940 1030 1160 1300 1440 1520 1650
980 1080 1180 1350 1450 1570 1750
-
1130 1250 1400 -
1600 1890
-
1150 -
-
-
1620 -
2600 1500 1520 1750 1780 1800 1850 1910
y (消费)
出-
表2
1000 650 700 740 800 850 880 -
每月家庭收入支出表(元)
1200 1400 1600 1800 2000 2200 2400
790 800 1020 1100 1200 1350 1370
840 930 1070 1150 1360 1370 1450
900 950 1100 1200 1400 1400 1550
ui N (0, 2 ) (i 1,2,..., n)
或 Yi N (1 1X i , 2 ) (i 1,2,..., n)
以上假定也称高斯假定或古典假定。
二、普通最小二乘法
在不知道总体回归直线的情况下,利用样本信 息建立的样本回归函数应尽可能接近总体回归 函数,有多种方法。
普通最小二乘法(Ordinary Least Squares) 由德国数学家高斯(C.F.Gauss)提出。
Y
e1
Yˆi ˆ1 ˆ2 Xi e3
e4
e2
X1
X2
X
X3
X4
ei Yi Yˆi
Yi (ˆ1 ˆ2 Xi )
对于给定的 Y 和 X的观测值,我们希望这 样决定SRF,使得SRF上的值尽可能接近 实际的 Y。
就是使得残差平方和