(完整版)实验傅立叶变换光谱实验
- 格式:doc
- 大小:399.01 KB
- 文档页数:7
实验3-3 傅立叶变换光谱实验实验简介:利用光的干涉现象,得到干涉图,经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称为傅立叶变换光谱,所用的仪器称为傅立叶光谱仪。
它的优点是:1. 它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从较大的立体角接受光源辐射。
2. 在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内,同时记录所有待测光谱元,这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。
所以,它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。
实验目的:利用傅立叶变换光谱仪,测量常用光源的光谱分布。
实验原理傅立叶光谱方法利用干涉图和光谱图之间的对应关系。
通过测量干涉图和对干涉图进行傅立叶积分变换的方法来测定和研究光谱图。
和传统的色散性光谱仪相比较,傅立叶光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的信噪比和分辨率;同时它的数字化的光谱数据,也便于计算机处理和演绎。
正是这些基本优点,使得傅立叶光谱方法发展为目前红外和远红外波段中最有力的光谱工具。
它的研究、开发和应用已经形成了光谱学的一个独立分支——傅立叶光谱学,或称干涉光谱学。
傅立叶的变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。
然后将接收器接收到的信号送到调制器中进行分解,得出待测光中的频率成分及各频率对应的强度值。
这样我们就得到了待测光的光谱图。
调制和解调方程:调制方程:I( ) B( )cos(2 )d解调方程:B( ) I( )cos(2 )d1( 5 )――随光程变化的干涉图v ——表示最小波数B(v) ――复原光谱图强度分布实验内容1.利用激光调整迈克尔逊干涉仪,调出光的干涉条纹2.利用钨丝灯调出白光的干涉条纹,目的是找出光程差为零的位置3.去掉白光灯,放入被测光源,调整干涉条纹的方向和宽度4.调整参考激光光路,尽量减少两光路之间的相互影响5.调整电机转速,连接计算机,开始采集数据6.进行数据处理和傅里叶变换,输出光谱附录一:仪器原理基本结构目前大多数国内外的傅立叶光谱仪采用迈克尔逊干涉仪作为干涉装置, 立叶变换的核心部件。
傅里叶红外光谱仪(FTIR)(仅供参考)一.实验目的:1.了解FTIR的工作原理以及仪器的操作。
2.通过对多孔硅的测试,初步学会分析方法。
二.实验原理:1.傅里叶红外光谱仪的工作原理:FTIR光谱仪由3部分组成:红外光学台(光学系统)、计算机和打印机。
而红外光学台是红外光谱仪的最主要部分。
红外光学台由红外光源、光阑、干涉仪、样品室、检测器以及各种红外反射镜、氦氖激光器、控制电路和电源组成。
下图所示为红外光学台基本光路图。
傅里叶变换红外光谱是将迈克尔逊干涉仪动镜扫描时采集的数据点进行傅立叶变换得到的。
动镜在移动过程中,在一定的长度范围内,在大小有限,距离相等的位置采集数据,由这些数据点组成干涉图,然后对它进行傅立叶变换,得到一定范围内的红外光谱图。
每一个数据点由两个数组成,对应于X轴和Y轴。
对应同一个数据点,X值和Y值决定于光谱图的表示方式。
因此,在采集数据之前,需要设定光谱的横纵坐标单位。
红外光谱图的横坐标单位有两种表示法:波数和波长。
通常以波数为单位。
而对于纵坐标,对于采用透射法测定样品的透射光谱,光谱图的纵坐标只有两种表示方法,即透射率T 和吸光度A。
透射率T是由红外光透过样品的光强I和红外光透过背景(通常是空光路)的光强I0的比值,通常采用百分数(%)表示。
吸光度A是透射率T倒数的对数。
透射率光谱图虽然能直观地看出样品对红外光的吸收情况,但是透射率光谱的透射率与样品的质量不成正比关系,即透射率光谱不能用于红外光谱的定量分析。
而吸光度光谱的吸光度值A在一定范围内与样品的厚度和样品的浓度成正比关系,所以大都以吸光度表示红外光谱图。
本实验运用的仪器是Nicolet 380 智能傅立叶红外光谱仪。
2.傅里叶红外光谱仪的主要特点:⑴具有很高的分辨能力,在整个光谱范围内分辨能力达到0.1cm-1。
⑵具有极高的波数准确度,波数准确度可以达到0.01cm-1。
⑶杂散光的影响度低,通常在全光谱范围杂散光影响低于0.3%。
傅立叶变换红外光谱仪样品测试实验1、实验类型:验证性实验2、实验目的和意义红外及拉曼光谱都是分子振动光谱。
通过谱图解析可以获取分子结构的信息。
任何气态、液态、固态样品均可进行红外光谱测定,这是其它仪器分析方法难以做到的。
由于每种化合物均有红外吸收,尤其是有机化合物的红外光谱能提供丰富的结构信息,因此红外光谱法是有机化合物结构解析的重要手段之一。
傅立叶变换红外光谱仪是20世纪70年代发展起来的新一代红外光谱仪,它具有以下特点:一是扫描速度快,可以在1s内测得多张红外谱图;二是光通量大,可以检测透射较低的样品,可以检测气体、固体、液体、薄膜和金属镀层等不样品;三是分辨率高,便于观察气态分子的精细结构;四是测定光谱范围宽,只要改变光源、分束器和检测器的配置,就可以得到整个红外区的光谱。
广泛应用于有机化学、高分子化学、无机化学、化工、催化、石油、材料、生物、医药、环境等领域。
通过学习红外光谱仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。
培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。
3、实验原理红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。
(1)双原子分子的红外吸收频率分子振动可以近似地看作是分子中原子心平衡点为中心,以很小的振幅做周期性的振动。
这种振动的模型可以用经典的方法来模拟。
如图1所示,m1和m2分别代表两个小球的质量,即两个原子的质量,弹簧的长度就是化学键的长度。
这个体系的振动频率取决于弹簧的强度,即化学键的强度和小球的质量。
其振动是在连接两个小球的键轴方向发生的。
图1 双原子分子的振动模型用经典力学的方法可以得到如下的计算公式:μπνk 21=或 μπνk c 21= 可简化为: μνk 1304≈ 式中,ν是频率,Hz ;ν是波数,cm -1;k 是化学键的力常数,g/s 2;c 是光速(3×1010cm/s);μ是原子的折合质量(μ=m1m2/(m1+m2)。
第1篇一、实验目的1. 深入理解傅里叶变换的基本原理及其在信号处理中的应用。
2. 掌握使用傅里叶变换分析信号的方法,包括连续时间信号和离散时间信号。
3. 通过实验验证傅里叶变换的性质,如线性、时移、频移、频谱分析等。
4. 了解傅里叶变换在光学、通信等领域的应用。
二、实验原理傅里叶变换是将一个信号分解为不同频率成分的过程。
根据信号是连续的还是离散的,傅里叶变换分为连续时间傅里叶变换(CTFT)和离散时间傅里叶变换(DTFT)。
本实验主要涉及CTFT和DTFT。
1. 连续时间傅里叶变换(CTFT):将连续时间信号f(t)分解为无限多个正弦和余弦波的和,其数学表达式为:F(ω) = ∫ f(t) e^(-jωt) dt其中,ω为角频率,F(ω)为信号的频谱。
2. 离散时间傅里叶变换(DTFT):将离散时间信号f(n)分解为有限多个正弦和余弦波的和,其数学表达式为:X(k) = Σ f(n) e^(-j2πkn/N)其中,N为离散时间信号长度,X(k)为信号的频谱。
三、实验仪器与设备1. 实验台:信号发生器、示波器、信号分析仪、信号处理软件等。
2. 光学仪器:傅里叶变换光学系统、傅里叶变换光学元件等。
四、实验内容与步骤1. 连续时间信号傅里叶变换实验:1.1 产生一个连续时间信号,如方波信号、三角波信号等。
1.2 使用信号发生器产生该信号,并通过示波器观察信号波形。
1.3 使用信号分析仪对信号进行傅里叶变换,得到信号的频谱。
1.4 分析信号的频谱,观察不同频率成分的幅度和相位。
2. 离散时间信号傅里叶变换实验:2.1 产生一个离散时间信号,如序列信号、数字信号等。
2.2 使用信号处理软件对信号进行离散化处理,得到离散时间信号。
2.3 使用信号处理软件对离散时间信号进行傅里叶变换,得到信号的频谱。
2.4 分析信号的频谱,观察不同频率成分的幅度和相位。
3. 傅里叶变换性质实验:3.1 验证傅里叶变换的线性性质,通过叠加不同信号,观察频谱的变化。
傅里叶变换实验报告
一、首先将遥感图像从空间域转换到频率域,把RGB彩色图像转成一系列不同频率的二维正弦波傅里叶图像;
二、然后,在频率域对傅里叶图像进行滤波、掩膜等各种编辑,减少或消除部分高频成份或低频成份;
三、最后,再把频率域的傅里叶图像变换到RGB彩色空间域,得到经过处理的彩色图像,傅里叶变换主要用于消除周期性噪声。
操作步骤:
打开傅里叶变换图像——滤波——保存傅里叶处理图像——傅里叶逆变换
把输入的空间域彩色图像转换成频率域傅里叶图像
如:图一
图一
输入图像表示对1~7波段都处理
打开fourier transform edior 输入处理图像,再打开的图像中只能输入
处理一个波段
选择波段输入显示,低通滤波:ideal 80 增益1,高通:Hanning 200 增益1
傅里叶图像中有分散分布的亮点,应用圆形掩膜可以去除。
首先应用鼠标查询亮点分布坐标,然后启动圆形掩膜功能,设置相应的参数据处理。
低通滤波,去除地物噪声,斑点等,若50不适合,Edit-undo可撤销重做,直到得到合适的半径,点Eile-save as保存
条带处理后
去条带等,还可在mask――wedgemask中设置该楔形的角度及偏角,每个波段都逐一进行条带、噪音等处理后进行各波段融合
去噪之后融合结果对比。
傅里叶红外实验报告
傅里叶红外实验是一种常见的分析化学实验,它利用傅里叶变换原理,将物质的红外光谱图像转换为频率分布图像,从而得到物质的结构信息。
本次实验我们使用的是红外光谱仪,通过对样品的红外光谱进行分析,得到了样品的结构信息。
实验步骤如下:
1. 准备样品:将待测样品制成薄膜或粉末,并将其放置在红外光谱仪的样品室中。
2. 调整仪器:打开红外光谱仪,调整仪器的参数,如光源强度、光谱分辨率等,以保证实验的准确性。
3. 开始实验:启动红外光谱仪,让样品受到红外光的照射,记录下样品的红外光谱图像。
4. 分析数据:将得到的红外光谱图像进行傅里叶变换,得到频率分布图像,从中分析出样品的结构信息。
通过本次实验,我们得到了样品的红外光谱图像和频率分布图像,从中可以看出样品的结构信息。
例如,我们可以通过红外光谱图像中的吸收峰来判断样品中的化学键类型,如羰基、羟基、胺基等。
同时,我们还可以通过频率分布图像中的峰位和峰形来判断样品中的分子结构,如分子中的取代基、环状结构等。
傅里叶红外实验是一种非常重要的分析化学实验,它可以帮助我们了解样品的结构信息,从而更好地进行化学研究和应用。
傅里叶变换红外(FTIR)光谱专题实验实验一、红外吸收光谱仪的结构及基本操作(老师讲解)实验二、薄膜样品的层数定量分析二、实验准备准备好某种塑料薄膜,分别制成1、2、3、4层样品。
三、实验步骤1)开机步骤a.开启计算机b.打开仪器c.打开Perkinelmer Spectrum软件2)测定步骤a.设置合适的各参数(扫描范围在4000-400)b.背景扫描c.用强磁力样品架,依次扫描准备好的样品d.对图谱进行数据处理并保存至文件夹四、注意事项a.所制薄膜样品不可太厚或太薄。
过薄或浓度过低常使弱的甚至中等强度的吸收谱带显示不出来;如果样品过厚或过浓会使许多主要吸收谱带彼此连成一片(或峰过宽),看不出准确的波数位置和其精细结构。
b.样品中不应有游离水c.样品表面反射回引起能量损失,造成普带变形。
并产生干涉条纹,可使样品表面粗糙些来消除。
d.样品扫描过程中禁止打开样品舱盖五、数据处理图11、对图谱进行基线校正,并标出个谱峰的位置对照红外波谱数据解析,了解所标普带表示的化学键2、分析所实验样品得结果并与标准样品对照,考察其匹配程度。
分析:由上图1红外光谱对照红外数据推知约3600处的吸收为自由,峰尖很大可能是材料表面有水分所导致。
重点是该材料在400~4000的特征吸收主要有3组,分别为峰为2912(与2849是一组)、1466和722四处峰,其中2912对应于反对称伸缩振动,2849对称伸缩振动(并由图可知材料中基团浓度较高,该组振动强度很大);1466对应弯曲振动;722处的峰是()亚甲基平面摇摆振动。
据此可初步判断该材料为聚乙烯。
3、薄膜层数计算由origin软件经积分处理得到薄膜层数与特征吸收峰高度和薄膜层数与特征吸收面积数据表(未转换成吸收光谱):层数特征吸收峰高特征吸收峰面积1 89.85 283072.2852 80.64 238567.813 73.26 200488.654 66.55 168540.35x 55.24 127166.7薄膜层数与特征吸收峰高度和薄膜层数与特征吸收面积标准工作曲线如下图2:图2Lambert-beer定律式中::光度;:透射率;b:厚度;c:表示浓度;:摩尔吸光系数,单位;据此建立吸光度-厚度d的标准工作曲线,得到未知薄膜的厚度.不同层数塑料薄膜在722处特征峰的吸光度值如下表:1 0.483462 0.957033 1.360514 1.68825用Origin软件处理得到塑料薄膜层数与特征峰吸光度的标准工作曲线如图3图3用Origin拟合得n-A线性关系为:n=-0.27505+2.47261A.相关度R=0.99672,显著性概率P=0.00328.由此可见该拟合结果的线性相关性很强,相关度为99.672%。
使用傅里叶变换红外光谱仪进行分析的步骤红外光谱技术是一种常用的分析方法,可用于检测和识别物质的结构和成分。
其中,傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简称FT-IR)是一种应用广泛且非常有效的仪器。
本文将介绍使用FT-IR进行分析的主要步骤。
1、样品准备在进行红外光谱分析之前,首先要准备样品。
样品可以是液体、固体或气体,根据不同的样品性质和要求选择适当的采集方法。
对于固体样品,通常使用压片技术将其制成透明的样品片。
而对于液体样品,可以将其滴于红外透明的盘片上。
在样品制备时,需要注意样品的纯度和均匀性,确保获得可靠的实验结果。
2、仪器调试在开始实验之前,需要对FT-IR进行仪器调试。
主要包括光源的选择和调节、光路系统的校准和调整、检测器的校准等。
通过仪器调试,保证仪器的精确度和灵敏度,提高分析结果的准确性。
3、样品测量样品准备和仪器调试完成后,进入样品测量阶段。
首先,将制备好的样品片或盘片放置在样品台上,并固定好,保证光路不受干扰。
接下来,通过仪器控制系统选择合适的测量模式和参数。
常见的测量模式包括吸收光谱、透射光谱等。
根据具体的需求,可以调节不同的参数,如扫描范围、扫描速度等。
4、数据采集和傅里叶变换样品测量完成后,系统会自动采集红外光谱信号。
采集的数据是一个时间域上的信号,需要通过傅里叶变换将其转换为频域上的光谱图。
傅里叶变换的过程是将时间域上的信号分解为一系列不同频率的正弦函数和余弦函数的组合。
5、谱图解析与数据处理得到频域上的光谱图后,需要对其进行解析和分析。
利用谱图上吸光度的变化情况,可以得出样品中存在的化学键、官能团、分子结构等信息。
不同的峰值位置和强度反映了样品的不同性质。
通过与已知标准样品进行比对,可以进一步确定未知物质的成分和结构。
6、结果报告在分析结束后,需要将结果进行整理并撰写实验报告。
报告应包括样品的详细信息、红外光谱图、解析结果和结论等内容。
傅里叶变换光谱实验原理中括号主题:傅里叶变换光谱实验原理傅里叶变换光谱实验是一项重要的光谱分析技术,能够将时间域中的信号转换成频域中的频谱信息,从而得到样品的光谱信息。
本文将以中括号为主题,分为以下步骤详细介绍傅里叶变换光谱实验的原理。
[步骤一:介绍傅里叶变换]傅里叶变换是一种数学方法,能够将一个函数表示成若干正弦函数和余弦函数的和。
它的原理是根据函数的周期性,通过积分运算将函数分解成多个频率的正弦和余弦函数的叠加,从而解析函数在不同频率下的振幅和相位信息。
傅里叶变换在信号处理、图像处理以及光谱分析等领域有广泛应用。
[步骤二:光谱分析的基本原理]光谱分析是通过测量目标物质在一定波长范围内的光强变化,从而获得目标物质的光谱信息。
光谱分析可以用于确定物质的组成、结构和各种化学过程的动力学等。
常见的光谱分析方法包括紫外可见吸收光谱、红外光谱、拉曼光谱、荧光光谱等。
[步骤三:傅里叶变换光谱仪的工作原理]傅里叶变换光谱仪主要由光源、样品室、光路系统、探测器和信号处理电路等组成。
其基本原理是通过光源发出连续谱或单色光,经过样品室与待测样品相互作用后,经过光路系统将光束引入探测器,再经过信号处理电路将光谱信息转换为频谱信息。
[步骤四:光纤和光栅的作用]光纤是傅里叶变换光谱仪中重要的光路系统组件之一,其作用是将样品室中接收到的光束引导到探测器进行信号测量。
光纤的选择要考虑其传输效率和波长范围等因素。
光栅是光谱仪中另一个关键的光学元件,其作用是将光束分散成不同波长的光,并将不同波长的光线按一定规律进行衍射。
光栅的特点是高色散性,能够将不同波长的光分离出来,实现波长的选择和测量。
[步骤五:信号的采集与处理]在傅里叶变换光谱实验中,探测器接收到的光信号经过放大、滤波等处理后,转换成电信号并传入信号处理电路。
信号处理电路中的放大器、低通滤波器等组件可以对信号进行进一步处理,消除噪声并增加信号的质量。
随后,经过模数转换器将信号转换为数字信号,利用计算机进行数据采集和存储。
实验10 傅里叶变换光学系统实验时间:2014年3月20日 星期四一、 实验目的1. 了解透镜对入射波前的相位调制原理。
2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。
4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、 实验原理1. 透镜的FT 性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ':(,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n ,则该点的位相延迟因子(,)t x y 为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,并引入焦距f ,有:22012111(,)()()2D x y D x y R R =-+- (3) 12111(1)()n f R R =-- (4) 220(,)exp()exp[()]2k t x y jknD j x y f=-+ (5)第一项位相因子exp()jknD仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
傅里叶变换光谱傅里叶变换光谱:利用光的干涉现象•得到干涉图.经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称为傅立叶变换光谱.所用的仪器称为傅立叶光谱仪。
它的优点是:1.它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从较大的立体角接受光源辐射。
2.在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内.同时记录所有待测光谱元.这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。
所以.它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。
实验目的:1.掌握傅里叶变换光谱的原理2.自组傅里叶变换光谱仪3.测量常用光源的光谱分布实验原理:1.傅里叶变换光谱实验的应用与特点简介傅里叶变换光谱技术是光谱学中主要的分光手段之一,具有高精度、多通道、高通量、宽光谱范围、结构紧凑等优势。
其实验结果是通过傅里叶变换从空间域变换到频率域通过数学计算的方法得到。
多数傅里叶变换光谱仪是基于迈克尔逊干涉仪结构的。
其借助于连续的移动其中的一个反射镜(动镜).干涉仪产生的两束相干光的光程差发生连续改变,干涉光强就会发生相应改变。
在改变光程差的同时,记录下光强接收器输出中的变化部分•得到干涉光强随光程差的变化曲线,即干涉图函数。
在获得干涉图后,算出干涉图的傅里叶余弦变换.即得光源的光谱分布。
2.运用傅里叶变换得到相干光束的光谱分布若有两束单色光,波数都为°,传播方向和偏振方向相同,光强均为T,两光束间光程差为两束光相互叠加产生干涉,得到的光强为在整个光谱范围内的干涉总光强为:上式右方第一项为常数项.第二项为光程差△的函数,故以I(A 表示第二项为:2cos( (2 (2A+=7toooood I d I di J J ccooA+=002cos( ((ojiooood I c d I c I JooA=A0 2cos( ((O7iood IcI由于傅里叶余弦变换可逆.故:上式需要测量的光程差范围是0到oo,但实际测量范围无法如此精确,存在较大误差。
利用傅里叶变换光谱分析的物理实验教程傅里叶变换在光谱分析中起着重要的作用。
通过傅里叶变换,我们可以将时域信号转换为频域信号,从而获得物质的光谱特征。
本教程将介绍如何利用傅里叶变换进行光谱分析的物理实验步骤。
一、实验目的本实验的目标是学习和掌握傅里叶变换在光谱分析中的应用。
具体而言,我们将通过实验探究如何通过傅里叶变换获取物质的光谱信息,了解不同频率分量对信号的影响,理解光谱分析的原理和意义。
二、实验器材和材料1. 光源:可以使用白炽灯、气体放电管等光源。
2. 光栅:具有一定刻线数的光栅,用于分散光束。
3. 准直系统:包括准直透镜、衍射光栅等。
4. 接收系统:接收器、滤光片等。
5. 数据采集设备:例如计算机、示波器等。
三、实验步骤1. 准备实验器材和材料,将光源、准直系统、接收器连接好。
2. 将光束通过准直透镜和衍射光栅进行准直和分散,使不同波长的光分别出射。
3. 调节接收系统,选择目标波长范围的光通过滤光片进入接收器。
注意调节滤光片的位置和角度,确保只有目标波长的光进入接收器。
4. 利用数据采集设备采集接收到的光信号,并记录下来。
5. 对采集到的光信号进行傅里叶变换,将时域信号转换为频域信号。
这一步可以使用计算机上的傅里叶变换软件完成。
6. 分析得到的频域信号,观察不同频率分量的幅度和相位信息。
根据频域信号的特征,可以推断出物质的光谱信息。
7. 重复上述步骤,可以采集不同波长范围的光信号,并进行光谱分析。
比较不同波长范围下的光谱特征差异。
8. 完成实验后,整理实验数据,总结并分析实验结果。
四、实验注意事项1. 在进行实验前,熟悉实验器材的操作方法和使用要求。
2. 操作时应注意光源的强度和稳定性,避免光强过大或过小导致实验结果的误差。
3. 在进行傅里叶变换时,应选择适当的参数设置,确保获得准确可靠的频域信号。
4. 针对不同的光谱分析目的,可以选择合适的滤光片和光栅,确保实验的有效性和可行性。
5. 实验数据的采集和处理过程中,应注意记录和保存数据的准确性和完整性。
(完整版)快速傅⾥叶变换实验实验七快速傅⾥叶变换实验2011010541 机14 林志杭⼀、实验⽬的1.加深对⼏个特殊概念的理解:“采样” ??“混叠”;“窗函数”(截断)??“泄漏”;“⾮整周期截取”??“栅栏” 。
2.加深理解如何才能避免“混叠” ,减少“泄漏” ,防⽌“栅栏”的⽅法和措施以及估计这些因素对频谱的影响。
3.对利⽤通⽤微型计算机及相应的FFT软件,实现频谱分析有⼀个初步的了解。
⼆、实验原理为了实现信号的数字化处理,利⽤计算机进⾏频谱分析――计算信号的频谱。
由于计算机只能进⾏有限的离散计算(即DFT),因此就要对连续的模拟信号进⾏采样和截断。
⽽这两个处理过程可能引起信号频谱的畸变,从⽽使DFT 的计算结果与信号的实际频谱有误差。
有时由于采样和截断的处理不当,使计算出来的频谱完全失真。
因此在时域处理信号时要格外⼩⼼。
时域采样频率过低,将引起频域的“混叠” 。
为了避免产⽣“混叠” ,要求时域采样时必须满⾜采样定理,即:采样频率fs必须⼤于信号中最⾼频率fc的2倍(fs> 2fc)。
因此在信号数字处理中,为避免混叠,依不同的信号选择合适的采样频率将是⼗分重要的。
频域的“泄漏” 是由时域的截断引起的。
时域的截断使频域中本来集中的能量向它的邻域扩散(如由⼀个δ(f)变成⼀个sinc(f),⽽泄漏的旁瓣将影响其它谱线的数值。
时域截断还会引起“栅栏效应” ,对周期信号⽽⾔,它是由于截断长度不等于周期信号的周期的整数倍⽽引起的。
因此避免“栅栏”效应的办法就是整周期截断。
综上所述,在信号数字化处理中应⼗分注意以下⼏点:1.为了避免“混叠” ,要求在采样时必须满⾜采样定理。
为了减少“泄漏” ,应适当增加截断长度和选择合适的窗对信号进⾏整周期截取,则能消除“栅栏数应” 。
增加截断长度,则可提⾼频率分辨率。
三、预习内容熟悉Matlab 语⾔、函数和使⽤⽅法;利⽤Matlab 所提供的FFT函数编写程序。
傅里叶变换红外光谱(FTIR)是一种常用的分析技术,它可以用于测试固化反应。
在固化反应中,化合物由于光、热或化学反应而发生交联,形成高分子聚合物。
通过FTIR测试固化反应可以帮助我们了解反应的进行情况,验证所需的化学反应是否已经完成,并确定反应产物的结构。
1. 理论基础固化反应是指通过化学或物理手段将液体或半流体的物质转变为由交联网络或大分子链组成的固态物质的过程。
在实际应用中,固化反应被广泛用于涂料、粘合剂、塑料和橡胶等材料的制备中。
傅里叶变换红外光谱是通过测量分子振动频率和吸收峰来分析样品的一种方法,因此可以用于监测固化反应中化学键的变化和生成新的功能团。
2. 实验方法在FTIR测试固化反应时,首先需要将样品制备成薄膜或涂层形式,然后放置在FTIR仪器中进行测试。
在测试过程中,通常会记录样品在一定波数范围内的吸收光谱,以了解样品中不同化学键的变化情况。
通过比对固化前后的光谱图,可以观察到吸收峰的变化,从而判断固化反应的进行程度。
3. 数据分析根据FTIR光谱图的分析,可以得出以下结论:- 固化反应前后特定峰位的变化:固化反应通常会导致一些特定的吸收峰的变化,比如羰基、羟基、双键等。
通过观察这些峰位的变化,可以判断固化反应的进行情况。
- 新的吸收峰的出现:固化反应会生成新的功能团或化学键,因此在FTIR光谱图中可能会出现新的吸收峰。
这些新峰的出现可以作为固化反应完成的证据之一。
4. 应用与意义FTIR测试固化反应在材料科学和工程领域具有重要的应用价值:- 质量控制:通过FTIR测试可以对固化反应的进行情况进行实时监测,从而及时发现并修正反应过程中可能存在的问题,提高产品的质量稳定性。
- 新材料研发:固化反应的结构和性能对新材料的研发具有重要影响,FTIR测试可以帮助科研人员了解材料在固化过程中的结构变化,为新材料的设计和优化提供依据。
5. 结语利用傅里叶变换红外光谱测试固化反应,可以为我们提供丰富的化学信息和结构变化的数据,帮助我们深入了解固化反应的进行情况和反应产物的结构。
傅里叶变换光谱实验一、实验目的1、了解傅里叶变换光谱的基本原理。
2、学会测量待测光的光谱图。
重点:傅里叶变换光谱实验装置的正确使用,实验过程中参数的选定难点:傅里叶变换光谱原理的理解二、实验原理现代光学的一个重大进展是引入“傅里叶变换”概念,由此发展成为光学领域内的一个崭新分支——傅里叶变换光学。
本实验中用到的“傅里叶变换光谱实验装置”利用了傅里叶光谱中存在的干涉图和光谱图的变换关系,仪器用途是演示通过傅里叶变换的方法测定光源的辐射光谱。
本实验仪器的意义在于进行傅里叶变换原理的演示。
本实验测量光谱范围设计在可见区(400-800nm )并且光路部分设计为开放式,以便能更深刻、直观地了解傅里叶变换光学的实现与应用。
傅里叶变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。
然后将接收到的信号送到解调器中进行分解,得出待测光中的频率成分及各频率对应的强度值。
这样我们就得到了待测光的光谱图。
下面介绍两个方程:调制方程:()()cos 2I x I xd σπσσ+∞-∞=⎰解调方程:()()cos 2I I x xdx σπσ+∞-∞=⎰调制过程:这一步由迈克耳孙干涉仪实现,设一单色光进入干涉仪后,它将被分成两束后进行干涉,干涉后的光强值为 0()c o s 2I x I x πσ=,(其中x 为光程差,它随动镜的移动而变化,σ为单色光的波数值)。
如果待测光为连续光谱,那么干涉后的光强为()()cos 2I x I xd σπσσ+∞-∞=⎰。
图1 实验装置中的迈克尔孙干涉仪解调过程:我们把从接收器上采集到的数据送入计算机中进行数据处理,这一步就是解调过程。
使用的方程就是解调方程,这个方程也是傅里叶变换光谱学中干涉图—光谱图关系的基本方程。
对于给定的波数σ,如果已知干涉图与光程差的关系式,就可以用解调方程计算的这波数处的光谱强度()I σ。
为了获得整个工作波数范围的光谱图,只需对所希望的波段内的每一个波数反复按解调方程进行傅里叶变换运算就行了。
实验3-3 傅立叶变换光谱实验
● 实验简介:
利用光的干涉现象,得到干涉图,经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称为傅立叶变换光谱,所用的仪器称为傅立叶光谱仪。
它的优点是:
1. 它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从较大的立体角接受光源辐射。
2. 在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内,同时记录所有待测光谱元,这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。
所以,它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。
● 实验目的:
利用傅立叶变换光谱仪,测量常用光源的光谱分布。
● 实验原理
傅立叶光谱方法利用干涉图和光谱图之间的对应关系。
通过测量干涉图和对干涉图进行傅立叶积分变换的方法来测定和研究光谱图。
和传统的色散性光谱仪相比较,傅立叶光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的信噪比和分辨率;同时它的数字化的光谱数据,也便于计算机处理和演绎。
正是这些基本优点,使得傅立叶光谱方法发展为目前红外和远红外波段中最有力的光谱工具。
它的研究、开发和应用已经形成了光谱学的一个独立分支——傅立叶光谱学,或称干涉光谱学。
傅立叶的变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。
然后将接收器接收到的信号送到调制器中进行分解,得出待测光中的频率成分及各频率对应的强度值。
这样我们就得到了待测光的光谱图。
调制和解调方程:
调制方程:
()()cos(2)I B d δνπνδν+∞-∞=⎰
解调方程: ()()cos(2)B I d νδπνδδ+∞-∞=⎰
I(δ)——随光程变化的干涉图
v ——表示最小波数
B(v)——复原光谱图强度分布
● 实验内容
1.利用激光调整迈克尔逊干涉仪,调出光的干涉条纹
2.利用钨丝灯调出白光的干涉条纹,目的是找出光程差为零的位置
3.去掉白光灯,放入被测光源,调整干涉条纹的方向和宽度
4.调整参考激光光路,尽量减少两光路之间的相互影响
5.调整电机转速,连接计算机,开始采集数据
6.进行数据处理和傅里叶变换,输出光谱
附录一:仪器原理
⏹基本结构
目前大多数国内外的傅立叶光谱仪采用迈克尔逊干涉仪作为干涉装置,而且干涉仪是傅立叶变换的核心部件。
◆光路部分
迈克尔逊干涉仪是比较典型的干涉仪,它虽出现在 100 多年前,但当今仍有许多应用,而且许多现代的干涉仪,其核心结构仍是迈克尔逊干涉仪。
在本傅立叶变换实验装置的设计中,光通过迈克尔逊干涉仪分成两束后产生干涉。
迈克尔逊干涉仪将光调制成干涉光,是傅立叶光谱仪中的核心光学器件。
典型的迈克尔逊光路设计,采用光的干涉原理通过傅立叶变换的数学处理来获得光谱图。
傅立叶变换法具有简单,快速等优点。
采用干涉方法的分辨率由测量时间来决定的,采集的时间越长分辨率就越高。
图表1
光谱仪的光源有单色光源和复合光源,严格意义上说单色光源也是具有极窄的谱带的。
复合光源通过迈克尔逊干涉仪时,每一种单色光都发生干涉,产生干涉光。
光源的干涉图就是由这无数个无限窄的单色干涉光组成的,也可以说干涉图是由多色干涉光组成的。
◆机械设计部分
光路采用的是迈克尔逊干涉装置,其对动镜的移动精度要求较高,要实现较高的干涉条纹精度,首先要确保动镜的移动精度及移动的直线度。
仪器原理设计如右图
1-溴钨灯2-外置光源3-光源转换镜
4-可变光阑5-平面反射镜
6-准直镜7-动镜8-干涉板9-补偿板
10-定镜11-平面反射镜
12-接收器(1)13-半透半反境14-接收
器(2)15-平面反射镜16-激光器
附录二软件的使用及仪器操作
2.1.安放仪器
先将傅立叶变换实验装置摆放到平稳的工作台上,将电源线和USB连接总线连接到仪器上。
打开仪器的电源开关,这时可以看到仪器面板上的红色电源指示灯点亮,表示仪器的电源连接正常。
仪器面板如图表23所示。
图表1
2.2.打开光源
光源的电源打开,可以看到如图表23所示红色钨灯的指示灯点亮,表示钨灯已经打开;选择合适的光阑,一般建议选择8挡位置,然后再将光源镜的旋钮旋转到钨灯位置如图表24所示。
若用其它的外接光源则将光源镜的位置旋到其它光源上,且将外接光源的入口处的端盖打开将光源引入。
图表2
注意:
打开光源后仪器要预热30分钟,使测量数据准确;外接光源测试时间>1分钟。
2.3.进入软件
以钨灯为例,将光源位置调整好后,进入软件界面如图表25所示;如果仪器的电源或者USB连接有问题就会出现如图表26所示的错误界面。
图表3
图表4
2.4.新建实验
进入软件界面点击新建实验出现如图表27新建界面,点击参数设置出现如图表28参数设置画面。
图表5
图表6
2.5.开始采集
钨灯设置时间为一分钟后点击确定,然后回到如图表27新建界面。
然后点击界面上的采集数据按钮,出现如图表29复位界面,复位完成后出现如下界面。
图表7
图表8
2.6.傅立叶变换
点击工具栏的傅立叶变换按钮,出现界面如图表31所示,根据用户的需求选择需要加载的窗体,其中包括矩形窗函数、三角窗函数、汉宁窗函数、海明窗函数、布莱克曼窗函数;并且可以根据需要更换傅立叶变换的范围。
图表9
2.7.光谱图
在傅立叶变换后出现光谱图如图表32所示。
图表10。