中科大少年班数学考试专题练习-初等数论
- 格式:docx
- 大小:379.56 KB
- 文档页数:8
初等数论1习题参考答案附录1 习题参考答案第一章习题一1. (ⅰ) 由a b知b= aq,于是b=(a)(q),b = a(q)及b = (a)q,即a b,a b及a b。
反之,由a b,a b 及a b也可得a b;(ⅱ) 由a b,b c 知b= aq1,c= bq2,于是c= a(q1q2),即a c;(ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac;(ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a0得|q| 1,从而|a||b|,后半结论由前半结论可得。
2. 由恒等式mq np= (mn pq) (m p)(nq)及条件m p mn pq可知m p mq np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。
4. 设不然,n1 = n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。
5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2不能表示为a2p的形式,事实上,若(k1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。
第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。
2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0,1或2,由3a2b2 = 3Q r12r22知r1= r2 = 0,即3a且3b。
3.记n=10q+r, (r=0,1,…,9),则n k+4- n k被10除的余数和r k+4- r k = r k( r4-1)被10 除的余数相同。
中科大少年班试题
题目:
请你根据以下题目,撰写一个1500字的文章:
一、数学题
计算以下方程的解:
2x + 5 = 15
二、物理题
根据牛顿第二定律,一个质量为5kg的物体受到10N的力作用,求该物体的加速度。
三、化学题
请解释以下化学符号的含义:
H2O
NaCl
CO2
四、生物题
请简要解释以下植物的特点:
水仙
玫瑰
五、英语题
请用英语写一篇自我介绍,包括以下内容:姓名、年龄、爱好、家庭成员、学习目标六、历史题
请简述以下历史事件的背景和重要性:
法国大革命
美国独立战争
七、地理题
请解释以下地理名词的含义:
赤道
时区
大陆漂移
八、计算机题
请简要介绍以下计算机硬件的功能:
CPU
硬盘
九、艺术题
请简要描述以下艺术形式的特点:
音乐
绘画
舞蹈
十、体育题
请简要介绍以下体育项目的规则和技巧:篮球
游泳
羽毛球
十一、政治题
请解释以下政治概念的含义:
民主制度
社会主义
人权
十二、心理学题
请解释以下心理学术语的含义:
自尊
压力
认知失调
以上是中科大少年班试题的全部内容,请根据各题目要求进行回答。
初等数论试卷初等数论试卷一、单项选择题:(1分/题×20题=20分)1.设x 为实数,[]x 为x 的整数部分,则( A )A.[][]1x x x ≤<+;B.[][]1x x x <≤+;C.[][]1x x x ≤≤+;D.[][]1x x x <<+.2.下列命题中不正确的是( B )A.整数12,,,n a a a 的公因数中最大的称为最大公因数;B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d=-=+=±± B.00,,0,1,2,;a b x x t y y t t d d=+=-=±± C.00,,0,1,2,;b a x x t y y t t d d=+=-=±± D.00,,0,1,2,;b a x x t y y t t d d =-=-=±±4.下列各组数中不构成勾股数的是( D )A.5,12,13;B.7,24,25;C.3,4,5;D.8,16,175.下列推导中不正确的是( D )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡C.()()111212mod mod ;a b m a a b a m ≡?≡D.()()112211mod mod .a b m a b m ≡?≡6.模10的一个简化剩余系是( D )A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9.7.()mod a b m ≡的充分必要条件是( E ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( C )A.1x =或1;- B.1x =或4;C.1x ≡或()1mod5;- D.无解.9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( C )A .()()mod ()0mod ,1p f x p χχ?≡≡?>一定为的一个解B .()()0mod ,1,()0mod p f x p χχ??≡?>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( B ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( D )A .3B .11C .13D .2313.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( A )A . 4B . 3C . 2D . 114.模12的所有可能的指数为;( A )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定15.若模m 的单根存在,下列数中,m 可能等于: ( D )A . 2B . 3C . 4D . 1218.若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( B )A .aB .bC .abD .无法确定19.()f a ,()g a 均为可乘函数,则( A )A .()()f a g a 为可乘函数;B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数20.设()a μ为茂陛乌斯函数,则有( B )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ=二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________;22.多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数a b,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24.设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;27.若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件);28.在模m 的简化剩余系中,原根的个数是_______________________;29.设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________;30. ()48?=_________________________________。
初等数论习题与答案、及测试卷1 证明:n a a a ,,21 都是m 的倍数。
∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证:)12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax by ax ++/00 (y x ,为任意整数)b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax ba +∴故),(00b a by ax =+4 证:作序列 ,23,,2,0,23,b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2 ,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 2 1,21+-=-=+=,则有21212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 01,21++=-=+-=则同样有 2b t ≤综上存在性得证下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+?=+=?2,2,222211b t b t t bs t bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1)令S=n14131211+++++,取M=p k 75321-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。
《初等数论》习题集第1章 第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
初等数论期末试题及答案1. 选择题1.1 以下哪个数是质数?A. 10B. 17C. 26D. 35答案:B. 171.2 下列哪个数不是完全平方数?A. 16B. 25C. 36D. 49答案:C. 361.3 对于任意正整数n,下列哪个数一定是n的倍数?A. n^2B. n^3C. n+1D. n-1答案:A. n^22. 填空题2.1 求下列数的最大公约数:a) 24和36b) 45和75答案:a) 12b) 152.2 求下列数的最小公倍数:a) 6和9b) 12和18答案:a) 18b) 363. 计算题3.1 求1到100之间所有奇数的和。
解答:观察可知,1到100之间的奇数是等差数列,公差为2。
根据等差数列的求和公式,我们可以得到:(100 - 1) / 2 + 1 = 50 个奇数所以,奇数的和为:50 * (1 + 99) / 2 = 25003.2 求1到100之间所有能被3整除的数的和。
解答:观察可知,1到100之间能被3整除的数是等差数列,首项为3,公差为3。
根据等差数列的求和公式,我们可以得到:(99 - 3) / 3 + 1 = 33 个数所以,能被3整除的数的和为:33 * (3 + 99) / 2 = 16834. 证明题4.1 证明:如果一个数是平方数,那么它一定有奇数个正因数。
证明:设n是一个平方数,即n = m^2,其中m是一个正整数。
我们知道,一个数的因数总是成对出现的,即如果a是n的因数,那么n/a也是n的因数。
对于一个平方数n来说,它的因数可以分成两类:1) 当因数a小于等于m时,对应的商n/a必然大于等于m,因此这样的因数对有m对;2) 当因数a大于m时,对应的商n/a必然小于等于m,因此这样的因数对有(m - 1)对。
所以,在m > 1的情况下,平方数n有2m - 1个正因数,由于m是正整数,因此2m - 1一定是奇数。
而当m = 1时,平方数1只有一个因数,也满足奇数个正因数的条件。
初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ; -------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
《初等数论》模拟试卷说明:考生应有将全部答案写在答题纸上,否则作无效处理一、填空(30分)1、d (1001)= 。
σ(2002)= 。
φ(5005)= 。
2、梅森数n M 是形如 的数。
3、不能表示成5X+6Y (X 、Y 非负)的最大整数为 。
4、2003!中末尾连续有 个零。
5、(21a+4,14a+3)= 。
6、222z y x =+通解为 。
7、费尔马大定理是 。
8、从1001到2000的所有整数中,13的倍数有 。
9、c x a x a x a n n =++....2211有解的充要条件是 。
10、p,q 是小于是100的素数,pq- 1=x 为奇数,则x 的最大值是 。
11、[X]=3,[Y]=5,则[X —2Y]可能的值为 。
12、X 能被3,4,7整除,这个最小的正整数是 。
13、两个素数的和是39,这两个素数是 。
二、解同余方程组(12分)⎪⎩⎪⎨⎧≡+≡≡)7mod 25)5(mod 1)4(mod 1x x x一、叙述并且证明费尔马定理。
(12分)二、证明:设d是自然数n的正因子,则有∏=n d n d nd )(21 (10分)三、设P为奇素数,则有(10分)(1)111)1....(21----++p p p p ≡-1(modP)(2)p P P P )1....(21-++ ≡0(modP)六、用初等方法解不定方程01996202=+-xy x 。
(8分)七、解不定方程式15x+25y=-100. (6分)八、试证33393z y x =+ 无正整数解。
(6分)九、请用1到9这九个数中的六个(不重复)写出一个最大的能被15整除的六位数(6分)《初等数论》模拟试卷(B )答案一、1、8,1152,960,2、12-n3、19,4、499,5,1, 6、见书7、见书 8、77,9、c a a a n ),,(21 10、193,11、-9,-8,-7, 12、84,13、2,37二、孙子定理)140(mod 86≡x三、见书。
初等数论练习题一一、填空题1、τ(2420)=27;ϕ(2420)=_880_2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
78、⎪⎭⎫ ⎝⎛10365 =-1。
9、若p 是素数,则同余方程x p - 1≡1(mod p )的解数为二、计算题1、解同余方程:3x 2+11x -20≡0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3),同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5),同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解: 故同余方程x 2≡42(mod 107)有解。
3、求(127156+34)28除以111的最小非负余数。
解:易知1271≡50(mod 111)。
初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、 =-1。
⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。