血红蛋白演变与MRI信号
- 格式:ppt
- 大小:6.76 MB
- 文档页数:32
正常组织和病理组织的MR信号特点了解人体正常组织和病理组织的MR信号特点不仅仅是MR诊断的基础,同样也是我们技术人员所必备的基础知识之一。
我们可以这样设想,如果一个技术员不懂得正常,怎能看出异常所在;看不出异常,就不知道所扫描的区域该不该增强,或是选用何种最佳序列去区分病变,最终导致让病人来回几趟,或是找一个“拐杖”、让医生坐在身边把关,才获得一个较为满意的诊断报告。
因此,有必要将人体正常组织和病理组织的MR信号特点作一简要概述。
一、人体正常组织MR信号特征MR的信号强度是多种组织特征参数的可变函数,它所反映的病理生理基础较CT更广泛,具有更大的灵活性,MRI信号强度与组织的弛豫时间、氢质子密度、血液或脑脊液流动、化学位移及磁化率有关,其中弛豫时间,即T1和T2时间,对图像对比起着重要的作用,它是区分正常组织、病理组织及组织特性的主要诊断基础。
1、脂肪、骨髓:组织脂肪的T1短、T2长、Pd高,根据信号强度公式,质子密度大和T1值小,其信号强度大,故不论在T1WI、T2WI和PdWI图像上均呈高信号,与周围长T1组织形成良好对比,尤其在使用短TR检查时,脂肪组织的分界线明显,信号高、呈白色。
但随着TR的延长,在T2WI图像上脂肪信号有逐渐衰减降低之势,这是脂肪抑制技术的基础;倘若为质子密度加权像,此时脂肪组织仍为高信号,但周围组织的信号强度增加,使其对比度下降。
骨髓内因含有较多的脂肪成分,在MR扫描图像上亦呈高信号,和脂肪组织信号有相似的特征。
因此,MR骨髓成像技术对于骨髓疾病、尤其是对于早期的骨髓转移或骨髓瘤等特别敏感,故临床上有着广泛的用途。
2、肌肉、肌腱、韧带:肌肉组织所含的质子明显少于脂肪和脊髓,它具有较长的T1和较短的T2值,根据强度公式,当T1弛豫增加和T2减少时信号强度较低,所以在T1加权像上,因使用的TR值较短,使质子的磁化恢复不完全,信号强度较低,影像呈灰黑色;随着TR的延长,信号强度增加,在T2加权像上,因具有短T2的弛豫特点,信号强度增加不多,影像呈中等灰黑色,故在T1WI、T2WI和PdWI上均呈中等强度信号(黑灰或灰色)。
不同组织结构的MRI信号特点脂肪、骨髓:不论在T1WI、T2WI和PDWI(质子加权像)图像上均呈高信号肌肉、肌腱、韧带:肌肉在T1WI、T2WI和PdWI上均呈中等强度信号(黑灰或灰色)。
肌腱和韧带组织含纤维成分较多,其质子密度低于肌肉,其信号强度较肌肉组织略低,该组织也有长T1和短T2,其MR信号为等信号或较低的信号。
骨骼、钙化:T1WI、T2WI和PDWI图像上均呈信号缺如的无(低)信号区。
软骨:在T1、T2加权像上信号强度不高,呈中低信号气体:在T1WI图像上呈较低信号,T2WI图像上信号明显增加,呈鲜明的高信号为其特征。
血流:快速流动的血液因其“流空效应”,在各种成像上均低(无)信号血管影;而缓慢或不规则的血流,如:湍流、旋流等,血管内信号增加且不均匀。
淋巴结:淋巴结组织的质子密度较高,且具有较长的T1和较短的T2弛豫特点。
根据信号强度公式,质子密度高,信号强度也高。
但在T1WI时,因其长T1特点,使其信号强度不高,呈中等信号;而在T2WI上,因其T2不长,使信号强度增加也不多,也呈中等信号。
水肿:无论何种类型水肿,细胞内或组织间隙内的含水量增加,均使T1值和T2值延长,Pd值降低,故在T1WI和PDWI图像上水肿区呈较低信号,而在T2WI图像上则呈明显的高信号,对比鲜明。
下面就脑水肿的3种类型,即血管源性水肿、细胞毒素水肿及间质性水肿分述如下。
(1)血管源性水肿:最常见于脑水肿,是由血脑屏障破坏所致,血浆由血管内漏出进入细胞外间隙,这是血管源性水肿的病理生理基础。
血管源性水肿主要发生在脑白质中,结构致密的脑灰质通常不易受影响,典型的血管源性水肿呈手指状分布于脑白质之中,常见于肿瘤、出血、炎症、以及脑外伤等脑部疾患中。
它是以结合水增多为主,自由水增加为辅,早期只在T2加权像上显示,CT通常无明显异常。
血管源性水肿的较早显示,往往提示存在一个较早期或较局限的脑部疾患,这种病变和肿瘤鉴别需采用长TE序列,使TR延长,水肿信号增强,而肿瘤信号基本不增加,必要时进行Gd-DTPA增强扫描。
脑出血的MRI表现特征目的探讨脑出血的MRI表现特征。
方法回顾性分析经30例脑出血患者的MRI表现。
结果急性期T1WI呈等信号或稍低信号,T2WI为低信号;亚急性期和慢性期T1WI和T2WI均表现为高信号,周围可有含铁血黄素低信号环。
结论MRI是较为敏感的和特异性无创伤的检查方法,特别是脑出血表现为额顶叶单纯小血肿。
标签:脑出血核磁共振成像脑出血(ICH)是指原发性非外伤性脑实质内出血。
高血压是脑出血最常见原因。
急性期CT检查迅速,诊断准确性高,吸收期需与胶质瘤、脑脓肿、脑梗死鉴别;MRI上亚急性及慢性期血肿具有特征性信号改变,易于鉴别。
MRI在显示脑内血肿方面,较之CT有独到之处[1]。
如果说血肿从出现到吸收在CT上是从高密度到等密度到低密度的转变过程的话,则MRI基本是从低信号到高信号再到低信号,恰可与CT形成互补。
现对临床收治的30例脑出血的患者的MRI表现分析如下。
1 资料与方法1.1 一般资料选取2010年1月至2010年12月收治的30例颅内出血患者,其中男性22例,女性8例。
年龄43~79岁,平均年龄64.1岁。
入院时有明确高血压史者25例,入院血压18~30/11~18Kpa,平均血压26/14.7Kpa,就诊时间发病后1h~3d。
1.2 MRI检查方法采用磁共振仪。
进行颅脑矢状、冠状、轴位扫描。
序列包括SE T1WI、FSE T2WI。
增强扫描的对比剂采用肘静脉注射磁显葡胺溶液(GdDTPA)0.2mL/kg。
2 MRI表现MRI血肿在不同时期,信号强度不一。
急性期对幕上及小脑出血的价值不如CT,对脑干出血优于CT,病程4~5周后CT不能辨认脑出血时,MRI仍可明确分辨,故可区别陈旧性脑出血和脑梗死;可明确出血原因。
MRI易发现脑血管畸形、血管瘤及肿瘤等出血原因。
血肿及周围脑组织MRI表现较复杂,主要受血肿所含血红蛋白量的变化影响。
(1)超急性期(3周):长T1、长T2信号。
3 讨论脑出血或称自发性脑出血,是指脑实质出血,约占脑卒中病人的20%,可由脑动脉瘤、血管畸形、炎症、肿瘤等引起。
bold磁共振原理磁共振成像(fMRI)原理及对比度产生机制fMRI信号来源与灵敏度fMRI仍然以氢质子为信号来源,借助磁共振技术实现对生物组织内部结构和功能活动的成像。
MRI解剖图像对解剖结构的敏感性已广为人知,而fMRI功能图像则更为敏感,能够捕捉神经元活动引起的生理变化。
fMRI的生理学基础脑的血液动力学在fMRI的生理学基础中占据关键地位。
大脑由多个功能区域组成,其血流分布反映了大脑多样性的结构。
研究发现,不同大脑区域的血流量可相差高达18倍。
毛细血管中的血流会根据周围组织的代谢需求而变化,这构成了fMRI信号的生理学基础。
血红蛋白及其磁性血液中的脱氧血红蛋白(dHb)具有顺磁特性,而氧合血红蛋白(HbO2)具有逆磁特性。
这两种血红蛋白在红细胞中的含量不同导致了血流与周围组织的不同磁敏感性。
BOLD效应BOLD(BloodOxygenLevelDependent)效应是fMRI中关键的信号机制。
氧合血红蛋白的逆磁特性不影响信号的弛豫过程,而脱氧血红蛋白的顺磁特性则导致非均匀的磁场,加速质子的散相,使得NMR 信号出现缺失。
在BOLD效应中,神经元活动导致氧的供应超过代谢所需的耗氧量,使氧合血红蛋白的增加量大于脱氧血红蛋白的产生量。
这导致顺磁性物质相对减少,质子的散相减少,T2*延长,最终在图像上表现为信号强度的增加。
血氧水平依赖性BOLD当大脑皮层微血管中的血氧水平发生变化时,局部磁场均匀性变化引起NMR信号强度的变化,称为血氧水平依赖性BOLD效应。
这一效应在fMRI图像中提供了对神经活动的高灵敏度检测。
通过磁共振成像技术,特别是fMRI的应用,我们能够更深入地了解脑功能活动的生理学基础,为神经科学和医学研究提供了强大的工具。
1.人体正常组织MR信号特征:MR的信号强度是多种组织特征参数的可变函数,它所反映的病理生理基础较CT更广泛,具有更大的灵活性,MRI信号强度与组织的弛豫时间、氢质子密度、血液或脑脊液流动、化学位移及磁化率有关,其中弛豫时间,即T1和T2时间,对图像对比起着重要的作用,它是区分正常组织、病理组织及组织特性的主要诊断基础。
T1短的组织主要为脂肪,脂肪和水同样还大量的氢原子,质子密度高,但脂肪分子较大,其中的质子周围有炭、氧等原子,能量传递快,T1值就短,同样与蛋白质大分子结合的水其T1值也短。
脂肪的T2值中等。
正常人体脾脏,肝脏,肌肉等组织的T2值较短,他们在T2权像上信号相对较低。
在组织发生炎症,坏死,囊变等情况时T2值一般会延长。
肿瘤T2值较长,但一些含水分较少或纤维化明显的肿瘤T2值并不长,如肺癌,胰腺癌,成骨性肿瘤。
1.1脂肪、骨髓:组织脂肪的T1短、T2长、Pd高,根据信号强度公式,质子密度大和T1值小,其信号强度大,故不论在T1WI、T2WI和PdWI图像上均呈高信号,与周围长T1组织形成良好对比,尤其在使用短TR检查时,脂肪组织的分界线明显,信号高、呈白色。
但随着TR的延长,在T2WI图像上脂肪信号有逐渐衰减降低之势,这是脂肪抑制技术的基础;倘若为质子密度加权像,此时脂肪组织仍为高信号,但周围组织的信号强度增加,使其对比度下降。
骨髓内因含有较多的脂肪成分,在MR扫描图像上亦呈高信号,和脂肪组织信号有相似的特征。
因此,MR骨髓成像技术对于骨髓疾病、尤其是对于早期的骨髓转移或骨髓瘤等特别敏感,故临床上有着广泛的用途。
1.2肌肉、肌腱、韧带:肌肉组织所含的质子明显少于脂肪和脊髓,它具有较长的T1和较短的T2值,根据强度公式,当T1弛豫增加和T2减少时信号强度较低,所以在T1加权像上,因使用的TR值较短,使质子的磁化恢复不完全,信号强度较低,影像呈灰黑色;随着TR的延长,信号强度增加,在T2加权像上,因具有短T2的弛豫特点,信号强度增加不多,影像呈中等灰黑色,故在T1WI、T2WI和PdWI上均呈中等强度信号(黑灰或灰色)。
MR信号脂肪、骨髓不论在T1WI、T2WI和PDWI(质子加权像)图像上均呈高信号肌肉、肌腱、韧带:肌肉在T1WI、T2WI和PdWI上均呈中等强度信号(黑灰或灰色)。
肌腱和韧带组织含纤维成分较多,其质子密度低于肌肉,其信号强度较肌肉组织略低,该组织也有长T1和短T2,其MR信号为等信号或较低的信号。
骨骼、钙化:T1WI、T2WI和PDWI图像上均呈信号缺如的无(低)信号区。
软骨:在T1、T2加权像上信号强度不高,呈中低信号气体:在T1WI图像上呈较低信号,T2WI图像上信号明显增加,呈鲜明的高信号为其特征。
血流:快速流动的血液因其“流空效应”,在各种成像上均低(无)信号血管影;而缓慢或不规则的血流,如:湍流、旋流等,血管内信号增加且不均匀。
淋巴结:淋巴结组织的质子密度较高,且具有较长的T1和较短的T2弛豫特点。
根据信号强度公式,质子密度高,信号强度也高。
但在T1WI时,因其长T1特点,使其信号强度不高,呈中等信号;而在T2WI上,因其T2不长,使信号强度增加也不多,也呈中等信号。
水肿:无论何种类型水肿,细胞内或组织间隙内的含水量增加,均使T1值和T2值延长,Pd值降低,故在T1WI和PDWI图像上水肿区呈较低信号,而在T2WI图像上则呈明显的高信号,对比鲜明。
下面就脑水肿的3种类型,即血管源性水肿、细胞毒素水肿及间质性水肿分述如下。
(1)血管源性水肿:最常见于脑水肿,是由血脑屏障破坏所致,血浆由血管内漏出进入细胞外间隙,这是血管源性水肿的病理生理基础。
血管源性水肿主要发生在脑白质中,结构致密的脑灰质通常不易受影响,典型的血管源性水肿呈手指状分布于脑白质之中,常见于肿瘤、出血、炎症、以及脑外伤等脑部疾患中。
它是以结合水增多为主,自由水增加为辅,早期只在T2加权像上显示,CT通常无明显异常。
血管源性水肿的较早显示,往往提示存在一个较早期或较局限的脑部疾患,这种病变和肿瘤鉴别需采用长TE序列,使TR延长,水肿信号增强,而肿瘤信号基本不增加,必要时进行Gd-DTPA增强扫描。
脑出血后脑内血肿MRI表现规律脑出血后血肿的病理演变过程为:红细胞悬液-血液浓缩-血凝块形成和收缩-红细胞溶解-低蛋白血肿液。
血肿内血红蛋白的演变过程为:氧合血红蛋白(HBO2)-脱氧血红蛋白(DHB)-高铁血红蛋白(MHB)-含铁血黄素(H-S),其中可出现互相重叠现象。
根据脑内血肿的病理及血红蛋白变化规律,脑内血肿的MR信号表现规律为:1.超急性期(<24小时),血肿主要由完整红细胞内的HBO2组成,在MR 上可分为三阶段:(1)Ⅰ阶段(0-3小时),血肿在T1加权像上呈低信号,在T2加权像上呈高信号。
(2)Ⅱ阶段(3-12小时),血肿在T1加权像上呈略高信号,在T2加权像上呈高信号;此时出现轻度脑水肿。
(3)Ⅲ阶段(6-24小时),血肿在T1、T2加权像上可呈等信号,此时出现中等脑水肿。
2.急性期(2-7天),血肿内HBO2逐渐向DHB演化。
(1)Ⅰ阶段(2-3天),完整红细胞内的HBO2已演变为DHB。
血肿在T1加权像呈等或略低信号,在T2加权像上呈典型的低信号,此期伴重度脑水肿。
(2)Ⅱ阶段(3-4天),血肿除DHB之外,已有相当大部分转化为细胞内MBH,在T1加权像上呈典型的高信号,在T2加权像上呈典型的最低的黑信号,此期伴重度的脑水肿。
(3)Ⅲ阶段(5-7天),此期特征是红细胞开始溶解,血肿在T1加权像上仍呈典型的高信号,在T2加权像上仍呈低信号,(但不如Ⅱ阶段黑),脑水肿减轻为中度。
3.亚急性期(8-30天)。
(1)Ⅰ阶段(8-15天),血肿周边已经是游离稀释的MHB,中心部仍为未演化的DHB,在T1加权像上最有特征性。
周围为高信号厚环,中心为DHB低信号,在T2加权像上周围为略低信号厚环,中心为更低信号DHB,脑水肿从中度变为轻度。
(2)Ⅱ阶段(16-30天),血肿中心的DHB逐渐为游离稀释的MHB所取代,在所有成像序列中均逐渐完成高信号,以T1加权像最明显,T2加权像演变得慢一些,血肿周边可见含铁血黄素黑线,脑水肿从轻度至消失。
核磁共振含铁血黄素沉积意义血红蛋白是人体内的一种重要蛋白质,它含有铁元素,负责将氧气输送到身体各个部位。
在人体内,血红蛋白会逐渐老化,最终被分解成为含铁血黄素。
这些含铁血黄素会在身体内沉积,对健康产生一定的影响。
核磁共振技术可以对含铁血黄素进行检测,对人体健康的评估和疾病的诊断具有重要的意义。
一、含铁血黄素的来源及沉积含铁血黄素是由血红蛋白分解产生的,它们主要沉积在肝脏、脾脏和骨髓等器官中。
在正常情况下,含铁血黄素的沉积速度很慢,但是在某些疾病状态下,例如重性贫血、铁过载症等,含铁血黄素的沉积速度会加快,对身体产生危害。
二、核磁共振技术在含铁血黄素检测中的应用核磁共振技术是一种非侵入性的无辐射检测技术,它可以对含铁血黄素进行定量检测。
核磁共振技术利用磁场和射频脉冲对含铁血黄素进行激发,从而获得其特征信号。
通过测量含铁血黄素的信号强度和分布情况,可以对含铁血黄素的沉积程度进行评估。
核磁共振技术具有灵敏度高、精度高、无辐射、无损伤等优点,可以有效地评估含铁血黄素沉积对身体健康的影响。
三、含铁血黄素沉积对身体健康的影响含铁血黄素的沉积对身体健康有一定的影响。
在正常情况下,含铁血黄素的沉积速度很缓慢,不会对身体产生危害。
但是在某些疾病状态下,例如重性贫血、铁过载症等,含铁血黄素的沉积速度会加快,从而对身体产生危害。
含铁血黄素沉积过多会导致器官功能受损,严重时会导致疾病的发生。
例如,在铁过载症中,含铁血黄素沉积过多会导致肝脏、心脏等器官受损,严重时会导致肝硬化、心力衰竭等疾病的发生。
四、结语核磁共振技术在含铁血黄素检测中的应用可以对身体健康的评估和疾病的诊断具有重要的意义。
含铁血黄素的沉积对身体健康有一定的影响,需要引起重视。
在日常生活中,我们应该注意保持健康的生活方式,避免铁过载等疾病的发生。
同时,需要定期进行体检,及时发现和治疗含铁血黄素沉积相关的疾病。
fMRI的原理及临床应用介绍功能磁共振成像(functional magnetic resonance imaging,fMRI)是一种用于获取活动大脑的影像的非侵入性技术。
通过测量氧合态和去氧血红蛋白在大脑中的不同区域的含量,fMRI可以提供有关大脑活动的信息。
本文将介绍fMRI的原理以及其在临床应用中的意义。
原理fMRI基于磁共振成像(magnetic resonance imaging,MRI)技术,其原理是利用静态磁场及变化磁场对体内的核磁共振信号进行采集和分析。
下面是fMRI的工作原理:1.氧合血红蛋白和去氧血红蛋白的信号:大脑区域在活跃时,其需氧能力增加,导致血液流量增加。
氧合血红蛋白的含量增多,而去氧血红蛋白的含量减少。
2.血氧水平依赖效应:由于氧合血红蛋白和去氧血红蛋白的磁共振性质不同,fMRI可以通过观察血氧水平依赖效应来检测大脑活动。
该效应指的是当血液供应到达大脑活跃区域时,其中的氧合血红蛋白会导致信号增强。
3.BOLD信号:基于血氧水平依赖效应,fMRI使用血氧水平依赖(blood oxygenation level dependent,BOLD)信号来表示脑活动。
BOLD信号用于检测大脑各个区域的活动程度及活动模式。
临床应用疾病诊断fMRI在临床中广泛应用于疾病的诊断和治疗。
以下是fMRI在不同疾病中的临床应用:1.脑卒中:fMRI可以帮助确定脑卒中患者的恢复程度和认知功能的损伤程度。
通过比较患者与正常人群的fMRI图像,可以评估受损区域的功能状态,并制定个体化的康复治疗方案。
2.精神疾病:fMRI可用于研究精神疾病患者的大脑活动模式,并帮助确定疾病的类型和程度。
通过观察患者在特定任务下的脑部活动,可以了解异常活动的特征,并辅助制定治疗方案。
3.癫痫:fMRI可以帮助定位癫痫发作的起源,通过监测癫痫患者的fMRI图像,医生可以确定癫痫发作的源头,并选择适当的手术治疗方法。
T1加权像高信号的产生机制一般认为,T1加权像上的高信号多由于出血或脂肪组织引起。
但近年来的研究表明,T1加权高信号尚可见于多种颅内病变中,包括肿瘤、脑血管病、代谢性疾病以及某些正常的生理状态下。
在射频脉冲的激发下,人体组织内氢质子吸收能量处于激发状态。
射频脉冲终止后,处于激发状态的氢质子恢复其原始状态,这个过程称为弛豫。
在弛豫过程中,氢质子将其吸收的能量释放到周围环境中,若质子及所处晶格中的质子也以与Larmor频率相似的频率进动,那么氢质子的能量释放就较快,组织的T1弛豫时间越短,T1加权像其信号强度就越高。
T1弛豫时间缩短者有3种情况:其一为结合水效应;其二为顺磁性物质;其三为脂类分子。
一.结合水效应(自由水成为结合水)小分子的自由水(如脑脊液)具有非常高的运动频率,它的运动频率要远高于MRI的Larmor 频率,其T1弛豫时间也远长于身体内其他组织,所以在T1加权像上呈低信号。
如在水中加入大分子的蛋白质,那么具有极性的水分子会被带有电荷的蛋白质分子吸引而结合在蛋白质分子上,从而形成一个蛋白质水化层。
在此蛋白分子水化层内的水分子受蛋白分子的吸引,致使水分子的运动频率下降,接近于Larmor频率。
使其T1驰豫时间缩短,故T1加权成像时呈现出高信号改变。
二.顺磁性物质(金属物质沉积)顺磁性物质的特点是含有不成对的电子,常见的有铁、铬、钆、锰等金属、稀土元素及自由基。
在磁场中顺磁性物质的磁进动与组织内质子进动相互作用,产生一个随机变化的局部微小磁场,这个微小磁场的变化频率与Larmor频率接近,从而使T1弛豫时间缩短。
三.脂类分子(运动频率与Larmor频率相似)纯水分子非常小,运动频率非常高,远高于Larmor频率。
大分子如蛋白质和DNA分子运动频率较慢,低于Larmor频率。
所以大、小分子在T1加权上均呈低信号。
脂类分子为中等大小,其运动频率高于蛋白质,低于纯水,与Larmor频率相似,所以T1弛豫时间短,T1加权像呈高信号。