数学建模优秀讲座之支持向量机
- 格式:ppt
- 大小:237.50 KB
- 文档页数:25
支持向量机(SVM )最优分类面SVM 是从线性可分情况下的最优分类面发展而来的, 基本思想可用图中的 两维情况说明.所谓最优分类线就是要求分类线不但能将两类正确分开(训练错误率为0),而且使分类间隔最大,推广到高维空间,最优分类线就变为最优分类面。
设线性可分的样本集(),,1,,,i i x y i n ={},1,1d x R y ∈∈+-,d 维空间中的线性判别函数:()g x wx b =+,分类面方程为0wx b +=我们可以对它进行归一化,使得所有样本都满足()1g x ≥,即使离分类面最近的样本满足()1g x =,这样分类间隔就等于2w 。
因此要求分类间隔最大,就是要求w (或2w )最小。
要求分类线对所有样本正确分类时,对于任意学习样本()n n y X ,其分布必然在直线1H 之上或直线2H 之下。
即有()()121;1, 1;1, n n n n n n n n g b y C g b y C ⎧=⋅+≥=∈⎨=⋅+≤-=-∈⎩X W X X X W X X 将以上两式合并,有1n n y b ⋅⎡⋅+⎤≥⎣⎦W X就是要求满足[]10n n y wx b +-≥,1,,,i n =图中, 方形点和圆形点代表两类样本, H 为分类线,H1, H2分别为过各类中离分类线最近的样本且平行于分类线的直线, 它们之间的距离叫做分类间隔(margin)。
所谓最优分类线就是要求分类线不但因此,满足上述公式且使2w 最小的分类面就是最优分类面。
过两类样本中离分类面最近的点且平行于最优分类面的超平面1H ,2H 上的训练样本,就是使上式等号成立的那些样本,它们叫做支持向量。
因为它们支撑了最优分类面。
下面看如何求解最优分类面,由上面的讨论,最优分类面问题可以表示成如下的约束问题,即在条件(1)的约束下,求函数:21()2w w φ= (2) 的最小值,这里目标函数中的21没有其他意义,只是为了下一步导出求解方法时方便。