加。
设信道带宽8MHZ,符号率为6.8966Ms/S,内码率选2/3,16QAM调制,其总传输率是27.586Mbps,有效传输率是27.586*(188/204)*(2/3)=16.948Mbps,如果加上保护间隔的插入所造成的开销,有效码率将更低。
在DVB-C里,由于是有线信道,信道比较“干净”,所以它的信道编码是:RS+交积。
一般DVB-C的信道物理带宽是8MHZ,在符号率为6.8966Ms/s,调制方式为64QAM的系统,其总传输率是41.379Mbps,由于其编码效率为188/204,所以其有效传输率是41.379*188/204=38.134Mbps。
在DVB-S里,由于它是无线信道,所以它的信道编码是:RS+交积+卷积码。
也是级联编码。
1.5 LDPC 码LDPC 码,又称为低密度奇偶校验码,是Gallager 于1962 年提出的一种具有稀疏校验矩阵的分组纠错码,LDPC 码的性能可以达到Turbo 码的性能且实现成本远低于Turbo 码。
LDPC 码是一类特殊的线性分组码,该码的校验矩阵中绝大多数元素是0,只有很少的部分元素为1,所以是“稀疏”或者“低密度”校验矩阵。
LDPC 码分为规则LDPC 码与非规则LDPC码。
通常非规则LDPC码性能优于规则LDPC码,因为在变量节点和校验节点的总度数一定时,度数大的变量节点从校验节点得到的信息较多,所以能够更好地被正确译码,这些正确的译码信息经校验节点提供给度数较小的变量节点,使度数较小的变量节点也能更好地被正确译码。
近年来,LDPC 码以其优异的性能日益受到重视,在空间通信、光纤通信、个人通信系统、ADSL 和磁记录设备等方面都有较好的发展前景。
2.载波调制技术2.1OFDMOFDM(Orthogonal Frequency Division Multiplexing)调制,可以追溯到本世纪60年代中期。
70年代,人们提出用离散傅里叶变换(DFT)实现多载波调制,简化了系统结构,才使得OFDM技术实用化。
80年代,人们研究如何将OFDM技术应用于高速MODEM。
90年代以来,OFDM技术的研究深入到在无线调频信道上的宽带数据传输。
在高速无线环境下,OFDM技术的优势突出,现已被广泛应用于民用通信系统中。
2.1.1 OFDM技术原理正交频分复用(OFDM)正成为目前大多数无线通信系统中的核心技术。
其原理是将高速数据流经串/并转换分配到速率相对较低的若干子信道传输。
由于各子信道的符号周期相对增加,故减轻了由信道多径时延产生的时间弥散对系统造成的影响。
在OFDM 符号间插入保护间隔,并令保护间隔大于无线信道的最大时延扩展以消除符号间干扰(ISI)。
OFDM 系统子载波间隔为符号周期的倒数,各子载波相互正交,频谱相互重叠;各子信道频谱的最大值于其他子信道频谱零点对应,既减小了子载波间的相互干扰又提高了频谱效率。
OFDM 系统结构如图1 所示,首先将并行数据转换为串行数据。
OFDM 调制采用信道编码(卷积纠错码、Turbo 码等)来抑制多径效应,数据符号映射到一个相应的星座上(如同QPSK,QAM),结果I 和Q 存储在缓冲中,并应用快速傅里叶反变换(IFFT)生成用于OFDM 传输的正交载波。
OFDM 技术备受关注源于其独特的优点:很高的频谱利用率,抗多径干扰与频率选择性衰落能力强,动态子载波、功率、比特分配技术等。
OFDM 每个子信道近似为平坦衰落信道,使得信道均衡变得容易,有利于高速数据的传输。
OFDM 作为高频谱效率的调制方案已被许多国际标准采用,如DVB-T、DAB、IEEE 802.11、IEEE 802.16、IEEE802.15 等。
OFDM 将成为新一代无线通信系统中特别是下行链路的最优调制方案之一。
图1 OFDM 系统结构2.1.2OFDM的实现过程在发送端,串行码元序列先进行串并转换成N路子码元d(0),d(1),……,d(N-1),然后分别调制在N个正交的子载波f(0),f(1),……,f(N-1)上,最后将这N路调制信号相加发送出去;在接收端首先对接收信号进行采样,然后使用N 个相同的子载波进行N路解调,再将这N路解调信号并串输出,复现发送的信号。
N个正交子载波频率:fk=f0+k/Tb, k=0,1,……,N-1 (1)式中 f0——实际发射载波频率;Tb——符号周期;1/Tb——各子载波之间的频率间隔。
设载波的单元信号为Pk(t)=cos(2πfkt),0≤t<Tb0,其他(2)则有 ∫Tb0Pn(t)Pm(t) dt=Tbm=n0,m≠n (3)即子载波相互正交。
经过调制后的合成传输信号D(t)为D(t)=∑N-1n=0d(n) ej2πf nt t∈〔0,T b〕(4)式中 d (n)为第n个调制码元。
设f0=0,对信号进行D(t)抽样,则式(4)可改写为D(kTb)=∑N-1n =0d(n) ej2πnNT bk Tb=∑N-1n =0d(n) ej2πkn/N=N×IDFT〔d(n)〕 0≤k≤N-1 (5)即D(kTb)是d(n)的(反离散傅里叶变换)。
利用DFT ,不仅可以保证各子载波之间的正交性,而且可以利用其快速算法FFT 来加快OFDM 的调制解调速度,也便于采用超大规模集成(VLSI)技术。
2.2 SC/FDE单载波频域均衡技术(SC/FDE ),是宽带无线传输中另一种对抗多径效应的有效方法,早在1994 年由Sari ,Karam 和Jeanclaude 提出。