4-1.2同轴线谐振腔解析
- 格式:ppt
- 大小:286.00 KB
- 文档页数:16
浅谈光学谐振腔摘要:光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度, 调节和选定激光的波长和方向的装置,从真空紫外到远红外的绝大部分激光系统都使用了光学谐振腔。
本文从光的传播矩阵推导了谐振腔的稳定条件和光腔损耗,并解释了横模形成的原因。
最后介绍了自由电子激光器谐振腔、微腔和X 射线激光腔。
关键词:激光;谐振腔;自由电子激光腔;微腔1激光1.1激光简介激光器的发明是20世纪科学技术的一项重大成就。
激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。
激光具有方向性好、单色性好能量集中、相干性好等特点。
正因为激光器具备的这些突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破[1]。
1.2激光器的分类(1)按工作物质分类:根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体激光器(晶体和玻璃);②气体激光器;③液体激光器;④半导体激光器;⑤自由电子激光器。
(2)按激励方式分类:①光泵式激光器;②电激励式激光器;③化学激光器;④核泵浦激光器。
(3)按运转方式分类:由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。
①连续激光器;②单次脉冲激光器;③重复脉冲激光器;④可调激光器;⑤锁模激光器;⑥单模和稳频激光器;⑦可调谐激光器[2]。
(4)按输出波段范围分类:根据输出激光波长范围之不同,可将各类激光器区分为以下几种:①远红外激光器;②中红外激光器;③近红外激光器;④可见激光器;⑤近紫外激光器;⑥真空紫外激光器;⑦X射线激光器,目前软X 射线已研制成功,但仍处于探索阶段[1]。
1.3激光器的组成任何一种激光器,其基本结构都可以分为三部分:(1)工作物质,用来产生受激发射;(2)激励(泵浦)装置,用来激励工作物质以获得粒子数反转;(3)光学共振腔,用来维持受激发射的持续振荡,并限制产生振荡的光子的特征(行进方向、波长等)。
工学院课程考核论文课程名称:微波技术与天线题目:板状天线基本原理及分析专业:电子信息工程班级:08级1班*名:***学号:**********任课教师:***摘要本文主要介绍了板状天线的原理以及做出相应的分析。
由于微带天线具有重量轻、低剖面、成本低、易于制造、封装和安装等许多固有的优点,本文选用微带贴片天线作为天线单元。
首先采用传输线法和腔模理论对矩形微带天线进行分析,计算出矩形贴片的长,宽,并选择基板材料和高度。
然后针对设计指标详细讨论了各种因素对微带贴片天线性能的影响,用背馈的方式完成了微带贴片天线单元的设计方案,从而简化馈电网络。
板状天线基本原理及分析一.板状天线基本原理板状天线的基本知识:无论是GSM 还是CDMA,板状天线是用得最为普遍的一类极为重要的基站天线。
这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。
板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。
图1-1板状天线的基本形式如图所示,板状天线是在阵列天线或者天线单元的下方加上一块反射板,使波束往前方发射,利用反射板可把辐射能控制到单侧方向,平面反射板放在阵列的一边构成扇形区覆盖天线。
下面的图1-2说明了反射面的作用,反射面把功率反射到单侧方向,提高了增益。
天线的基本知识全向阵(垂直阵列不带平面反射板)。
抛物反射面的使用,更能使天线的辐射,像光学中的探照灯那样,把能量集中到一个小立体角内,从而获得很高的增益。
不言而喻,抛物面天线的构成包括两个基本要素:抛物反射面和放置在抛物面焦点上的辐射源,基站天线可供设计的参数是天线的垂直波瓣和水平波瓣,垂直波瓣是通过阵列天线来实现的,而水平波瓣是由所采用的天线单元样式和相应的反射板所决定。
图1-2水平面方向图板状天线高增益的形成:1.采用多个半波振子排成一个垂直放置的直线阵,如图1-3图1-3直线阵的方向和模型2.在直线阵的一侧加一块反射板(以带反射板的二半波振子垂直阵为例),如图2-4图1-4带反射板直线阵的方向和模型板状天线是由徽带天线发展而来。
高等数学a2 谐振腔1.引言1.1 概述概述部分的内容旨在介绍整篇文章的背景和目标,为读者提供对谐振腔及其在高等数学A2中的重要性有一个初步的了解。
在高等数学A2中,谐振腔是一个重要的概念和研究对象。
它是一种能够通过特定的边界条件来支持电磁或声波的共振现象的物理装置,广泛应用于无线电通信、光学、声学等领域。
本文将首先对谐振腔的定义和原理进行详细说明。
我们将解释谐振腔的组成结构、边界条件以及共振现象的产生机理。
通过深入理解谐振腔的基本原理,我们可以更好地理解其在实际应用中的重要性和作用。
接下来,本文将介绍谐振腔在各个领域的应用。
无论是在无线电通信中的信号传输,还是在光学领域的激光器和光纤通信中,谐振腔都扮演着至关重要的角色。
我们将详细探讨这些应用,并分析谐振腔在实际场景中的优势和挑战。
最后,我们将对本文进行总结,概括谐振腔的定义、原理和应用。
我们还将展望谐振腔在未来的发展趋势,探讨可能的改进和创新方向。
通过深入研究和探索谐振腔的实际应用,我们可以为相关领域的技术发展和创新提供有价值的参考和指导。
通过本文的阅读,读者将能够更全面地了解谐振腔的概念、原理和应用,并对谐振腔在高等数学A2中的重要性有一个深入的认识。
希望本文能为读者提供有益的知识和启发,并促使读者在相关领域的学习和应用中取得更好的成果。
1.2文章结构文章结构部分的内容可以是以下内容之一:- 本文结构安排:本文分为引言、正文和结论三个部分。
引言部分概述了文章的主题和目的,介绍了谐振腔的概念和应用领域。
正文部分将详细讨论谐振腔的定义和原理,以及谐振腔在实际应用中的作用。
结论部分对全文进行总结,并展望了谐振腔未来的发展方向。
- 引言、正文、结论概述:本文分为引言、正文和结论三个部分。
引言部分概述了谐振腔的定义和原理,并介绍了谐振腔的应用领域。
正文部分将详细探讨谐振腔的定义和原理,以及其在光学、无线电通信等领域的应用。
结论部分对全文进行总结,并指出了谐振腔在科学研究和技术发展中的重要性。
射频基础知识知识讲解第⼀部分射频基础知识⽬录第⼀章与移动通信相关的射频知识简介 (1)1.1 何谓射频 (1)1.1.1长线和分布参数的概念 (1)1.1.2射频传输线终端短路 (3)1.1.3射频传输线终端开路 (4)1.1.4射频传输线终端完全匹配 (4)1.1.5射频传输线终端不完全匹配 (5)1.1.6电压驻波分布 (5)1.1.7射频各种馈线 (6)1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 ⽆线电频段和波段命名 (9)1.3 移动通信系统使⽤频段 (9)1.4 第⼀代移动通信系统及其主要特点 (12)1.5 第⼆代移动通信系统及其主要特点 (12)1.6 第三代移动通信系统及其主要特点 (12)1.7 何谓“双⼯”⽅式?何谓“多址”⽅式 (12)1.8 发信功率及其单位换算 (13)1.9 接收机的热噪声功率电平 (13)1.10 接收机底噪及接收灵敏度 (13)1.11 电场强度、电压及功率电平的换算 (14)1.12 G⽹的全速率和半速率信道 (14)1.13 G⽹设计中选⽤哪个信道的发射功率作为参考功率 (15) 1.14 G⽹的传输时延,时间提前量和最⼤⼩区半径的限制 (15) 1.15 GPRS的基本概念 (15)1.16 EDGE的基本概念 (16)第⼆章天线 (16)2.1天线概述 (16)2.1.1天线 (16)2.1.2天线的起源和发展 (17)2.1.3天线在移动通信中的应⽤ (17)2.1.4⽆线电波 (17)2.1.5 ⽆线电波的频率与波长 (17)2.1.6偶极⼦ (18)2.1.7频率范围 (19)2.1.8天线如何控制⽆线辐射能量⾛向 (19)2.2天线的基本特性 (21)2.2.1增益 (21)2.2.2波瓣宽度 (22)2.2.3下倾⾓ (23)2.2.4前后⽐ (24)2.2.5阻抗 (24)2.2.6回波损耗 (25)2.2.7隔离度 (27)2.2.8极化 (29)2.2.9交调 (31)2.2.10天线参数在⽆线组⽹中的作⽤ (31)2.2.11通信⽅程式 (32)2.3.⽹络优化中天线 (33)2.3.1⽹络优化中天线的作⽤ (33)2.3.2天线分集技术 (34)2.3.3遥控电调电下倾天线 (1)第三章电波传播 (3)3.1 陆地移动通信中⽆线电波传播的主要特点 (3)3.2 快衰落遵循什么分布规律,基本特征和克服⽅法 (4)3.3 慢衰落遵循什么分布规律,基本特征及对⼯程设计参数的影响 (4) 3.4 什么是⾃由空间的传播模式 (5)3.5 2G系统的宏⼩区传播模式 (5)3.6 3G系统的宏⼩区传播模式 (6)3.7 微⼩区传播模式 (6)3.8 室内传播模式 (9)3.9 接收灵敏度、最低功率电平和⽆线覆盖区位置百分⽐的关系 (10) 3.10 全链路平衡和最⼤允许路径损耗 (11)第四章电磁⼲扰 (12)4.1 电磁兼容(EMC)与电磁⼲扰(EMI) (12)4.2 同频⼲扰和同频⼲扰保护⽐ (13)4.3 邻道⼲扰和邻道选择性 (14)4.4 发信机的(三阶)互调⼲扰辐射 (15)4.5 收信机的互调⼲扰响应 (15)4.6 收信机的杂散响应和强⼲扰阻塞 (15)4.7 dBc与dBm (16)4.8 宽带噪声电平及归⼀化噪声功率电平 (16)4.9 关于噪声增量和系统容量 (17)4.10 直放站对基站的噪声增量 (17)4.11 IS-95 CDMA 对 GSM 基站的⼲扰 (19)4.12 G⽹与PHS⽹的相互⼲扰 (20)4.13 3G系统电磁⼲扰 (22)4.14 PHS系统与3G系统之间的互⼲扰 (24)4.15 GSM系统与3G系统之间的互⼲扰 (25)第五章室内覆盖交流问题应答 (12)5.1、⽬前GSM室内覆盖⽆线直放站作信源站点数量达60%,WCDMA的建设中,此类站点太多将导致⽹络上⾏噪声被直放站抬⾼,请问怎么考虑?5.2、⾼层窗边的室内覆盖信号场强难以做到主导,⽽室内窗边将是数据业务需求的⾼发区域,室内窗边的⾼速速率如何保证?5.3、有⼚家建议室内覆盖不⽤⼲放,全⽤⽆源覆盖分布,我们如何考虑?5.4、室内覆盖中,HSDPA引⼊后,有何新要求?5.5、系统引⼊多载频对室内覆盖的影响?5.6、上、下⾏噪声受限如何考虑?5.7、室内覆盖时延分集增益。
证明整个谐振腔内的电场能量和磁场能下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
此文下载后可定制随意修改,请根据实际需要进行相应的调整和使用。
并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documentscan be customized and modified after downloading, please adjust and use it accordingto actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!在物理学中,谐振腔是一种重要的研究对象,它不仅在电磁学领域有着广泛的应用,而且在光学、量子力学等多个领域都有着重要的作用。