八年级数学下册_反比例函数_单元测试(带答案)
- 格式:doc
- 大小:270.50 KB
- 文档页数:5
反比例函数单元测试题一.选择题(共8小题)1.如图,△MON的顶点M在第一象限,顶点N在x轴上,反比例函数y=的图象经过点M,若MO=MN,△MON的面积为8,则k的值为()A.4B.8C.﹣৪D.162.下列函数中,当x>0时,y的值随x值的增大而增大的是()A.y=﹣B.y=﹣2x C.y=﹣x+4D.y=3.如图,在平面直角坐标系中,一块污渍遮挡了横轴的位置,只留下部分纵轴和部分矩形网格,已知每个小正方形的边长都是1个单位长度,反比例函数y=(k≠0,x>0)的图象恰好经过2个格点A,B,那么k的值是()A.3B.4C.6D.84.已知反比例函数y=(k≠0)的图象经过点M(﹣2,﹣3),则该函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限5.如果两点A(1,y1)和B(2,y2)都在反比例函数y=(k>0)的图象上,那么()A.y2<y1<0B.y1<y2<0C.y1>y2>0D.y2>y1>06.下列各点在反比例函数y=﹣图象上的是()A.(﹣3,﹣1)B.(﹣1,3)C.(1,3)D.(3,1)7.如图,Rt△AOB的一条直角边OB在x轴上,双曲线与△AOB的斜边AO相交于点C,与另一直角边AB相交于点D.若,则△OBD与△ABO的面积比为()A.B.C.D.8.已知y是x的反比例函数,如表给出了x与y的一些值,表中“▲”处的数为()x﹣223y3﹣3▲A.3B.﹣9C.2D.﹣2二.填空题(共8小题)9.如图,若点A在反比例函数y=(k≠0)的图象上,AM⊥x轴于点M,△AMO的面积为8,k=.10.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物熏蒸消毒.消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物熏蒸时y与x的函数关系式为y=2x,药物熏蒸完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).教室空气中的药物浓度不低于2mg/m3时,对杀灭病毒有效.当m=3时,本次消毒过程中有效杀灭病毒的时间为min.11.如图,一次函数y=kx+b的图象与反比例函数的图象交于M(2,m),N(﹣1,n)两点.使反比例函数的函数值大于一次函数的函数值的x的取值范围是.12.定义:若一个矩形中,一组对边的两个三等分点在同一个反比例函数y=的图象上,则称这个矩形为“奇特矩形”.如图,在直角坐标系中,矩形ABCD是第一象限内的一个“奇特矩形”.且点A(4,2),D(7,2),则AB的长为.13.已知反比例函数,当自变量x≥2时,函数值y的取值范围是.14.如图,点A、B在反比例函数的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是4,则k的值为.15.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线l∥x轴,l分别与反比例函数y=和y=的图象交于A、B两点,若S△AOB=2,则k的值为.16.若反比例函数(m为常数)的图象在第二、四象限,则m的取值范围是.三.解答题(共4小题)17.如图,已知点A在反比例函数y=的图象上,点A的横坐标为﹣1,过点A作AB⊥x 轴,垂足为B,且AB=3BO.(1)求该反比例函数的解析式;(2)若点P(m,0)在x轴的正半轴上,将线段AP绕着点P顺时针旋转90°,点A 的对应点C恰好落在反比例函数y=在第一象限的图象上,求m的值.18.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数的图象经过点C,交AB于点D.已知AB=6,BC=5.(1)若OA=8,求k的值;(2)连接OC,若BD=BC,求OC的长.19.一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A(a,4)和B(﹣4,﹣2),与y轴交于点C.(1)求反比例和一次函数的解析式,并在网格中画出一次函数y=kx+b的图象;(2)点D是点A关于y轴的对称点,连接AD、BD,求△ABD的面积;(3)根据图象,直接写出关于x的不等式kx+b>的解集.20.如图,一次函数y=x﹣1的图象与反比例函数y=(x>0)的图象交于点B(3,a),与x轴交于点A.点C在反比例函数y=(x>0)的图象上的一点,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD.(1)求a,k的值;(2)若点P为x轴上的一点,求当PB+PC最小时,点P的坐标;(3)F是平面内一点,是否存在点F使得以A、B、C、F为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.。
第二十六章反比例函数单元测试题(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=x B.y=kx﹣1 C.y=-8x D.y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y都随x的增大而增大,则k的值可以是()A.2 B.0 C.﹣2 D.14.函数y=﹣x+1与函数y= -2x在同一坐标系中的大致图象是()CBAy yyy5.若正比例函数y=﹣2x与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1) B.(1,﹣2) C.(﹣2,﹣1) D.(﹣2,1)6.如图,过反比例函数y=kx(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()x3 C.4 D.57.若反比例函数y=kx(k≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点()A.(1,﹣1)B.(﹣12,4) C.(﹣2,﹣1)D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2x B.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12x B.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22m x-的图象在第二、四象限,m 的值为 .12.若函数y=(3+m )28m x -是反比例函数,则m= .13.已知反比例函数y=k x (k >0)的图象与经过原点的直线L 相交于点A 、B 两点,若点A 的坐标为(1,2),14.反比例函数y=k x的图象过点P (2,6),那么k 的值是 .15.已知:反比例函数y=k x的图象经过点A (2,﹣3),那么k= .16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x(k ≠0)上,AB ∥x 轴,分别过点A 、B 向x 轴作垂线,垂足ABCD 的面积是8,则k 的值为 .x三、解答题(共8题,共72分)17.(本题8分)当m 取何值时,函数y=2m 113x 是反比例函数?18.(本题8分)如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y=k x (k >0)的图象与BC 边交于点E .当F 为AB 的中点时,求该函数的解析式;y 1、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于S △AOB =1,求双曲线y 2的解析式.=4xC在反比例函数y=kx的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODCx的解析式;(2)若CD=1,求直线OC的解析式.21.(本题8分)(1)点(3,6)关于y轴对称的点的坐标是.(2)反比例函数y=3x关于y轴对称的函数的解析式为.(3)求反比例函数y=kx(k≠0)关于x轴对称的函数的解析式.22.(本题10分)如图,Rt△ABC的斜边AC的两个顶点在反比例函数y=1kx 的图象上,点B在反比例函数y=2kx的图象上,AB与x轴平行,BC=2,点A的坐标为(1,3).(1)求C点的坐标;(2)求点B所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.24.(本题12分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,函数y=kx(1)求反比例函数y=k的解析式;x(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误;C 、符合反比例函数的定义;故本选项正确;D 、y=28x 的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a、b,面积为S.则ab.S=12∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选:B.3.【答案】∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1﹣k<0,∴k>1.故k可以是2(答案不唯一),故选A.分布在第二、四象限.4.【答案】函数y=﹣x+1经过第一、二、四象限,函数y=﹣2x故选A.5.【答案】∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称,∵一个交点的坐标是(﹣1,2),∴另一个交点的坐标是(1,﹣2).故选B.图象上一点,且AB⊥x轴于点B,6.【答案】∵点A是反比例函数y=kx∴S△AOB=1|k|=2,2解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.(k≠0)的图象经过点(﹣1,2),7.【答案】∵反比例函数y=kx∴k=﹣1×2=﹣2,A、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;×4=﹣2,故此点,在反比例函数图象上;B、﹣12C、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;×4=2≠﹣2,故此点不在反比例函数图象上.D、12故选B.8.【答案】设反比例函数解析式y=k,x把(2,1)代入得k=2×1=2,.所以反比例函数解析式y=2x故选B.9.【答案】依照题意画出图形,如下图所示.xmx2+6x﹣n=0,∴△=62+4mn≥0,∴mn≥﹣9.故选A.10.【答案】由题意得y=2×12÷x=24.故选C.x二、填空题11.【答案】由题意得:2﹣m2=﹣1,且m+1≠0,解得:m=∵图象在第二、四象限,∴m+1<0,解得:m<﹣1,∴m=故答案为:12.【答案】根据题意得:8-m2= -1,3+m≠0,解得:m=3.故答案是:3.13.【答案】∵点A(1,2)与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故答案是:(﹣1,﹣2).的图象过点P(2,6),∴k=2×6=12,故答案为:12.14.【答案】:∵反比例函数y=kx15.【答案】根据题意,得﹣3=k 2,解得,k=﹣6. 16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x 上,∴矩形EODA 的面积为:4,∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12,则k 的值为:xy=k=12.故答案为:12.x17.【解答】∵函数y=2m 113x 是反比例函数,∴2m+1=1,解得:m=0.18.【解答】∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=kx (k>0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x>0);19.【解答】设双曲线y2的解析式为y2=kx,由题意得:S△BOC﹣S△AOC=S△AOB,k 2﹣42=1,解得;k=6;则双曲线y2的解析式为y2=6x.20.【解答】(1)设C点坐标为(x,y),∵△ODC的面积是3,∴12 OD•DC=12x•(﹣y)=3,∴x•y=﹣6,而xy=k,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC的解析式为y=mx,把C (1,﹣6)代入y=mx得﹣6=m,∴直线OC的解析式为:y=﹣6x.21.【解答】(1)由于两点关于y轴对称,纵坐标不变,横坐标互为相反数;则点(3,6)关于y轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y轴对称,比例系数k互为相反数;则k=﹣3,即反比例函数y=3x 关于y轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x轴对称,比例系数k互为相反数;则反比例函数y=kx (k≠0)关于x轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A(1,3)代入反比例函数y=1kx得k1=1×3=3,所以过A点与C点的反比例函数解析式为y=3x,∵BC=2,AB与x轴平行,BC平行y轴,∴B点的坐标为(3,3),C点的横坐标为3,把x=3代入y=3x得y=1,∴C点坐标为(3,1);(2)把B(3,3)代入反比例函数y=2kx得k2=3×3=9,所以点B所在函数图象的解析式为y=9x.23.【解答】(1)∵点A(﹣1,4)在反比例函数y=kx(k为常数,k≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x.把点A(﹣1,4)、B(a,1)分别代入y=x+b中,解得:a= -4,b=5.(2)连接AO,设线段AO与直线l相交于点M,如图所示.M 为线段OA 的中点,,∴点M 的坐标为(﹣12,2).∴直线l 与线段AO 的交点坐标为(﹣12,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x .(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4.在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴,cos∠OAB=ABOA ==.(3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1).设经过点C 、D 的一次函数的解析式为y=ax+b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x+3. 第二十六章 反比例函数全章测试一、填空题1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xk y =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内;③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xk y =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______.二、选择题7.下列函数中,是反比例函数的是( ). (A)32x y = (B 32x y = (C)x y 32= (D)xy -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线x y 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变 (C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xk y =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m (D)410.若反比例函数xk y =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ).(A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和xk y 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xk y 32-=的y 都随x 的增大而增大,则k 满足( ).(A)k >1 (B)1<k <2 (C)k >2(D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524 (B)不小于3m 3524(C)不大于3m 3724(D)不小于3m 372414.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0(D)k <0,b <0,a >015.如图,双曲线xk y =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。
初中数学 - 反比例函数综合检测题一、选择题 (每小题 3 分,共 30分) n51、反比例函数 y = 图象经过点( 2, 3),则 n 的值是().xA 、-2B 、- 1C 、0D 、1k2、若反比例函数 y = (k ≠0)的图象经过点 (- 1,2),则这个函数的图象一定经过点( ).x11A 、(2,-1)B 、(- ,2)C 、(- 2,-1)D 、( ,2)223、(08 双柏县 ) 已知甲、乙两地相距 s ( km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间 t ( h )与行驶速度 v (km/h )的函数关系图象大致是()k5、一次函数 y = kx -k , y 随 x 的增大而减小,那么反比例函数 y = 满足( ). xA 、当 x >0时,y >0B 、在每个象限内, y 随x 的增大而减小A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1< y 3< y 29、已知反比例函数 y = 1 2m 的图象上有 A ( x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0 时, x y 1< y 2,则 m 的取值范围是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例).D 、无法确定C 、图象分布在第一、三象限D 、图象分布在第二、四象限6、如图,点 P 是 x 轴正半轴上一个动点,过点 1 线 PQ 交双曲线 y = 于点 Q ,连结 OQ ,点xRt △ QOP 的面积().A 、逐渐增大B 、逐渐减小C 、保持不变P 作 x 轴的垂P 沿 x 轴正方向运动时,D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积ρ与 V 在一定范围内满足 V 时,气体的密度 ρ 也随之改变. ρ= m,它的图象如图所示,则该气体的质量 m 为(A 、 1.4kgB 、 ).5kgC 、 6.4kgD 、 7kg8、若 A (- 3, y 1), B (-2, y 2), C (- 1, y 3)三点都在函数 y 2,y 3 的大小关系是( ). 4、若 y 与 x 成正比例, x 与 z 成反比例,则 y 与 z 之间的关系是( yQp1 y =-1 的图象上,则 y 1, x11A、m<0B、m>0C、m<D、m>2210、如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是().A、x<- 1B、x>2C、-1<x<0 或x>2D、x<-1 或0<x< 2二、填空题(每小题 3 分,共30分)11. 某种灯的使用寿命为1000小时,它的可使用天数y与平均每天使用的小时数x 之间的函数关系式为.k12、已知反比例函数y 的图象分布在第二、四象限,则在一次函数y kx b 中,y 随xx 的增大而(填“增大”或“减小”或“不变” ).13、若反比例函数y= b 3和一次函数y=3x+b 的图象有两个交点,且有一个交点的纵坐x标为6,则 b =.2-14、反比例函数y=(m+2)x m -10的图象分布在第二、四象限内,则m的值为.115、有一面积为S的梯形,其上底是下底长的,若下底长为x,高为y,则y与x的函数3关系是.关系是.a16、如图,点M 是反比例函数y=(a≠0)的图象上一点,x过M点作x轴、y轴的平行线,若S阴影=5,则此反比例函数解析式为.2-+17、使函数y=(2m2-7m-9)x m -9m+19是反比例函数,且图象在每个象限内y随x的增大而减小,则可列方程(不等式组)为k18、过双曲线y=(k ≠ 0)上任意一点引x19. 如图,直线y =kx(k > 0)与双曲线yB(x2,y2)两点,则2x1y2-7x2y1=____20、如图,长方形AOCB 的两边OC、OA分别位于x轴、y轴上,点B 的坐标为5),D是AB边上的一点,将△ ADO沿直线OD翻折,使A点恰好落在对角线点 E 处,若点 E 在一反比例函数的图象上,那么该函数的解析式是.B (-320 OB 上的三、解答题(共60 分)21、(8 分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.22、(9 分)请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象.举例:函数表达式:23、(10 分)如图,已知 A (x1,y1),B(x2,y2)是双曲线的两点,连结OA 、OB.k(1)试说明y1< OA < y1+;y1(2)过 B 作BC⊥x 轴于C,当m=4时,求△ BOC 的面积.824、(10 分)如图,已知反比例函数y=-与一次函数x y=kx+b的图象交于A、B 两点,且点 A 的横坐标和点 B 的纵坐标都是-2.求:(1)一次函数的解析式;(2)△ AOB 的面积.ky=k 在第一象限内的分支k 25、(11分)如图,一次函数y=ax+b 的图象与反比例函数y=x 的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.k26、(12 分)如图,已知反比例函数y=的图象与一次函x数y=ax+b 的图象交于M (2,m)和N(-1,-4)两点.(1)求这两个函数的解析式;(2)求△ MON 的面积;(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.参考答案:三、解答题621、 y =- .x22、举例:要编织一块面积为 2 米 2 的矩形地毯,地毯的长 x (米)与宽 y (米)之间的函2 数关系式为 y = ( x >0).xk k k = 上,故 x 1= ,又在 Rt △OAD 中, AD < OA <AD + OD ,所以 y 1<OA <y 1+ ;xy 1y 1解得 a 2, ∴一次函数的解析式为y = 2x -2.b 2.1、D ; 6、C二、填空题2、A ; 7、D ;3、C ; 8、B ;11 、 y =1000 ; 12、减小; 13、 5 ;x5;2m 9m 19 1=- ;x17、2m2; 18 、 7m 9>04、B ;5、 D ; 9、D ;10、 D .14、- 3 ; 15、3sy = ;2x16、y|k|; 19 、 20; 20、y =-12 .x(2)△ BOC 的面积为 2.24、(1)由已知易得 A (-2,4),B (4,- 2),代入 y =kx +b 中,求得 y =-x +2; (2)当 y =0时,x =2,则 y =-x +2与 x 轴的交点 M (2,0),即|OM|=2,于1 1 1 1 =S △AOM + S △ BOM = |OM|· |y A |+ |OM|·|y B |= ×2×4+ ×2×2= 6.2 222k25、( 1)将 N (- 1,- 4)代入 y = ,得 k = 4.∴反比例函数的解析式为 是 S △ AOB 4 y =x将M 42,m )代入 y = ,得 m =2.将 M (2,2),N (- 1,- 4)代入 y =ax+b ,得 x2a b ab2, 4.、选择题y 1)在双曲线 y2)由图象可知,当x<-1或0<x<2 时,反比例函数的值大于一次函数的值.k 4 4 26、解(1)由已知,得-4=,k=4,∴ y=.又∵图象过M (2,m)点,∴ m=1 x 22a b 2 a 2 =2,∵y=ax+b图象经过M、N 两点,∴ ,解之得,∴y=2x-2.a b 4 b 2(2)如图,对于y=2x-2,y=0 时,x=1,∴A(1,0),OA=1,∴S△MON=S△MOA+S△1 1 1 1NOA=OA ·MC+OA ·ND =×1×2+×1×4=3.2 2 2 24(3)将点P(4,1)的坐标代入y=4,知两边相等,∴ P点在反比例函数图象上.x。
第十七章《反比例函数》单元测试题(检测时间:100分钟 满分:150分) 班级:________ 姓名:_________ 得分:_______一、选择题(4分×10分=40分)1.在下列函数表达式中,x 均表示自变量:①y=-25x,②y=2x ,③y=-x -1,④xy=2,⑤y=11x +,⑥y=0.4x,其中反比例函数有( ) A .3个 B .4个 C .5个 D .6个2.反比例函数y=mx的图象两支分布在第二、四象限,则点(m ,m-2)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.如果反比例函数y=kx的图象经过点(-2,-1),那么当x>0时,图象所在象限是(• •) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.如果双曲线y=kx经过点(-2,3),那么此双曲线也经过点( ) A .(-2,-3) B .(3,2) C .(3,-2) D .(-3,-2) 5.下列函数中,当x>0时,y 随x 的增大而减小的是( ) A .y=3x+4 B .y=13x-2 C .y=-4x D .y=12x6.如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例 7.如图,某个反比例函数的图象经过点P ,则它的解析式为( )A .y=1x (x>0)B .y=-1(x>0) C .y=1(x<0) D .y=-1x(x<0)(第7题) (第8题) (第9题)1-1y xP O y xD C B A O8.如图是三个反比例函数y=1k x ,y=2kx ,y=3k x在x 轴上方的图象,由此观察得到k 1、k 2、k 3•的大小关系为( )A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2 9.如图,正比例函数y=x 和y=mx (m>0)的图象与反比例函数y=kx(k>0)的图象分别交于第一象限内的A 、C 两点,过A 、C 两点分别向x 轴作垂线,垂足分别为B 、D ,•若Rt △AOB 与Rt△COD 的面积分别为S 1和S 2,则S 1与S 2的关系为( ) A .S 1>S 2 B .S 1<S 2 C .S 1=S 2 D .与m 、k 值有关10.面积为2的△ABC,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是( )二、填空题(4分×8=32分) 11.如果一个反比例函数y=kx的图象经过点(2,-1),那么这个反比例函数的解析式为_________. 12.要使函数y=kx(k 是常数,k≠0)的图象的两个分支分别在第、三象限内,则k•的值为________.(请写出两个符号上述要求的数值).13.已知反比例函数图象上有一点P (m ,n ),且m+n=5,试写出一个满足条件的反比例函数的表达式_________.14.如果双曲线y=kx在一、三象限,则直线y=kx+1不经过________象限. 15.如果点(a ,-2a )在双曲线y=kx上,那么双曲线在第_______象限.16.当x>0时,反比例函数y=m 2236m m x +-随x 的减小而增大,则m 的值为________,•图象在第_______象限.(1,4)yxAO 32yx BO (1,4)yxCO 44yxDO17.已知y与3m成反比例,比例系数为k1,m又与6x成正比例,比例系数为k2,那么y 与x成________函数,比例系数为_______.18.如果一次函数y=mx+n与反比例函数y=3n mx的图象相交于点(12,2),那么该直线与双曲线的另一个交点的坐标为_________.三、解答题(8分,8分,10分,10分,10分,10分,12分,计78分)19.在同一坐标系内,画出函数y=8x与y=2x的图象,并求出交点坐标.20.已知一次函数y=kx+b的图象与双曲线y=-2x交于点(1,m),且过点(0,1),•求此一次函数的解析式.21.关于x的一次函数y=-2x+m和反比例函数y=1nx的图象都经过点A(-2,1).求:(1)一次函数和反比例函数的解析式;(2)两函数图象的另一个交点B的坐标;(3)△AOB的面积.22.已知三角形的面积为30cm2,一边长为acm,这边上的高为hcm.(1)写出a与h的函数关系式.(2)在坐标系中画出此函数的简图.(3)若h=10cm,求a的长度?23.在2米长的距离内测试某种昆虫的爬行速度.(1)写出爬行速度v (米/秒)随时间t (秒)变化的函数关系式. (2)画出该函数的图象.(3)根据图象求t=3秒、4秒、5秒时昆虫的爬行速度.(4)利用函数式检验(3)的结果.24.如图,点A 、B 在反比例函数y=kx的图象上,且点A 、B 的横坐标分别为a ,2a (a>0),AC 垂直x 轴于c ,且△AOC 的面积为2. (1)求该反比例函数的解析式.(2)若点(-a ,y 1),(-2a ,y 2)在该反比例函数的图象上,试比较y 1与y 2的大小.yxCBAO25.如图,已知Rt△ABC 的锐角顶点A 在反比例函数y=mx的图象上,且△AOB 的面积为3,OB=3,求:(1)点A 的坐标;(2)函数y=mx的解析式;(3)直线AC 的函数关系式为y=27x+87,求△ABC 的面积? 四、应用题27.某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,•室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(•如图所示),现测得药物8min 燃毕,此时室内空气中每立方米的含药量为6mg ,•请你根据题中所提供的信息,解答下列问题.(1)药物燃烧时y 关于x 的函数关系式为________,自变量x 的取值范围是______;药物燃烧后y 与x 的函数关系式为__________.(2)研究表明,当空气中每立方米的含药量低于1.6mg 时学生方可进教室,那么从消毒开始,至少多少分钟后学生才能回到教室?(3)研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?yxCBAOx/miny/mg8O答案:1.B 2.C 3.A 4.C 5.D 6.B 7.D 8.B 9.C 10.C 11.y=2x - 12.略 13.略 14.第四 15.二、四 16.1 一 17.反比例;1218kk18.(-1,-1) 19.图象略,交点坐标为(2,4),(-2,-4) 20.y=-3x+121.(1)y=-2x-3,y=2x -;(2)B (12,-4);(3)S △AOB =334• 22.(1)a=60h 或h=60a ;(2)图略;(3)a=6(cm )23.(1)v=2t (t>0);(2)图略;(3)v=23,12,25;(4)略24.(1)y=4x;(2)y 1<y 225.(1)A (3,2);(2)y=6x;(3)S △ABC =726.(1)设正比例函数的解析式为y=k 1x ,反比例函数的解析式为y=2k x ,将(8,6)•分别代入这两个解析式中求出k 1=34,k 2=48,∴正比例函数的解析式为y=34x (0≤x≤8)(•即燃烧时的关系式);反比例函数(即药物燃烧后)的关系式为y=48x.(2)将y=1.6代入y=48x 中可求得x=30,即至少30分钟后学生才能回到教室.(3)将y=3分别代入y=34x 和y=48x中,得x=•4和x=16.∵16-4>10,∴此次消毒有效.。
反比例函数》单元测试题(含答案)-1.给定双曲线经过点(-2,3),求解析式。
解析:双曲线的一般式为y=k/x,代入点(-2,3)可得3=k/(-2),解得k=-6,所以双曲线的解析式为y=-6/x。
2.已知y与x成反比例,且y=1时,x=4,求x=2时的y 值。
解析:由反比例函数的定义可知,y1*x1=y2*x2,代入y=1,x=4可得1*4=y2*2,解得y2=2,所以当x=2时,y=2.3.已知反比例函数和正比例函数的图象都经过点A(-1,-2),求它们的解析式。
解析:正比例函数的图象为直线y=kx,代入点A可得-2=k*(-1),解得k=2,所以正比例函数的解析式为y=2x。
反比例函数的图象为双曲线y=k/x,代入点A可得-2=k/(-1),解得k=2,所以反比例函数的解析式为y=2/x。
4.某厂有1500吨煤,求这些煤能用的天数y与每天用煤的吨数x之间的函数关系式。
解析:假设每天用煤的吨数为x,那么1500吨煤能用的天数为y=1500/x,所以函数关系式为y=1500/x。
5.若点(3,6)在反比例函数y=k/x(k≠0)的图象上,那么下列各点在此图象上的是()解析:由反比例函数的图象可知,其图象为双曲线,因此点(3,6)在图象上,而点(-3,-6)、(2.-9)、(2.9)、(3.-6)不在图象上。
6.已知反比例函数的图象过(2,-2)和(-1,n),求n的值。
解析:反比例函数的图象为双曲线,过点(2,-2)和(-1,n)的双曲线有两个分支,分别为y=k/x和y=-k/x,因此可列出方程组-2=k/2和n=-k/-1,解得k=4,n=4,所以n的值为4.7.反比例函数y=k^3/x的图像经过(-,5)点、(a,-3)及(10,b)点,求k、a、b的值。
解析:代入三个点可得5=k^3/-,-3=k^3/a^3,b=k^3/10,解得k=∛(-50),a=∛(k^3/-3),b=10∛(-50)。
10题《第十七章反比例函数》诊断测试卷(满分:150分,90分钟完卷)一、选择题(每小题4分,共计40分) 1.下列函数中,y 是x 的反比例函数是( )A.21x y=B.8=xyC.32-=x yD.23-=xy2. 某反比例函数的图象经过点(23)-,,则此函数图象也经过点( )A .(23)-,B .(33)--,C .(23),D .(46)-,3.如果直线)0(≠+=ab b ax y 不经过第三象限,那么反比例函数xay =的图象位于( ) A .第一、三象限 B.第二、四象限 C.第三、四象限 D.第一、二象限 4.反比例函数4y x=-的图象大致是( )5.若1m <-,则下列函数①(0)m y x x=>,②y =-mx+1,③y =mx ,④y =(m+1)x 中,y 随x 增大而增大的是( )A. ①②B. ②③ C . ①③ D . ③④ 6.如图,某个反比例函数的图像经过点P ,则它的解 析式为( )A.1(0)y x x => B.1(0)y x x =->C. 1(0)y x x=<D. )0(1<-=x xy7.某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )8.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c > B .b c <C .b c =D .无法判断9.若M(12-,y 1)、N(14-,y 2)、P(12,y 3)三点都在函数ky x=(k>0)的图象上,则y l 、y 2、y 3的大小关系是( )A.y 2>y 3>y 1B. y 2>y 1>y 3C. y 3>y 1>y 2D. y 3>y 2>y 110.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是S S S 123、、,则A .S S S 123<<B .S S S 213<< C . S S S 132<<D .S S S 123==二、填空题(每小题4分,共40分)11.已知xy2=,当0<x 时,函数的图象在 象限. 12.如果反比例函数xm y 42+=的图象在第一、三4题图6题图7题图象限 ,那么m 的取值范围是 . 13. 如果反比例函数xm y 12-=的图象经过(2,-1),则=m ,函数关系式为 . 14.已知反比例函数ky x=的图象经过点(3)m m ,,则此反比例函数的图象在第 象限。
数学反比例函数测试题及试卷答案(时间90分钟 满分100分)班级 学号 姓名 得分一、选择题(每小题3分,共24分)1.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 ( ) A .正比例函数 B .反比例函数 C .一次函数D .二次函数2.函数y =-4x的图象与x 轴的交点的个数是 ( )A .零个B .一个C .两个D .不能确定3.反比例函数y =-4x的图象在 ( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y =xk的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( ) A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 33)第6题7.如果点P 为反比例函数xy 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ 的面 积为 ( ) A .2 B . 4 C .6 D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时, y 1<y 2,则m 的取值范围 ( )A .m <0B .m >0C .m <21 D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____. 10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 . 13.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两 个交点,你认为这两位同学所描述的反比例函数的解析式是 . 15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 . 16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 . 17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 . 18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在k y x =的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;O 12 第17题④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分). 三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x的函数表达式,并画出函数的图象.21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy =的图像相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?23.(6分)双曲线5y x在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0).(1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.第21题图24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m - (1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客.(1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?27.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如图所示:(1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清?图1图2月)y ()28.(8分)如图,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的关系式;(2)求△AOC 的面积.新人教八年级(下)第17章《反比例函数》答案一、选择题1.B;2. A;3. B;4. A ;5. B ;6. C ;7.A ;8. C.二、填空题9.y =x m 210.152y x=- 11.三 12.y =x 500 13.m ≠-5 n =-3 14.y =x 3 15.B16.n >4,n <4 17.(0) 18.①②④ 三、解答题 19.(1)y =x 6;(2)在 20. y =6x ,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<1 22.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q==,;(5)48412t ==23.(1)51a k =-+, (2) 25 24.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =x k(k >0),当x 变小时,y 增大 27.(1)y =t6000 ;(2)7000-6000=1000(元);(3)400=t6000,t =15 28.(1)8xy =-;(2)126。
反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。
0B。
1C。
2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。
4,12B。
4,6C。
8,12D。
8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。
二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。
反比例函数基础练习1. 双曲线ky x=经过点(2-,3),则_____=k ; 2. 已知y 与x 成反比例,当1=y 时,4=x ,则当2=x 时,_____=y ;3. 反比例函数和正比例函数的图象都经过点A(1-,2-),则这两个函数的解析式分别是_________和_________;4. 某厂有煤1500吨,求这些煤能用的天数y 与每天用煤的吨数x 之间的函数关系式为_________;5. 若点(3,6)在反比例函数xky =(k ≠0)的图象上,那么下列各点在此图象上的是( ) (A )(3-,6) (B ) (2,9) (C )(2,9-) (D )(3,6-)6. 已知反比例函数的图象过(2,-2)和(-1,n ),则n 等于 ( ) (A )3 (B )4(C )6(D )127. 反比例函数xk y =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;8. 已知2-y 与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ; 9. 如果函数22(1)m y m x -=-是反比例函数,那么m 的值是_________ ;10. 反比例函数xky =(k ≠0)的图象是__________,当k >0时,图象的两个分支分别在第__________、__________象限内,在每个象限内,y 随x 的增大而__________;当k <0时,图象的两个分支分别在第__________、__________象限内,在每个象限内,y 随x 的增大而__________; 11. 已知函数1k y x+=的图象两支分布在第二、四象限内,则k 的范围是_________ 12. 反比例函数 2k y x= (0≠k )的图象的两个分支分别位于 ( )(A ) 第一、二象限 (B ) 第一、三象限 (C ) 第二、四象限 (D ) 第一、四象限 13. 若反比列函数1232)12(---=k k xk y 的图像经过二、四象限,则k = _______14. 已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) (A ) (a -,b -) (B ) (a ,b -) (C ) (a -,b ) (D ) (0,0) 15. 反比例函数422)1(---=m mx m y ,当x <0时,y 随x 的增大而增大,则m 的值是( )(A ) 1- (B ) 3(C ) 1-或3 (D ) 216. 若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都是反比例函数xy 1-=的图象上的点,且 x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是 ; 17. 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________18. 点A 为反比例函数图象上一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内.则这个反比例函数的解析式为 ( )(A ) 12y x =(B ) 12y x =- (C ) 112y x= (D ) 112y x =- 19. 反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 ;20. 如图2所示,A 、B 是函数xy 1-=的图象上关于原点O 对称的任意两点,AC ∥x 轴,BC ∥y 轴,△ABC 的面积为S ,则 ( ) (A ) S =1 (B ) S =2(C ) 1<S <2(D ) S <221. 已知12y y y =+,其中1y 与1x成反比例且比例系数为1k ,2y 与2x 成正比例且比例系数为2k ,若1-=x 时,0=y ,则1k 与2k 的关系为 ( )(A ) 12k k =- (B ) 12k k ≠ (C ) 121k k =- (D ) 12k k = 22. 若ab <0,则函数ax y =与xby =在同一坐标系内的图象大致可能是下图中的 ( )(A ) (B ) (C ) (D )23. 函数2x y -=和函数xy 2=的图像有 个交点; 24. 已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ; 25. 直线x y 2=与双曲线xy 1=的交点为_________; yO PM26. 如图1,正比例函数)0(>=k kx y 与反比例函数xy 1=的图象相交于 A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC ,则△ABC 的面积S =_________. 27. 在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )A B C D28. 已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-2;当x =2时,y=-7,求y 与x 间的函数关系式.29. 反比例函数y =-x6与直线y =-x +2的图象交于A 、B 两点,点A 、B 分别在第四、二象限,求:(1)A 、B 两点的坐标; (2)△ABO 的面积.30. 如图2,第一象限的角平分线OM 与反比例函数的图象相交于点A ,已知OA =22. (1)求点A 的坐标; (2)求此反比例函数的解析式.如图,Rt ⊿ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点,AB ⊥x 轴于B 且S △ABO =23 (1)求这两个函数的解析式(2)求直线与双曲线的两个交点A ,C 的坐标和△AOC 的面积。
第6题
一、选择题(每小题3分,共24分)
1.三角形的面积为8cm 2
,这时底边上的高y (cm )与底边x (cm )之
间的函数关系用图像来表示是( )
2.下列各问题中,两个变量之间的关系不是反比例函数的是( )
A .小明完成100m 赛跑时,时间t (s )与他跑步的平均速度v (m/s )之间的关系.
B .菱形的面积为48cm 2
,它的两条对角线的长为y (cm )与x (cm )的关系.
C .一个玻璃容器的体积为30L 时,所盛液体的质量m 与所盛液体的体积V 之间的关系.
D .压力为600N 时,压强p 与受力面积S 之间的关系.
3.已知点(3,1)是双曲线y=
k
x
(k≠0)上一点,则下列各点中在该图象上的点是( ). A .(13,-9) B .(3,1) C .(-1,3) D 4.若双曲线6
y x =-经过点A (m ,3),则m 的值为
A .2
B .-2
C .3
D .-3
5.如图,A 、B 、C 作垂线,构成三个矩形,它们的面积分别是S 1、S 2、S 3大小关系是
A .S 1=S 2>S 3
B .S 1<S 2<S 3
C .S 1>S 2>S 3
D .S 1=S 2=S 3 6.如图所示,A 、C 是函数y=
1
x
的图象上的任意两点,过A 点作AB⊥x 轴于点B
,过C•点作CD⊥y 轴于点D ,记△AOB 的面积为S 1,△COD 的面积为S 2,则( ) A .S 1>S 2 B .S 1<S 2 C .S 1=S 2 D .无法确定
7.若函数y=(m+2)
|m|-3
是反比例函数,则m 的值是( )
A .2
B .-2
C .±2 D.×2
8.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y=4
x
的图象上,则( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3 二、填空题(每小题3分,共30分)
9.长方形的面积为60cm 2
,如果它的长是ycm ,宽是xcm ,那么y 是x 的 函数关系,y 写成x 的关系式是 .
10.A 、B 两地之间的高速公路长为300km ,一辆小汽车从A 地去B 地,假设在途中是匀速直线运动,
速度为v km/h ,到达时所用的时间是t h ,那么t 是v
系式是 .
11函数关系式是 . 12.已知反比例函数y x
=
2,当
y =6时,x =13.反比例函数y a x a a =---()3224的函数值为414.反比例函数的图象过点(-3,5),则它的解析式为15.若函数y x =4与y x
=1的图象有一个交点是(12_________。
16.已知反比例函数32
m y x
-=
,当______m 时,其图象的两个分支在第一、三象限内。
17.已知一次函数y=3x+m 与反比例函数y=3
m x
-的图象有两个交点,当m=_____时,有一个交点的
纵坐标为6.
18.若一次函数y=x+b 与反比例函数y=
k
x
图象,在第二象限内有两个交点,•则k______0,b_______0,(用“>”、“<”、“=”填空) 三、解答题(共46分)
19.(8分)如图所示是某一蓄水池每小时的排水量V (m 3
/h )与排完水池中的
水所用的时间t (h )之间的函数关系图像. ①请你根据图像提供的信息求出此蓄水池的蓄水量.
②写出此函数的解析式
③若要6h 排完水池中的水,那么每小时的排水量应该是多少?
④如果每小时排水量是5m 3
20.(6分)如图正比例函数y=k 1x 点A ,从A 向x 轴、y 面积为4.
③求△ODC 的面积.
21.(6分)如图,Rt △ABO 的顶点A (a 、b )是一次函数y=x+m
的图像与反比例函数x
k
y = 的图像在第一象限的交点,且S △ABO =3.
①根据这些条件你能够求出反比例函数的解析式吗? 如果能够,请你求出来,如果不能,请说明理由.
②你能够求出一次函数的函数关系式吗?如果能,请你求出来,如果不能,请你说明理由.
22.(6分)一封闭电路中,当电压是6V 时,回答下列问题: (1)写出电路中的电流I(A)与电阻R(Ω)之间的函数关系式.
(2)画出该函数的图像.
(3)如果一个用电器的电阻是5Ω,其最大允许通过的电流为1A,那么只把这个用电器接在这个封闭电路中,会不会烧坏?试通过计算说明理由.
23.(8分)如图所示是某个函数图像的一部分,根据图像回答下列问题:
(1)这个函数图像所反映的两个变量之间是怎样的函数关系?
(2)请你根据所给出的图像,举出一个合乎情理且符合图像所给出的情形的实际例子.
(3)写出你所举的例子中两个变量的函数关系式,并指出自变量的取值范围.
(4)说出图像中A点在你所举例子中的实际意义.
24.(10分)小明在某一次实验中,测得两个变量之间的关系如下表所示:
请你根据表格回答下列问题:
①这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由.
②请你写出这个函数的解析式.
③表格中空缺的数值可能是多少?请你给出合理的数值.
新人教八年级(下)《反比例函数》答案
一、选择题
1.D 2.C 3.B 4.B 5.D 6.C 7.A 8.D 二、填空题 9.反比例函数,x y 60=
10.反比例函数,v
t 300= 11.正比例函数,y =-2x , 反比例函数,x y 2-= 12.13 13.-1 14.15
y x =- 15.(12-,-2) 16. > 23
17.m=5 18.<,>
三、解答题
19.(1)48m 3
;(2)V =
t 48;(3)8m 3
;(4)9.6小时 20.(1)y =x ;(2)D (-2,-2);(3)2平方单位 21.(1)x y 6=;(2)略 22.(1)R I 6
=;(2)略;(3)会烧坏用电器 23.略 24.(1)
反比例函数;(2)x
y 12
=;(3)近似于6与4即可。