第十章统计回归模型
- 格式:ppt
- 大小:1.06 MB
- 文档页数:43
下表列出了某城市18位35岁~44岁经理的年平均收入1x 千元,风险偏好度2x 和人寿保险额y 千元的数据,其中风险偏好度是根据发给每个经理的问卷调查表综合评估得到的,它的数值越大,就越偏爱高风险,研究人员想研究此年龄段中的经理所投保的人寿保险额与年收入及风险偏好度之间的关系。
研究者预计,经理的年均收入和人寿保险额之间存在着二次关系,并有把握地认为风险偏好度对人寿保险额有线性效应,但对风险偏好度对人寿保险额是否有二次效应以及两个自变量是否对人寿保险额有交互效应,心中没底。
请你通过表中的数据来建立一个合适的回归模型,验证上面的看法,并给出进一步的分析。
x1=[66.290 40.964 72.996 45.010 57.204 26.852 38.122 35.840 75.796 37.408 54.376 46.186 46.130 30.366 39.060 79.380 52.766 55.916];>> y1=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133]; >> p=polyfit(x1,y1,2) p =3.0246e-002 1.7886e+000 -6.0524e+001>> x2=0:0.01:85;y2=polyval(p,x2); plot(x1,y1,'o',x2,y2)1x y 对的散点图从图中可以发现,随着1x 的增加,y 的值有明显向上弯曲的二次增长趋势,图中的曲线是用二次函数模型εβββ+++=212110x x y (1)拟合的。
(其中ε是随机误差)>> x3=[7 5 10 6 4 5 4 6 9 5 2 7 4 3 5 1 8 6]; >> q=polyfit(x3,y1,1) q =1.3522e+001 3.8743e+001>> x4=0:0.01:15;y3=polyval(q,x4); plot(x3,y1,'o',x4,y3)的一次的散点图对2x y从图中可以发现,随着2x 的增加,y 的值比较明显的线性增长趋势,图中的曲线是用线性函数模型εββ++=210x y (2) 拟合的。
实验报告实验名称统计回归模型所属课程数学模型专业信息与计算科学2018年12月26日图1利用MATLAB 的统计工具箱可以得到回归系数及其置信区间(置信水平为0.05)、检验统计量2R ,F ,P 的结果。
见表2:参数参数估计值 参数置信区间 0β5.5863 [4.57436.5983] 1β-0.0031[-0.0056 -0.0006]20.819355R = 6.80359F = 0.0767782p =表2表2显示,20.819355R =指因变量y (单位成本)的81.93%可由模型确定,F 值超过F 检验的临界值,P 小于置信水平,因而模型从整体看是可用的。
表2的回归系数给出了模型中的0β,1β的估计值,则可得到一次线性关系式为y=5.5863-0.0031x (x ≤500)(2)对该模型做残差图:图2可以看出上面第二个点位异常点,去除第二个点后再进行拟合。
利用MATLAB 的统计工具箱可以得到回归系数及其置信区间(置信水平为0.05)、检验统计量2R ,F ,P 的结果。
见表3:参数参数估计值 参数置信区间 0β 5.5749 [5.0902 , 6.0596] 1β-0.0032[-0.0044 , -0.0020]20.976132R = F=40.8967 p=0.023882 表3表3显示,20.976132R =指因变量y (单位成本)的97.61%可由模型确定,F 值超过F 检验的临界值,P 小于置信水平,因而模型从整体看是可用的。
表3的回归系数给出了模型中的0β,1β的估计值,则可得到一次线性关系式为y=5.5749-0.0032x (x ≤500) (3)3.2模型二的建立与求解令生产批量为x ,单位成本为y 元,当x >500时,y 与x 满足一种线性关系,则可建立线性回归模型。
022y X ββε=++(4)其中0β,2β是待估计的回归系数,ε是随机误差。
第十章 logitic 回归本章导读:Logitic 回归模型是离散选择模型之一,属于多重变数分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销、会计与财务等实证分析的常用方法。
10.1 logit 模型和原理Logistic 回归分析是对因变量为定性变量的回归分析。
它是一种非线性模型。
其基本特点是:因变量必须是二分类变量,若令因变量为y ,则常用y=1表示“yes ”,y=0表示“no ”。
[在发放股利与不发放股利的研究中,分别表示发放和不发放股利的公司]。
自变量可以为虚拟变量也可以为连续变量。
从模型的角度出发,不妨把事件发生的情况定义为y=1,事件未发生的情况定义为0,这样取值为0、1的因变量可以写作:⎩⎨⎧===事情未发生事情发生01y 我们可以采用多种方法对取值为0、1的因变量进行分析。
通常以P 表示事件发生的概率(事件未发生的概率为1-P ),并把P 看作自变量x 的线性函数。
由于y 是0-1型Bernoulli 分布,因此有如下分布:P=P (y=1|x ):自变量为x 时y=1的概率,即发放现金股利公司的概率1-P=P (y=0|x ):自变量为x 时y=0的概率,即不发放现金股利公司的概率 事件发生和不发生的概率比成为发生比,即相对风险,表现为PP odds -=1.因为是以 对数形式出现的,故该发生比为对数发生比(log odds ),表现为)1ln(P P odds -=。
对数发生比也是事件发生概率P 的一个特定函数,通过logistic 转换,该函数可以写成logistic 回归的logit 模型:)1(log )(log PP P it e -= Logit 一方面表达出它是事件发生概率P 的转换单位;另一方面,它作为回归的因变量就可以自己与自变量之间的依存关系保持传统回归模式。
根据离散型随即变量期望值的定义,可得:E(y)=1(P)+0(1-P)=P进而得到x P y E 10)(ββ+==因此,从以上分析可以看出,当因变量的取值为0、1时,均值x y E 10)(ββ+=总是代表给定自变量时y=1的概率。
数学建模大作业摘要某公司想用全行业的销售额作为自变量来预测公司的销售额,题目给出了1977—1981此公司的销售额和行业销售额的分季度数据表格。
通过对所给数据的简单分析,我们可以看出:此公司的销售额有随着行业销售额的增加而增加的趋势,为了更加精确的分析题目所给的数据,得出科学的结论,从而达到合理预测的目的。
我们使用时间序列分析法,参照课本统计回归模型例4,做出了如下的统计回归模型。
在问题一中,我们使用MATLB数学软件,画出了数据的散点图,通过观察散点图,发现公司的销售额和行业销售额之间有很强的线性关系,于是我们用线性回归模型去拟合,发现有很好的拟合性。
但是这种情况下,并没有考虑到数据的自相关性,所以我们做了下面几个问题的分析来对这个数学模型进行优化。
在问题二中,通过建立了公司销售额对全行业销售额的回归模型,并使用DW检测诊断随机误差项的自相关性。
通过计算和查DW表比较后发现随即误差存在正自相关,也就是说前面的模型有一定的局限性,预测结果存在一定的偏差,还有需要改进的地方。
在问题三中,因为在问题二中得出随即误差存在正自相关,为了消除随机误差的自相关性,我们建立了一个加入自相关后的回归模型。
并对其作出了分析和验证,我们发现加入自相关后的回归模型更加合理。
通过使用我们建立的模型对公司的销售额进行预测,发现和实际的销售额很接近,也就是说模型效果还不错。
关键词:销售额、回归模型、自相关性一、问题提出某公司想用全行业的销售额作为自变量来预测公司的销售额,下表给出了1977-1981年公司销售额和行业销售额的分季度数据(单位:百万元).(1)画出数据的散点图,观察用线性回归模型拟合是否合适。
(2)监理公司销售额对全行业销售额的回归模型,并用DW检验诊断随机误差项的自相关性。
二、基本假设假设一:模型中ε(对时间t )相互独立。
三、符号说明公司销售额:y (百万)行业销售额:x (百万) 概念介绍:1.自相关:自相关(auto correlation ),又称序列相关(serial correlation )是指总体回归模型的随机误差项之间存在的相关关系。