半导体激光器的历史状况及应用
- 格式:doc
- 大小:56.50 KB
- 文档页数:5
半导体激光器的研究进展摘要:本文主要述写了半导体激光器的发展历史和发展现状。
以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。
一、引言。
激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。
半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。
半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。
半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。
本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。
二、大功率半导体激光器的发展历程。
1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。
由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。
从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。
1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。
随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。
半导体激光器的工作原理及应用摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。
由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。
从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,是半导体激光器开启了激光应用发展的新纪元。
关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器The working principle of semiconductor lasers and applications ABSTRACT: The machanism of lasing by semiconductor laser,which requires set up specially designated reverse of beam of particles among energy stages,and appropriate optical syntonic coelenteronAs the specificity of structure from semiconductor and moving electrons.something interesting happens.On the one hand,the specific process in producing lase,on the other hand,the beam of light has unique advantages。
As the reasons above,we can easily found it all quartersof the society.From homojunction to heterojunction,from informatics to power,the advantages of laser are in evidence,the wide spectrum,the semiconductor open the epoch in the process of laser. Key worlds: stimulated radiation; optical field; homojunction; heterojunction; high-power semiconductor laser 0 前言半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。
半导体激光器发展历程1962年,美国科学家罗伯特·诺伊斯(Robert Noyce) 首次提出了半导体激光器的概念。
他认为,利用半导体材料的特异性能可以制造出较小、比固体激光器更稳定的激光器。
在接下来的几年中,中继器、传输器和放大器等元件应运而生。
1962年至1964年期间,一些团队开始进行关键性的探索和实验,在III-V族化合物半导体(如GaAs,InP等)中获得了连续的电注入光发射。
在此基础上,1969年,尤金·斯瓦茨(Eugene Snitzer)首次实现了在GaAs材料中产生的高峰值功率和狭窄线宽的脉冲辐射。
1970年代初,发展了用于通信系统的半导体激光器,使之成为一项成熟的技术。
1970年,展示了一种高效率的AlGaAs DH结构激光器。
1972年,由松村英昭(Eiichi Muramatsu)提出的可见光半导体激光器成功发射出475nm的蓝光。
此后的几年中,各种新的半导体材料和结构被研究和开发,以提高激光器的效率和性能。
1980年代,半导体激光器取得了长足的发展。
具有波尔廷(Lenard)电流注入结构的AlGaAs激光器问世,大大提高了激光器的效率和可靠性。
随着量子阱技术的引入,引发了一系列的研究活动。
1985年,研究人员在成人毛乳头瘤病毒(vaccinia virus)免疫细胞中成功实现了由AlGaAs激光器辐射的低峰值功率红外激光的非线性过程。
1990年代,半导体激光器的发展进入了一个全新的阶段。
量子阱激光器逐渐成为主流技术,取代了传统的双异质结激光器。
具有低阈值电流和高效率的量子阱激光器被广泛用于通信系统、医疗和光存储等应用。
此外,垂直腔面发射激光器(VCSEL)也在1990年代首次实现。
2000年后,随着技术的进步和对性能需求的不断提高,半导体激光器继续发展并应用到更多领域。
高功率半导体激光器、窄线宽和波长可调的半导体激光器、单模式VCSEL和蓝绿光半导体激光器等新技术不断涌现。
半导体激光器的应用半导体激光器的应用摘要:半导体激光器因其波长的扩展、高功率激光阵列的出现以及可兼容的激光导光和激光能量参数微机控制的出现而迅速发展、半导体激光器体积小、重量轻、成本低、波长可选择,其应用范围遍及的领域越来越宽广,其的出现带来了巨大的变化,使科技更发达,人们生活更加丰富多彩,应用范围遍及医学、科技、航天交通,通信等各个领域。
自从1962 年世界上第一台半导体激光器(Diode Laser)发明问世以来[ 1] , 由于其体积小、重量轻、易于调制、效率高以及价格低廉等优点, 被认为是二十世纪人类最伟大的发明之一. 四十几年来半导体激光器逐步应用在激光唱机、光存储器、激光打印机、条形码解读器、光纤电信以及激光光谱学中, 不断扩大应用范围, 进入了一些其它类型激光器难以进入的新的应用领域.半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是由GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器半导体激光器的原理半导体的能带结构。
半导体激光行业报告激光技术作为一种高精度、高效率的光学技术,在各个领域都有着广泛的应用。
而半导体激光作为激光技术中的重要一环,其在通信、医疗、工业制造等领域都有着重要的地位。
本报告将对半导体激光行业的发展现状、市场规模、技术趋势等进行深入分析,以期为相关行业的发展提供参考。
一、半导体激光行业概况。
半导体激光是利用半导体材料发射激光的一种激光器件。
相比于其他类型的激光器件,半导体激光器件具有体积小、功耗低、寿命长等优势,因此在通信、医疗、工业制造等领域有着广泛的应用。
随着科技的不断进步,半导体激光技术也在不断发展,其在各个领域的应用也在不断扩大。
二、半导体激光行业发展现状。
1. 通信领域。
随着5G技术的不断普及,对于高速、高精度的光通信需求也在不断增加。
半导体激光器件作为光通信中的重要组成部分,其在光纤通信、光纤传感等方面有着重要的应用。
目前,全球各大通信设备厂商都在加大对半导体激光器件的研发投入,以满足日益增长的通信需求。
2. 医疗领域。
在医疗领域,半导体激光器件被广泛应用于医疗诊断、激光治疗等方面。
例如,激光手术、激光治疗等技术都需要半导体激光器件的支持。
随着人们对医疗技术的不断追求,对于半导体激光器件的需求也在逐渐增加。
3. 工业制造领域。
在工业制造领域,半导体激光器件被广泛应用于激光切割、激光焊接、激光打标等方面。
随着工业自动化程度的不断提高,对于高效、高精度的激光器件需求也在不断增加。
因此,半导体激光器件在工业制造领域有着广阔的市场前景。
三、半导体激光行业市场规模。
目前,全球半导体激光器件市场规模不断扩大。
根据市场研究机构的数据显示,2019年全球半导体激光器件市场规模达到了数百亿美元,预计未来几年还将保持较快的增长速度。
其中,通信、医疗、工业制造等领域对于半导体激光器件的需求将会持续增加,为行业的发展提供了良好的市场环境。
四、半导体激光技术趋势。
1. 高功率、高效率。
随着科技的不断进步,对于半导体激光器件的功率、效率要求也在不断提高。
半导体历史状况及应用论文半导体历史状况及应用论文半导体是一类能够在一定条件下既能导电又能绝缘的材料。
半导体技术的发展对现代电子技术、通信技术、信息技术等领域产生了深远的影响。
下面将从半导体的历史状况和应用两个方面展开,进行论述。
一、半导体历史状况半导体的历史可以追溯到19世纪末。
1883年,美国科学家霍尔斯特(Holst)通过对铜砷矿石的研究,首次发现了半导体的性质。
1897年,赖特(Wright)发现了由硒制成的曲面薄膜能够产生电流。
但是,当时对半导体的潜在应用并没有太多认识。
20世纪初,德国科学家恩斯特·约瑟夫·罗素(Ruska)发明了电子显微镜,使得人们可以直接观察到物质的微观结构。
这对于半导体研究起到了重要的推动作用。
此后,人们对半导体材料性质的研究取得了突破性进展。
20世纪50年代,半导体材料的研究进入了一个新的阶段。
德国物理学家布朗(Georg von Bogdanovich Brown)首次提出“掺杂”这个概念,通过在半导体材料中引入杂质元素,改变了材料的导电性质。
这一发现使半导体材料的应用领域得到了极大的拓展。
1951年,美国贝尔实验室的三位科学家肖克利(William Shockley)、巴丁(John Bardeen)和布瑞顿(Walter H. Brattain)合作发明了第一台晶体管,这一发明被认为是半导体技术的重要里程碑。
晶体管的发明使得电子技术进入了一个新时代,开启了半导体技术的广泛应用。
二、半导体应用半导体技术的应用广泛涉及到电子技术、通信技术、信息技术等多个领域。
1. 电子技术领域:半导体是电子器件的重要组成部分。
从最早的晶体管到如今的集成电路,半导体技术在电子技术领域得到了广泛应用。
半导体材料的导电性能可以通过不同掺杂方式进行调控,从而实现不同类型的电子器件。
2. 通信技术领域:半导体技术在通信领域的应用主要体现在光通信领域。
光通信是一种通过光信号进行数据传输的技术,而半导体激光器就是其中的关键设备。
广西师范学院2017年本科毕业论文论文题目中国半导体激光器的发展历程毕业生:吴伊琴指导老师:王*学科专业:物理学(师范)摘要“激光器”其实就是能够产生激光的装置。
作为20世纪以来,目前在人类科技进步史上与原子能,计算机,半导体并驾齐驱的重大发明,激光的许多特性对于社会进步有着巨大的影响。
而半导体激光器是激光器重要的一个分支,也是如今生产量最大,运用最广的激光器。
本文是整理记录中国半导体激光器的发展历程的一篇论文,文中涉及到以下几个方面:一.半导体激光器的基本原理。
本文先对激光,激光器,半导体激光器这三个概念进行了逐步简单的讲解,使读者对于激光,激光器,半导体激光有一个大概的了解,也为下面能更好的了解半导体激光器的发展历程做一个小铺垫。
二.中国半导体激光器从开始到现代的一个发展历程。
该部分分别记录了中国第一台半导体激光器大概的研制进展;文革期间半导体激光器的研究进展;1978年——2010年期间中国半导体研究所取得的成就并分别对着三个时期的时代背景进行了介绍和分析三.影响中国半导体激光器发展的因素及现代半导体激光器的发展方向。
该部分笔者根据查阅资料以及自己的理解,阐述了自己所认为的影响半导体激光器发展的一些因素以及对半导体激光器未来的发展方向的猜测。
关键字:激光半导体激光器时代背景研究成果目录摘要 (1)目录 (2)一、前言 (3)二、半导体激光器的基本原理 (4)2.1 激光基本的原理2.2 激光器2.3半导体激光器的基本原理三、中国半导体激光器的成长史。
(9)3.1 激光到半导体激光器3.2我国第一部半导体激光器的研发3.3 文革中的半导体激光器3.4 现代的半导体激光器的发展(1978—2010)四、影响因素及未来发展 (22)4.1影响中国半导体激光器的因素4.2 未来研究方向结语 (25)参考文献 (26)附录激光发展大事表 (27)中国半导体激光器发展大事表 (28)前言激光,英文名为“laser”。
光电器件基础·第三章半导体激光器§3.1 半导体激光器的基础理论§3.2 半导体激光器的分类§3.3 半导体激光器的基本结构§3.4 几种常见的半导体激光器§3.5 半导体激光器的基本特性§3.6 量子阱激光器激光是1964年钱学森首先倡议对LASER 一词的意译名。
LASER 是Light Amplification by Stimulated Emission of Radiation的首字母缩写,意思是“光的受激发射放大”。
激光器是以发射高亮度光波为特征的相干光源,是一种光频振荡器,或理解为“激光振荡器”。
1962年砷化镓同质结激光二极管实现了脉冲激射。
1963年H. Kroeme首先提出了用AlGaAs/GaAs双异质结构做成激光二极管可以使激射的阈值电流密度大大降低,从而能得到连续的激光输出的建议。
1969年,前苏联的Zh. I. Alferov与其他几位科学家几乎同时独立地得到了AlGaAs/GaAs异质结激光器的激射,开启了半导体激光器应用的新时代,H. Kroemer和Zh. I. Alferov因此获得了2000年诺贝尔物理学奖。
本章着重介绍半导体激光器的基本原理、基本结构和基本特性。
半导体激光器又称激光二极管(laser diode,LD ),是以半导体材料为工作物质的一类激光器件。
它诞生于1962年,除了具有激光器的共同特点外,还具有以下优点:(1 体积小,重量轻;(2 驱动功率和电流较低;(3 效率高,工作寿命长;(4 可直接电调制;(5 易于与各种光电子器件实现光电子集成;(6 与半导体制造技术兼容,可大批量生产。
由于这些特点,半导体激光器自问世以来得到了世界各国的广泛关注与研究,成为世界上发展最快、应用最广泛、最早走出实验室实现商用化且产值最大的一类激光器。
经过40多年的发展,半导体激光器已经从最初的低温(77K )脉冲运转发展到室温连续工作,工作波长从最开始的红外、红光扩展到蓝紫光,阈值电流由105 A/cm2量级降至102 A/cm2量级,工作电流最小到亚mA 量级,输出功率从最初的几mW 到现在的阵列器件输出功率达数kW ,结构从同质结发展到单异质结、双异质结、量子阱、量子阱阵列、分布反馈型(DFB )、分布布拉格反射型(DBR )等270多种形式,制作方法从扩散法发展到液相外延(LPE )、气相外延(VPE )、金属有机化合物淀积(MOCVD )、分子束外延(MBE )、化学束外延(CBE )等多种制备工艺。
半导体激光的应用及其未来发展趋势半导体激光是一种光电子技术,它具有热稳定性好、效率高、尺寸小、寿命长、成本低等优点,被广泛应用于通信、医疗、工业制造、军事设备、商业设备及消费电子等各个领域中。
本文将从这五个应用领域阐述半导体激光的应用及其未来发展趋势。
一、通信领域半导体激光在通信领域中被广泛应用于传输和接收数据的设备中,因为它的波长范围广、频率可调节、光谱纯净、电功率高,能够提高数据传输速度和距离,使得现代通信更加高效和可靠。
未来,半导体激光技术将朝着更高速、更高频率的方向发展,以满足数据传输方面不断增长的需求。
二、医疗领域半导体激光在医疗领域中被广泛应用于激光手术、医疗诊断等方面。
它可以用于治疗白内障、近视、青光眼等眼病,还能用于皮肤美容、皮肤病治疗等方面。
未来,半导体激光技术将更多地应用于医疗领域,如非侵入性治疗、精准医学等方面。
三、工业制造领域半导体激光在工业制造领域中主要用于金属、塑料、陶瓷等材料的制造、切割、焊接、打标、雕刻等方面。
它可以大幅提高工作效率,减少生产流程,降低生产成本,提高产品质量。
未来,半导体激光技术将更多地应用于制造自动化、智能制造等方面。
四、军事设备领域半导体激光在军事设备领域中主要用于激光雷达、光电目标检测、制导、干扰等方面。
它具有高能量密度、高光谱纯度、高频率可调节等特点,能够实现精确制导、防御和攻击,提高军事作战效率。
未来,半导体激光技术将更多地应用于军事智能化、信息化、网络化等方面。
五、商业设备及消费电子领域半导体激光在商业设备和消费电子领域中主要用于激光打印、激光扫描、激光显示等方面。
它可以提高打印、扫描、显示的清晰度和速度,提高使用体验和用户满意度。
未来,半导体激光技术将更多地应用于消费电子领域的高清晰度显示、增强现实、虚拟现实等方面。
综上所述,半导体激光在各个领域中都具有广泛的应用前景,随着技术的不断发展,它的应用范围和应用深度将不断拓展。
未来,半导体激光技术将朝着高速、高精度、小型化、智能化、网络化等方向快速发展,并将在更多的领域中发挥重要的作用。
半导体激光器发展现状
半导体激光器是一种利用半导体材料构成的PN结发挥光电效
应从而达到激发激光的一种器件。
它具有体积小、功耗低、寿命长等优点,被广泛应用于通信、医疗、激光打印等领域。
近年来,半导体激光器在发展方面取得了重要进展。
首先,半导体激光器的功率密度不断提高,特别是在通信领域,激光器的功率要求越来越高。
通过改进材料的生长工艺和改善器件的结构设计,半导体激光器的功率密度得到了显著提升。
其次,半导体激光器的波长范围不断拓宽。
传统的半导体激光器主要在近红外波段工作,而随着新材料的应用和新工艺的发展,激光器的工作波长已经扩展到了近紫外和中红外区域。
这使得半导体激光器在更广泛的领域有了应用前景,比如气体传感、光谱分析等。
另外,半导体激光器的调制速度也有了显著提高。
高速调制是实现高速光通信的关键技术之一,而半导体激光器的调制速度限制了光通信的传输速率。
近年来,通过优化器件结构和改进调制电路,半导体激光器的调制速度已经突破了100 Gbit/s,
进一步提升了光通信的传输能力。
此外,半导体激光器的制备工艺也在不断改进。
传统的半导体激光器采用的是平面结构,但这种结构存在着量子效率低、发射热量多等问题。
近年来,研究人员在器件结构上进行了创新,如引入腔内量子阱和垂直腔面发射结构等,提升了半导体激光器的性能。
综上所述,半导体激光器在功率密度、工作波长、调制速度和制备工艺等方面都取得了重要进展。
随着技术的不断发展,相信半导体激光器将在更多领域得到广泛应用。
半导体激光器的发展及在光纤通信中的应用半导体激光器是一种使用半导体材料作为激光产生介质的激光器。
随着科技的不断发展,半导体激光器在各个领域得到了广泛应用,尤其在光纤通信中具有重要作用。
本文将从半导体激光器的发展历程和其在光纤通信中的应用两个方面进行论述。
首先,我们来看半导体激光器的发展历程。
半导体激光器最早是在1962年由美国贝尔实验室的电子学家罗伯特·诺尔表示的。
他利用PN结构的半导体晶体制作出了最早的半导体激光器,此后半导体激光器的研究逐渐成熟。
1970年代,G·奈普舍等人发明了自发辐射增益(MQW)结构,进一步提高了半导体激光器的效率。
1980年代初,人们通过引入量子阱结构,使半导体激光器的发射波长范围得到了拓宽。
1994年,研究者成功实现了垂直腔表面发射激光器(VCSEL),该激光器具有小尺寸、低功耗、易集成等优点,成为半导体激光器研究的重要方向。
其次,半导体激光器在光纤通信领域中有着广泛的应用。
在光纤通信中,半导体激光器主要用于光源和放大器。
作为光源,半导体激光器能够产生高功率、窄谱宽、稳定的激光信号,能够满足光纤通信系统对光源的要求。
除了常用的连续激光器外,脉冲激光器也逐渐得到应用。
脉冲激光器能够产生高峰值功率和短脉冲宽度的激光,用于高速光纤通信系统中的光时钟信号生成和数据调制。
再者,半导体激光器在光纤通信中还广泛应用于放大器。
光纤放大器利用半导体激光器作为光源,将入射的光信号进行放大,提高光纤通信系统的传输距离和传输容量。
其中,掺铒光纤放大器和掺铒光纤激光器以及掺镱光纤激光器是典型的半导体激光器应用于光纤通信放大器的例子。
综上所述,半导体激光器在光纤通信领域中发挥着重要的作用。
随着其发展不断进步,半导体激光器在功率、波长范围、脉冲性能以及功率放大器等方面的性能都得到了极大的提升。
相信在未来的光纤通信中,半导体激光器将继续发挥着重要的作用,推动光纤通信技术的不断进步。
广西师范学院2017年本科毕业论文论文题目半导体激光器的发展历程毕业生:吴伊琴指导老师:王*学科专业:物理学(师范)目录摘要 (1)前言 (3)一.理论基础及同质结半导体激光器(1917-1962) (5)1.1激光理念及激光技术的面世 (5)1.2早期半导体激光器理念提出与探索(1953-1962) (7)二.异质结半导体激光器(1963-1977) (10)2.1 单异质(SH)激光器 (10)2.2 双异质(DH)激光器 (11)三.半导体激光器实用领域的探索(1980-2005) (14)3.1 光纤通信与半导体激光器的相辅相成 (15)3.2 量子阱能带工程技术的引入 (18)4.1半导体激光器应用的多样化 (21)4.2 半导体激光器的未来发展 (23)结语 (25)参考文献 (26)摘要双异质半导体激光器,量子阱技术,应变量子阱激光器,DFB激光器,面发射激光器,大功率激光器等等突破性研究成果的面世,使得半导体激光器已经占据了激光领域市场的大壁江山,以及成为了军事,医疗,材料加工,印刷业,光通信等等领域不可或缺的存在。
本文梳理了1917年—2008年半导体激光器的发展历程,文中包括了半导体激光器大多研究成果,按照时间线对其进行整理。
总的说来,半导体激光器的发展历程可以分为4个阶段第一.理论准备及起步阶段(1917-1962)。
1962年同质结半导体激光器研制成功。
尽管同质结半导体激光器没有实用价值,但是它面世是半导体激光器发展历程中重要的标志,其基本理论是后来半导体激光器前进的基础。
第二.大发展期(1962--1979) 长寿命,长波长双异质半导体激光器的面世使得半导体激光器能够满足光纤通信的需求。
1978-1979年,国际上关于通过改进器件结构提高器件稳定性,降低损耗的研究成果非常多。
由于对AlGaAs—GaAs 激光器特性的不断进步的追求,使得这个时期出现了许多新的制造工艺,新的结构理念,为之后发展长波长半导体激光器留下了充足的技术支持。
半导体激光器的发展及应用半导体激光器是一种能够产生高强度、高聚束、单色性良好的激光光束的器件。
它由半导体材料制成,具有体积小、功耗低、寿命长等优点,因此被广泛应用于光通信、医疗器械、工业加工等领域。
半导体激光器的发展经历了几个阶段。
最早的半导体激光器是由杨振宁、约翰·冯·诺依曼等科学家在1962年首次提出的。
当时,他们使用的物质是氮化镓,光谱范围在0.4微米左右。
这个发现为后来的半导体激光器的研究和应用奠定了基础。
在之后的几十年中,半导体激光器在材料、结构和性能上都取得了重大突破。
首先是材料的改进,如砷化镓、氮化镓、磷化铟等新材料的引入,使得激光器的性能得到了显著提高。
其次是结构的改进,如量子阱结构、垂直腔面发射激光器(VCSEL)等的发明和应用,进一步提高了激光器的效率和稳定性。
此外,半导体激光器的制造工艺也不断进步,提高了器件的可重复性和批量生产能力。
随着技术的进步,半导体激光器的应用范围也越来越广泛。
首先是在光通信领域的应用。
半导体激光器可以通过光纤传输信号,与其他光通信器件配合使用,实现高速、大容量的信息传输。
它广泛应用于局域网(LAN)、广域网(WAN)、数据中心和无线通信等领域,推动了信息技术的发展。
其次是在医疗器械领域的应用。
半导体激光器可以通过腔外反射镜和光传导纤维传输激光光束,用于医疗诊断、治疗和手术等方面。
它可以用于眼科手术、皮肤美容、癌症治疗等,具有无损伤、无痛苦、快速复原等优点。
此外,半导体激光器还广泛应用于工业加工和科学研究中。
在工业加工方面,它可以用于切割、焊接、打标等工艺,提高生产效率和产品质量。
在科学研究方面,半导体激光器可以用于光谱分析、激光打印、生物分子测量等实验,为科学家们提供了重要工具。
总之,半导体激光器的发展经历了多个阶段,从最初的探索到现在的成熟应用,取得了巨大的进步。
它在光通信、医疗器械、工业加工和科学研究等领域发挥着重要作用,推动了相关行业的发展。
半导体激光器的历史状况及应用摘要在近几十年来,半导体激光技术得到了十分迅速的发展,在现实生活中的很多领域都有十分广泛的应用,而且在未来的生活中也会扮演着重要的角色。
本文主要介绍了半导体激光器的历史现状及现实生活中的应用,以此来说明半导体激光器的重要性。
关键词半导体激光器;历史状况;运用0 引言激光器的结构从同质结发展成单异质结、双异质结、量子阱(单、多量子阱) 等多种形式,制作方法从扩散法发展到液相外延(LPE)、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE)以及它们的各种结合型等多种工艺[5]。
半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点,使它已经成为当今光电子科学的核心技术,受到了世界各国的高度重视。
1 半导体激光器的历史半导体激光器又称激光二极管(LD)。
随着半导体物理的发展,人们早在20世纪50年代就设想发明半导体激光器。
20世纪60年代初期的半导体激光器是同质结型激光器,是一种只能以脉冲形式工作的半导体激光器。
在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象。
半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAlAs所组成的激光器。
单异质结注人型激光器(SHLD),它是利用异质结提供的势垒把注入电子限制在GaAsP一N结的P区之内,以此来降低阀值电流密度的激光器。
1970年,人们又发明了激光波长为9 000Å在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器.在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs二极管激光器.从20世纪70年代末开始,半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。
激光技术的发展史和应用前景激光技术是一种应用广泛的高科技技术,它采用能量高、波长短、光束单色性好的激光器作为光源,利用一系列先进的技术和设备进行调制和控制,实现对光束的加工、控制与运用。
自20世纪60年代普及以来,激光技术在医疗、通讯、测量等领域得到了广泛的应用,并且随着技术的不断创新和发展,激光技术的应用前景越来越广阔。
一、激光技术的发展史1960年,美国贝尔实验室霍维茨(T. H. Maiman)首次发明实现激光辐射的反馈放大器,开创了激光技术的先河。
此后,激光技术得到了迅速的发展。
20世纪60年代末,瓦特(G. N. Harding)研制出了首台稳定、高功率的气体激光器,开创了激光技术的大功率时代。
随着50年代长寿命的半导体材料的开发,半导体激光器也应运而生。
70年代,激光技术开始进入实际应用阶段,激光剥离外科手术器已经问世,切割、打孔、打标、焊接等工艺也逐渐成熟。
随着电子技术的飞速发展,激光技术也得到了不断的改进和发展。
今天,激光器已经广泛应用于通讯、测量、加工、医学等广泛领域。
激光脱发技术、激光治疗技术、激光治疗青春痘技术等光学应用广泛,许多光学材料的应用,如金属玻璃、非晶态材料、光纤等也在发展中。
二、激光技术的应用前景1. 医学领域激光技术在医学领域的应用主要涉及到光谱学、照射、成像等技术。
近年来,激光手术设备的技术水平已经非常高,可以实现对癌细胞、良性瘤、血管疾病等的高精度治疗。
此外,激光脱发技术、激光治疗技术、激光治疗青春痘技术等也在日常生活中得到了广泛的应用,因此这一领域的研究前景十分广阔。
2. 通讯领域激光通讯技术是一种利用激光在空气中传播的通讯方式,它具有传输范围广、传输距离远、传输容量大等优点。
随着无线技术的不断发展,激光通讯技术也成为了一种重要的通讯方式。
据统计,激光通讯已经开始进入实用化应用阶段,在国防、商业、科学研究等领域都得到了广泛应用。
3. 加工领域激光加工是一种利用激光切割、打孔、打标和焊接等工艺加工材料的一种方法。
半导体激光器件的发展历程与应用前景激光技术是一种特殊的光学技术,它具有高度的单色性、方向性和相干性。
半导体激光器件是激光技术的关键组成部分,起到了重要的作用。
本文将回顾半导体激光器件的发展历程,并探讨其在各个领域的应用前景。
半导体激光器件的发展历程主要分为三个阶段:早期发展阶段、技术突破阶段和应用拓展阶段。
半导体激光器件的早期发展可追溯到20世纪60年代末和70年代初。
在这个时期,人们首次制造了获得连续波输出的激光二极管。
这种激光器件采用半导体材料作为工作物质,通过注入电流激发发光效应,实现光的放大和放射。
虽然这种激光的功率较低,但是它的小尺寸、低成本和高效率等特点使其成为工业和军事应用领域的重要选择。
随着技术的不断进步,半导体激光器件的发展进入了技术突破阶段。
在20世纪70年代末和80年代初,人们发展出了另一种类型的半导体激光器件——半导体激光二极管阵列。
这种器件可以实现多个激光波长的输出,拥有更广泛的应用领域。
此外,短波长激光器件的开发也取得了重大突破,例如。
对于高性能激光器件的研究和制造方面,也取得了重要进展,极大地推动了半导体激光器件的发展。
半导体激光器件的应用前景广泛而深远。
首先,医疗领域是半导体激光器件的重要应用领域之一。
激光手术已逐渐取代了传统刀具手术,成为一种微创治疗方式。
通过半导体激光器件,医生可以实现精准的激光切割、焊接和消融,减少手术创伤和术后疼痛,提高手术成功率。
此外,激光在皮肤美容、眼科手术和牙科治疗等方面也有广泛应用。
其次,半导体激光器件在通信领域有着巨大的应用潜力。
随着信息技术的快速发展,人们对于高速、高带宽的信息传输需求不断增加。
光通信作为一项重要技术,半导体激光器件在其中起到了关键的作用。
通过激光二极管阵列和其他光学器件的结合,人们可以实现高速光纤通信,提供更快、更稳定的通信服务。
此外,半导体激光器件在材料加工、激光雷达和光学测量等领域也有广泛应用。
在材料加工中,激光切割、焊接和打孔等操作可以实现更高的精度和效率。
半导体激光器发展历程半导体激光器(Semiconductor Laser)是指以半导体材料做为活性介质的激光器。
在过去的几十年中,半导体激光器已经经历了许多重要的技术突破和发展,成为现代科学技术和工业生产中不可替代的重要组成部分。
20世纪60年代初,由于量子阱的发展,半导体激光器的理论基础得以建立。
1962年,美国的理查德·斯普雷尔发明了第一台半导体激光器,使用的是锗半导体材料。
此后,人们开始研究使用其他材料制造的半导体激光器。
到了20世纪70年代,半导体激光器取得了重大的突破。
1970年,日本的三菱电机公司研制出了第一台使用化合物半导体材料的半导体激光器。
1977年,霍尔田・赛尔特斯发明并实现了量子阱激光器,该技术进一步提高了半导体激光器的性能。
20世纪80年代,半导体激光器进一步得到了发展和应用。
1981年,日本的日立公司实现了在室温下工作的金属有机化合物半导体激光器。
这一突破为半导体激光器的商业化应用打下了基础。
此后,半导体激光器在光通信、激光打印、激光制造等领域的应用逐渐扩大。
到了21世纪,半导体激光器的发展进入了新的阶段。
随着半导体技术的不断进步,半导体激光器的效率和功率不断提高。
2006年,美国的托马斯·厄尔发明了多谐振腔激光器技术,将半导体激光器的输出功率提高到了几千瓦级别。
这一技术的出现,使得半导体激光器在激光制造领域得到了广泛的应用,例如激光焊接、激光切割等。
与此同时,半导体激光器还在生物医学、光通信等领域得到了广泛应用。
在生物医学中,半导体激光器被用于光学成像、激光治疗等。
在光通信中,半导体激光器被用于激光器发射端和接收端,实现光纤通信的高速传输。
总之,半导体激光器的发展历程是一部科技进步的记录。
从最初的实验室研究到商业化应用,半导体激光器在科技和工业生产中发挥了巨大的作用。
未来,随着技术的进步,半导体激光器的性能将不断提高,应用领域也将进一步扩大,为人类社会的发展做出更大的贡献。
放大器论文半导体激光器论文
半导体激光器的历史状况及应用
摘要在近几十年来,半导体激光技术得到了十分迅速的发展,在现实生活中的很多领域都有十分广泛的应用,而且在未来的生活中也会扮演着重要的角色。
本文主要介绍了半导体激光器的历史现状及现实生活中的应用,以此来说明半导体激光器的重要性。
关键词半导体激光器;历史状况;运用
0 引言
激光器的结构从同质结发展成单异质结、双异质结、量子阱(单、多量子阱) 等多种形式,制作方法从扩散法发展到液相外延(LPE)、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE)以及它们的各种结合型等多种工艺[5]。
半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点,使它已经成为当今光电子科学的
核心技术,受到了世界各国的高度重视。
1 半导体激光器的历史
半导体激光器又称激光二极管(LD)。
随着半导体物理的发展,人们早在20世纪50年代就设想发明半导体激光器。
20世纪60年代初期的半导体激光器是同质结型激光器,是一种只能以脉冲形式工作的半导体激光器。
在1962年7月召开的固体器
件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象。
半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAlAs所组成的激光器。
单异质结注人型激光器(SHLD),它是利用异质结提供的势垒把注入电子限制在GaAsP一N结的P区之内,以此来降低阀值电流密度的激光器。
1970年,人们又发明了激光波长为9 000Å在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器.在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs二极管激光器.
从20世纪70年代末开始,半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。
在泵浦固体激光器等应用的推动下,高功率半导体激光器(连续输出功率在100W以上,脉冲输出功率在5W以上,均可称之谓高功率半导体激光器)在20世纪90年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出已达到600W。
另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。
其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出光束进行调制。
20世纪90年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。
目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD、大功率LD,短波长LD,盆子线和量子点激光器、中红外LD等方面发展。
2 半导体激光器的应用
半导体激光器是成熟较早、进展较快的一类激光器。
目前,已经广泛应用于通讯、测距、精密仪器加工,光集成的信息存储和信息处理等。
在光纤通讯中,半导体激光器是光纤通讯系统的唯一实用化的光源,而且光纤通讯已经成为当代通讯的主流。
到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源。
在激光测距中,激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的1/5到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。
在精密仪器加工中,借助Q开关半导体激光器产生的高能量超短光脉冲,可以对集成电路进行切割、打孔等。
在光集成的信息存储应用中,人们采用短激光波长读出光盘的内容,采用蓝、绿激光来提高光盘的存储密度。
在信息处理应用中,表面发射半导体激光器二维阵列是光并行处理系统的理想光源,且用于光计算机和神经网络中。
此外,半导体激光器还运用在环境检测和医疗中。
在环境检测中,通过分析光谱来分析环境气体,从而监测大气污染、汽车尾气等。
在医疗方面,半导体激光除了用于软组织切除,组织接合,凝固和汽化等外,还用于激光动力学治疗,将与肿瘤有亲和性的光敏物质有选择地
聚集在癌组织内,通过半导体激光的照射,使癌组织坏死,而对健康组织毫无损害。
3 结论
半导体激光器的波长范围宽,制作简单、成本低、易于大量生产,并且体积小、重量轻、寿命长。
因此,品种发展快,运用十分广泛。
虽然我国半导体激光器的研制和生产技术有了一定的基础,但要与国际上迅速发展的趋势相比,我国还有一些差距,这需要我们刻苦专研,努力创新。
参考资料
[1]张兴,等.微电子学概论[M].北京:北京大学出版社, 2000,1.
[2]刘树林,张华曹,柴常春[M].北京:电子工业出版社, 2005,2.
[3]付燕军,邹文栋,肖慧荣,甘月红.半导体激光器驱动电路的光功率控制的研究[J].红外与激光工程,2005,34(5).
[4]周崇喜,刘银辉,谢伟民,杜春雷.大功率半导体激光器阵列光束光纤耦合研究[J].中国激光,2004,31(11).
[5]王德,李学千.半导体激光器的最新进展及其应用[J].光学精密工程,2001,9(3).。