三角形“四心”向量形式的结论及证明(附练习答案)
- 格式:docx
- 大小:353.67 KB
- 文档页数:5
向量形式下的三角形四心相关结论
向量形式下的三角形四心相关结论三角形是几何学中的重要概念之一,其四心是指三角形内部的四个特殊点,包括重心、外心、内心和垂心。
在向量形式下,我们可以得出一些有关这四个点的重要结论。
重心是三角形内部三条中线的交点,用向量表示为G=(A+B+C)/3,其中A、B、C分别是三角形的三个顶点。
重心具有平衡的作用,对于任意一点P,PG的向量和PA、PB、PC 的向量和为零。
外心是三角形外接圆的圆心,用向量表示为O=(aA+bB+cC)/(a+b+c),其中a、b、c分别是三角形的三个边长。
外心具有唯一性,且到三角形三个顶点的距离相等。
内心是三角形内切圆的圆心,用向量表示为I=(aA+bB+cC)/(a+b+c),其中a、b、c分别是三角形的三条边的长度。
内心到三角形三个边的距离相等,且与三角形的角度有关。
垂心是三角形三条高的交点,用向量表示为H=A+B+C。
垂心到三角形三个顶点的距离相等,且与三角形的角度有关。
综上所述,向量形式下的三角形四心具有一些重要的性质。
研究这些结论不仅可以帮助我们更好地理解三角形的几何特性,还可以应用于解决一些与三角形相关的问题。
三角形四心向量结论
三角形四心向量结论:
1、三角形有四个中心:重心,质心,内心,中心。
2、重心:三角形的重心是三角形两条边的交点,即三边的重心线的交点,是三边的平分线的交点,也就是三条边的中点。
3、质心:三角形的质心是三角形的三条边的重心,也就是三边的向量矢量的重心,以及三角形的面积重心。
4、内心:内心是三角形三个内角的公共点,是三角形的垂心,也叫外心,但是它不是三角形三边的重心。
5、中心:中心是三角形三个顶点的共同中点,它在三边上,也就是三条边的向量矢量中点。
它是三边中等分线的交点,也是三角形三条边的垂心。
三角形”四心“向量形式的充要条件本定理图形酷似奔驰的车标而得名.奔驰定理在三角形四心中的具体形式:ABC 的重心⇔::1:1:1A B C S S S =⇔ABC 的内心⇔::::A B C S S S a b c =⇔ABC 的外心sin 2:sin 2:sin 2C S A B C =⇔sin ABC 的垂心⇔::tan :tan A B C S S S A =ASCS BSA.外心B.内心【答案】B【法一】由a b c S OA S OB S OC ⋅+⋅+⋅uu r uu u r uuu r 由0a OA b OB c OC ⋅+⋅+⋅= 得OA =- 根据平面向量基本定理可得b a S S -=-所以b a S b S a =,c a S cS a=,延长CO 交AB 于E ,延长BO 交AC 则||||b a S AE S BE =,又b a S b S a =,所以||||AE b BE a ==所以CE 为ACB ∠的平分线,同理可得BF 是ABC ∠的平分线,【法二】记点O 到AB 、BC 、C A 的距离分别为123h h h ,,,212OBC S a h =⋅ ,312OAC S b h =⋅ ,112OAB S c h =⋅ ,因为0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅= △△△,则233111=0222a h OAb h OBc h OC⋅⋅+⋅⋅+⋅⋅ ,即2310a h OA b h OB c h OC ⋅⋅+⋅⋅+⋅⋅= ,又因为0a OA b OB c OC ⋅+⋅+⋅=,所以123h h h ==,所以点P 是△ABC 的内心.故选:B【反思】设O 为ABC ∆所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则O 为ABC ∆的内心⇔0aOA bOB cOC ++=.利用结论可直接得到O 为ABC 的内心.例题2:已知G 是ABC ∆的重心,且满足56sin 40sin 35sin 0AGA BGB CGC ++=,求角B【详解】因为G 是ABC ∆的重心,所以0GA GB GC ++=,所以56sin :40sin :35sin 1:1:1A B C =,所以sin :sin :sin 5:7:8A B C =,由正弦定理::sin :sin :sin 5:7:8a b c A B C ==,由余弦定理,2222225871cos 22582a cb B ac +-+-===⨯⨯,因为(0,)B π∈,所以3B π=.【反思】设G 是ABC ∆的重心,直接利用奔驰定理结论O 是ABC ∆的重心⇔::1:1:1A B C S S S =⇔0OA OB OC ++=,所以在本例中,已知56sin 40sin 35sin 0AGA BGB CGC ++=可得到56sin :40sin :35sin 1:1:1A B C =,从而得到sin :sin :sin 5:7:8A B C =,再利用正弦定理,余弦定理求解.例题3:设点O 在ABC ∆内部,且5370OA OB OC ++=,则ABC ∆与AOC ∆的面积之比为.【详解】因为点O 在ABC ∆内部,满足奔驰定理0A B C S OA S OB S OC ⋅+⋅+⋅=,且5370OA OB OC ++=,所以::5:3:7A B C S S S =,从而得到::(537):35:1ABC AOC S S ∆=++=【反思】奔驰定理:设O 是ABC ∆内一点,BOC ∆,AOC ∆,AOB ∆的面积分别记作A S ,B S ,C S 则0A B C S OA S OB S OC ⋅+⋅+⋅=,对于满足条件的选择,填空题,都可以直接使用该结论.三、针对训练举一反三一、单选题1.(2022·全国·高三专题练习)平面上有ABC 及其内一点O ,构成如图所示图形,若将OAB ,OBC △,OCA 的面积分别记作c S ,a S ,b S ,则有关系式0a b c S OA S OB S OC ⋅+⋅+⋅=uu r uu u r uuu r r.因图形和奔驰车的logo 很相似,常把上述结论称为“奔驰定理”.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若满足ASCS BSA .外心B .内心【答案】B【详解】由a b c S OA S OB S OC ⋅+⋅+⋅uu r uu u r uuu r 由0a OA b OB c OC ⋅+⋅+⋅= 得OA =- 根据平面向量基本定理可得b a S S -=-所以b a S b S a =,c a S cS a=,延长CO 交AB 于E ,延长BO 交AC 则||||b a S AE S BE =,又b a S b S a =,所以||||AE b BE a ==所以CE 为ACB ∠的平分线,同理可得BF 是ABC ∠的平分线,是平面向量中一个非常优美的结论,奔驰定理A .25B .12C .16【答案】D【详解】解:O 为三角形ABC 内一点,且满足2OA + ∴233()2()()3OA OB OC OB OA OC OB OA OC OA ++=-+-+-⇒.13C A B C S S S S ==++,△ABC 内的一点,∠BAC ,∠ABC ,∠A .若230OA OB OC ++=,则:A S S B .若2OA OB == ,5π6AOB ∠=,C .若O 为△ABC 的内心,34OA OB +=设AF m =,tan A ∠又:tan BE AE EC A =∠由AB FC AC BE ⋅=⋅S 的三个内角,以下命题正确的有(A .若0OA OB OC ++=,则O 为ABC B .若230OA OB OC ++=,则::A B S S C .若5π||||2,6OA OB AOB ==∠= ,2OA B :若2,OE OB OD == 所以AOE DOE S S S == 则::1:2:3A B C S S S =,正确;C :由题设1225π6ins 2C S =⨯⨯⨯=所以0OF OE OD ++=,即O 为而16C EOF S S =,则6EOF S = ,故所以1391244ABC S =++= ,错误;D :由BOC BAC π∠+∠=,则OB 同理,||||cos OB OA OB OA BOA ⋅=∠A .O 为ABC 的外心B .BOC ∠C .::cos :cos :cos OA OB OC A B C = D .:A S S 【答案】BCD【详解】依题意,()OA OB OB OC OB OA OC ⋅=⋅⇔⋅-= 同理OA ⊥CB ,OC ⊥AB ,则O 为ABC 的垂心,A 错误;AB ,AC 于P ,Q ,由选项2OBC ACB π∠+∠=,OCB ∠又OBC OCB BOC π∠+∠+∠=A .O 为ABC 的垂心B .AOB ACBπ∠=-∠C .sin :sin :sin ::OA OB OC BAC ABC ACB ∠∠∠=D .tan tan tan 0BAC OA ABC OB ACB OC ∠⋅+∠⋅+∠⋅=【答案】ABDOB OC ⋅ ,即OA OB OB OC ⋅-⋅ 0CA =,OB CA ⊥ ,AB,正确;因为OA CB ⊥,所以90ADB ∠=o ,BAO Ð因为OB CA ⊥,所以90BEA ∠= ,ABO Ð则(90AOB ABO BAO ππ∠=-∠-∠=-A .O 为ABC 的垂心B .C .:sin :si n :n :si O A A OB O C C B =D .【答案】ABD【详解】对于A ,OA OB OB OC ⋅=⋅ ,(OB OA ∴⋅由A 可知:AD BC ⊥,BE ⊥AOE C ∴∠=∠,又AOE ∠+∠对于C ,由B 可得:OA OB ⋅= 同理可得:OB OC OB OC ⋅=-⋅对于②:记点P 到AB 、为PBC PAC S PA S PB ++ △△a h b h PA PB c h PC +⋅⋅⋅+。
三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。
三角形四心的向量性质及应用(教师用答案版)————————————————————————————————作者:————————————————————————————————日期:三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等; (3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 证明:延长AO 交BC 于D ,如图必有:||||OA OD S S S OAB OCA OBC =+∆∆∆,||||BC BD S S S OAB OCA OAB =+∆∆∆,||||BC CD S S S OAB OCA OCA =+∆∆∆; ---(*)由D O A ,,共线,得:0||||=+OD ODOA OA进而得:0||||=+⋅OD OA OA OD ----------------① 由C D B ,,共线,得:OC BC BD OB BC CD OD ⋅+⋅=|||||||| ----------② 由①②得:OA OA OD ⋅||||0||||||||=⋅+⋅+OC BC BD OB BC CD 代入(*)结论 得+⋅+∆∆∆OA S S S OAB OCA OBC +⋅+∆∆∆OB S S S OAB OCA OCA 0=⋅+∆∆∆OC S S S OABOCA OAB消去分母得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 证毕.另证:作AC OG AB OH //,//,如图:AGOH 为平行四边形;由OC S OB S OA S OAB OCA OBC ⋅+⋅+⋅∆∆∆)()(AC OA S AB OA S OA S OAB OCA OBC +⋅++⋅+⋅=∆∆∆ AC S AB S OA S OAB OCA ABC ⋅+⋅+⋅=∆∆∆)(AC S SAB S S OA S ABCOAB ABC OCA ABC ⋅+⋅+=∆∆∆∆∆ )(AC ACAHAB AB AG OA S ABC ⋅+⋅+=∆ )(AH AG OA S ABC ++=∆ 0)(=+=∆AO OA S ABC .AB CODAB CODHFEG反方向思考:设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 必有:AOB COA BOC S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''OB A OA C OC B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS S S S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S S S S ∆∆∆==::::::211332321λλλλλλλλλ. 验证式思考:先证引理:若b a ,不共线,对p ,有0=⋅p a 且0=⋅p b ,必有.0=p证明:若.0≠p 必有p a ⊥且p b ⊥,得b a //,与题设矛盾,故必有.0=p 再证:设α=∠BOC ,β=∠COA ,则βαπ--=∠2AOB ; 由)(OC S OB S OA S OA OAB OCA OBC ⋅+⋅+⋅∆∆∆OC OA S OB OA S OA S OAB OCA OBC ⋅+⋅+⋅=∆∆∆2ββαπβαπβαcos )2sin(21)2cos(sin 21sin 212⋅⋅⋅--⋅⋅+--⋅⋅⋅⋅⋅+⋅⋅⋅=OC OA OB OA OB OA OA OC OA OC OB ]cos )sin()cos(sin [sin 212ββαβαβα+-++⋅⋅=OC OB OA )]}(sin[{sin 212βαβα+-+⋅⋅=OC OB OA 0)]sin([sin 212=-+⋅⋅=ααOC OB OA ; 有对称性知:0)(=⋅+⋅+⋅∆∆∆OC S OB S OA S OB OAB OCA OBC ,又OA ,OB 不共线, 故:必有0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 成立. 一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)略证:1:1:1::=∆∆∆GAB GCA GBC S S S ,得:0=++GC GB GA .变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔=='A 'B 'C OABCABCO02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S OAB OCA OBC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S HAB HCA HBC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=. 又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛+⋅=⎪⎪⎭⎫ ⎝⎛+⋅=⎪⎪⎭⎫ ⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a cb a OCc OB b OA a OI ++⋅+⋅+⋅=⇔0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.ABDOHCE略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ , 则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足)(ACAC ABAB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 3.O 是ABC ∆所在平面上一定点,动点P 满足)cos cos (CAC AC BAB AB OA OP ++=λ,R ∈λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 4.O 是ABC ∆所在平面上一定点,动点P 满足)sin sin (CAC AC BAB AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心5.O 是ABC ∆所在平面上一定点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r,R ∈λ, 则点P 的轨迹一定通过ABC △的( ).A .外心B .内心C .重心D .垂心6.O 是ABC ∆所在平面上一定点,动点P 满足])21()1()1[(31OC OB OA OP λλλ++-+-=,*R ∈λ , 则点P 的轨迹一定通过ABC △的( ).A .内心B .垂心C .重心D .AB 边的中点 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( ) A .2 B .23C .3D .6 10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S ∆∆=2λ,ABC PAB S S∆∆=3λ.BCA M N G定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎪⎪⎭⎫⎝⎛+BC AC AC AB AB 且21||||=⋅AC AC AB AB , 则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( ) A .等腰三角形 B .等腰直角三角形 C .直角三角形 D .既非等腰又非直角三角形二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 4 . 19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 20.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 22.在ABC ∆中,1,3,==⊥AD BD BC AB AD ,则=⋅AD AC3 .三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB =u u u u v u u u v ,AN y AC =u u u v u u u v ,求证:113x y+=.解:由N G M ,,三点共线,得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AOB COA BOC S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''OB A OA C OC B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP从而得:3211)(||2121222121=⋅-+=-==OP OP OP OP P P P P 同理可得:3||||1332==P P P P ,即321P P P∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值. 解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521221|)(|21||22=++=+⋅+=+=b b a a b a AD221162025214421|)2(|21||22=+-=+⋅-=-=b b a a b a BE 故:.919149142212393||||,cos ==⋅=⋅>=<BE AD BEAD BE AD'A 'B 'C OABCA BED C27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。
三角形“四心”向量形式的结论及证明三角形的“四心”是指三角形的重心、外心、内心和垂心。
它们的位置可以用向量的形式来描述。
本文将分别介绍三角形“四心”的向量形式以及其证明。
1.重心:重心是指三角形三个顶点的中线交点所在的点,用G表示。
假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则重心G的坐标可以通过以下公式得到:G=(A+B+C)/3其向量形式为:OG=(OA+OB+OC)/3其中O为坐标原点。
证明:由定义可知,重心是三角形三个顶点的中线交点所在的点。
而中线的坐标可以通过两个顶点的坐标的平均值得到。
因此,重心的坐标是三个顶点坐标的平均值。
根据向量加法的性质,可以得到上述结论。
2.外心:外心是指可以通过三角形的三个顶点作为圆心,找到一个圆使得三条边都是这个圆的切线。
用O表示外心。
假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则外心O的坐标可以通过以下公式得到:O=(a^2*A+b^2*B+c^2*C)/(a^2+b^2+c^2)其中a、b、c分别表示三角形的边长BC、AC和AB的长度。
其向量形式为:OO=(a^2*OA+b^2*OB+c^2*OC)/(a^2+b^2+c^2)其中O为坐标原点。
证明:设外心为O,连接OA、OB、OC,并设AO的长度为R,BO的长度为R',CO的长度为R''。
根据定义可知,OA,OB,OC都是截圆半径,可以得到以下关系:OA⊥BC,OB⊥AC,OC⊥AB由于OA、OB、OC是向量,因此上述关系可以写为:OA·BC=0,OB·AC=0,OC·AB=0其中“·”表示点乘。
根据向量的点乘性质可知:OA·(B-C)=0,OB·(C-A)=0,OC·(A-B)=0将向量差展开得:OA·B-OA·C=0,OB·C-OB·A=0,OC·A-OC·B=0进一步展开可得:R^2-R'^2=0,R'^2-R''^2=0,R''^2-R^2=0整理得:R^2-R'^2=R''^2-R^2移项得:2R^2=R'^2+R''^2根据圆的定义可知,外心到三角形的每个顶点的距离都相等,因此R=R'=R''。
与三角形四心相关的向量结论.doc
下面是一些与三角形的四个特殊点(重心、外心、内心和垂心)相关的向量结论:
1. 重心:三角形的重心是三条中线的交点,表示为G,并且满足以下向量等式:
AG + BG + CG = 0
2. 外心:三角形的外心是三角形外接圆的圆心,表示为O,并且满足以下向量等式:
AO = BO = CO = R(半径)
3. 内心:三角形的内心是三角形内切圆的圆心,表示为I,并
且满足以下向量等式:
AI = BI = CI = r(半径)
4. 垂心:三角形的垂心是三条高线(从顶点到对边垂直的线段)的交点,表示为H,并且满足以下向量等式:
AH + BH + CH = 0。
三角形“四心”向量形成的充耍条件应用在学习了《平面向量》一章的基础容之后,学生们通过课堂例题以员课后习题陆续接触了有关三角形重心、垂心、外心、心向量形式的充要条件。
现旧纳总结如下:一.知识点总结____________________1 ) 0 是AABC 的重心 <=> OA+OB + OC=0若0 是AABC 的重° , | SaBOC = SaaOC = SaaOB = 3 Smbc jj OA+OB+OC = 0 PG = ^(PA + PB + PC) OG为AABCtf}重心.2)o 是AABC的垂心<=>OA 6B = OB OC = OC OA若0 是AABC(非直角三角形)的垂心,U| S ABOC5S AAOCS S AZ\OB =tan A:tan B:tan C故tan AOA + tan BOB + tan COC = 63 )0 是AABC 的外心<=> IOAI=IOBI=IOCI(或=而2 =疋2)若0是AABC的外心则S ABOC:S AAOC: S M()B = slnZBOC:sinZAOC :sinZAOB = sin2A : sln2B : sin2C故sin2AOA + sln2BOB + sin2COC = 64)0是心AABC的充要条件是贰(亘-亘)=而(亘-匹)=显(亘-JL)=oIABI AC I BA I IBCI I CAI ICBI引IS单位向量,使条件变鶴更简洁。
如果记入瓦说,不的单位向量为兀瓦恳,则刚才0是AABC 心的充要条件可以写成:OA.(e[+e^) = OB.(e[ + e^) = OC.(e^ + e^) = 00是AABC心的充要条件也可以是aOA + bOB + cOC = 0若0 是AABC 的心,则S AB()c:S AA<)c: Su()B=a: b: c故aOA + bOB + cOC = OggsinAOA + slnBOB + sinCOC = 6.\AB\PC+\BC\PA+\CA\PB = O^ P ^ABC的心;向量兄(輕+姿)(几工0)所在直线il AABC的心(是ABAC的角平分线IABI IACI所在直线);(-).将平面向量与三角形心结合考查例1・0是平面上的一罡点,ABC是平面上不共线的三f点,动点P满竺+丝),几w[o,p )则P 点的珈迷一定通11MBC 的( KI(A )外心(B )心(C )重心(D )垂心解析:因为丝是向量丽的单位向量设丽与疋方向上的单位向量分别为勺和J, JHI 一〜OP-dA = AP原式可化为AP = A (e { +勺),由菱形的基本性质知AP 平分ABAC, SI )么在A4BC中,AP 平分Z3AC,则知选B.点评:2ii®给人的M 象当然是“新颖、陌生J 首先箔是什么?没见过!想想,一个非零M向量除以它的模不就是单位向量?此题所用的部必须是简单的基本知识,如向量的加减法、向量 的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,乂能迅速地wtiiffg 到一起, 解fiiii-^rnjg 也没有。
三角形“四心”优美的向量统一形式三角形“四心”的向量的统一形式:x是△abc的心λxa+μxb+υxc=0其中,重心的充要条件最简单,也容易证明。
而内心、外心、重心的证明则比较困难,受此启发,笔者联想到既然有统一的结构,是否可以借用重心的充要条件证明其它“三心”的情况呢?因为要借用重心的向量形式来证明,所以还要给出重心的另一性质:g为△abc的重心的充要条件是s=△gab=s△gbc=s△gca= s△abc.(图1)一、重心(中线交点)1.g是△abc的重心ga+gb+gc=0证明:设g是△abc的重心,如图2,延长ag交bc于点d.因为g为△abc的重心,所以d为bc的中点,有gd= (gb+gc)且ga=-2gd 因此ga+gb+gd+gc=0,反之亦成立.2.设p是△abc所在平面内任意一点,则pg= (pa+pb+pc)g为△abc的重心证明:g是△abc的重心ga+gb+gc=0 gp+ap+gp+pb+gp+pc=03pg=pa+pb+pc pg= (pa+pb+pc)二、内心(内角平分线交点,内切圆圆心)1.i是△abc的内心aia+bib+cic=0(其中a,b,c分别为△abc 的三个内角a,b,c所对的边长).证明:设i是△abc的内心,如图3,作向量ia’=aia,ib=bib,ic’=cic连结,得到△a’b’c’.因为i为△abc内心,所以内心i到△abc各边的距离为△abc的内切圆的半径,设为r.s△ib’c’= |ib’|·|ic’|sin∠bic= b|ib|·c|ic|·sin∠bic=b·cs△ibc=bc· ar= abcr同理可得s△ibc= abcr,s△ic’a’= abcr所以s△ia’b’=s△ib’c’=s△ic’a’= abcr,i为的重心,有ia+ib+ic=0即ala+bib+cic=0成立,反之亦成立.2.i是△abc的内心(sina)la+(ainb)ib+(sinc)ic=0证明:根据i是△abc的内心aia+bib+cic=0,由正弦定理得i是△abc的内心(sina)ia+(subb)ib+(sinc)ic=03.设p是△abc所在平面内任意一点,i为△abc内心pi=证明:i是△abc的内心aia+bib+cic=0aip+aip+bip+bpb+cip+cpc=0 pi=三、外心(三边垂直平分线交点,外接圆圆心)1.p是△abc外心(sin2a)pa+(sin2b)pb+(sin2c)pc=0证明:设p是△abc的外心,如图4,作向量pa=(sin2a)pa,pb=(sin2b)pb,pc(sin2c)pc连结a′,b′,c′,得△a′b′c′.因为p为△abc外心,所以外心p到△abc各顶点的距离为△abc 的外切圆的半径,设为r,且∠bpc=2a.s△pb’c’= |pb’|·|pc’|sin∠b’p’c’= sin2b|pb|sin2c·|pc|sin∠bpc=sin2bsin2c r2sin2a= r2sin2asin2bsin2c同理可得s△pa’b’= r2sin2asin2b·sin2c,s△p’c’a’= r2sin2asin2bsin2c△所以s△pa’b’=s△pa’b’=s△pa’b’ s△pa’b’,得p为△a′b′c′的重心,有pa’+pb’+pc’=0即(sin2a)pa+(sin2b)pb+(sin2c)pc=0成立,反之亦成立.2.p是△abc的外心(acosa)·pa+(bcosb)·pb+(ccosc)pc=0 证明:根据p是△abc的外心(sin2a)·pa+(sin2b)·pb+(ccosc)pc=0由正弦定理得p是△abc的外心(acosa)·pa+(bcosb)·pb+(ccosc)pc=03.设p是△abc 所在平面内任意一点,o为△abc的外心po=证明:o为△abc的外心(sin2a)oa+(sin2b)+(sin2c)oc=0 (sin2a)op+(sin2a)pa+(sin2b)op+(sin2b)pb+(sin2b)op+(sin2c)pc=0po=四、垂心(高线交点)1.h是△abc的垂心ha·hb=hb·hc=hc·ha证明:由ha·hb=hb·hc hb(hc-ha)=0 hb·ac=0 hb⊥ac同理hc⊥ab故h是△abc的垂心,反之亦然.2.h是△abc的垂心证明:由ha2+bc2=hb+ac2ha2-hb2+bc2+bc2-ac2=0(ha+hb+bc+ac)·ba=02hc·ba=0 hc⊥ab同理ha⊥bc,故h是△abc的垂心,反之亦然.3.h是△abc(非直角三角形)的垂心(tana)ha+(tanb)hb+(tanc)hc=0证明:设h是△abc的垂心,如图5,作向量连结a′,b′,c′,得到△a′b′c′.s△hcb= |hb’|·|hc‘|sin∠b’hc’= (tanb)|hb|·(tanc)|hc|·sin∠bhc=tanbtanc·s△hbc=tanc· |bc|·|hd|因为h为△abc垂心,所以∠bhd=∠acb,∠chd=∠abc.所以有|bd|=|hd|tan∠bhd=|hd|tanc|bd|=|hd|tan∠bhd=|hd|tanc|cd=|hd|tan∠chd=|hd|tanb.又因为|ad|=|bd|tanb.|ad|=|cd|tanc,所以|ad|2=|bd|·|cd|tanbtanc=|hd|2 (tanbtanc)2即|ad|=|hd|tanbtanc所以s△hbc= |bc|·|ad|=s△hbc同理可得s△hbc=s△abc;s△hb’c’=s△abc所以s△ha’b’=s△hb’c’=s△hc’a’= s△a’b’c’h为△a′b′c′的重心,从而ha’+hb’+hc’=0,即(tana)ha’+(tanb)hb+(tanc)hc=0成立,反之亦成立.4.h是△abc(非直角三角形)的垂心·ha+ ·hb+ ·hc=0·ha+ ·hb+ ·hc=0.证明:由 =tana, =tanb, =tanc及正弦定理得h是△abc的垂心(tana)ha+(tanb)hb+(tanc)=0 ·ha+ ·hb+ ·hc=0 ·ha+ ·hb·hc=0(tana)hp+(tana)pa+(tanb)hp+(tanb)pb+(tanc)hp+(tanc)pc=0再由余弦定理得h是△abc的垂心·ha ·hb ·hc=05.设p是△abc(非直角三角形)所在平面内任意一点,h是△abc 的垂心pa=证明:h是△abc的垂心(tana)ha+(tanb)hb+(tanc)hc=0(tana)hp+(tana)pa+(tanb)hp=(tanc)hp+(tanc)pc=0 ph=向量是高中教材的重要内容之一,它具有代数和几何的“双重身份”,所以它的引入给传统的中学数学带来了无限生机和活力,使我们对量的数学表达的认识进入了一个崭新的领域。