第二章 简单线性回归模型
- 格式:ppt
- 大小:3.82 MB
- 文档页数:105
第二章 简单线性回归第一节 概述一 两个变量之间的关系让我们在给定一个变量的条件下,研究另一个变量与给定变量的关系。
在给定变量条件下,变量Y 与给定变量X 的关系主要有两种关系:一种是变量Y 与变量X 由方程)(X f Y =所决定的确定性函数关系。
对于变量X 的定义域中的任一给定值,在变量Y 的值域中都有一个唯一确定的值与给定值相对应。
这种关系是我们在数学中早已研究过的函数关系,而且我们在宏观经济学和微观经济学中的研究的变量之间的关系在形式上往往以函数关系的形式出现。
另一种关系是在变量X 的值给定的条件下,变量Y 的值并不是完全确定的,而是以某个值为中心的一个完整的概率分布,而这个中心与给定变量X 的关系则是完全确定的。
我们称这种关系为随机性关系。
显然,这两种关系是全然不同的。
为了明确这两种关系的区别我们通过一个假想的例子来说明。
假设我们在课堂上进行一系列实验以决定某种玩具在不同价格的需求量。
用t p 表示该种玩具在时刻t 的价格,t q 表示该种玩具在时刻t 的需求量.首先,我们假设经过实验得到如下结果。
上述结果表示在价格为25的任何时刻,需求量都为1,在价格为20的任何时刻,需求量都为3,在价格为15的任何时刻,需求量都为5,等等。
这些结果所表明的需求量与价格之间的关系就是确定性关系。
这种关系可用下列线性方程表示:t t p q 4.011-= (2.1)其次,我们假设经过实验得到下列结果。
表2.1t p t q25 ⎪⎩⎪⎨⎧的时刻实验中有的时刻实验中有的时刻实验中有25% 2%05 125% 020 ⎪⎩⎪⎨⎧的时刻实验中有的时刻实验中有的时刻实验中有25% 4%05 325% 25 ⎪⎩⎪⎨⎧的时刻实验中有的时刻实验中有的时刻实验中有25% 10%05 925% 8上述结果表示在价格为25的时刻中,有25%的需求量为0,50%的需求量为1,25%的需求量为2;在价格为20的时刻中,有25%的需求量为2,50%的需求量为3,25%的需求量为4;……;在价格为5的时刻中,有25%的需求量为8,50%的需求量为9,25%的需求量为10。