九年级数学上学期10月月考试卷(含解析) 新人教版五四制
- 格式:doc
- 大小:621.01 KB
- 文档页数:32
人教版数学九年级上册10月月考试卷附答案一、选择题(共10小题;共30分)1. 下列四个函数中,一定是二次函数的是A. B.C. D.2. 抛物线的对称轴是直线A. B. C. D.3. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是4. 下列说法正确的是A. “明天降雨的概率是”表示明天有的时间都在降雨B. “抛一枚硬币正面朝上的概率为次就有一次正面朝上C. “彩票中奖的概率为”表示买张彩票肯定会中奖D. “抛一枚正方体骰子,朝上的点数为的概率为“抛出朝上的点数为”这一事件发生的频率稳定在附近5. 某工厂一种产品的年产量是件,如果每一年都比上一年的产品增加倍,两年后产品与的函数关系是A. B.C. D.6. 小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字,,,现将标有数字的一面朝下,小明从中任意抽取一张.记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小亮胜.获胜概率大的是A. 小亮B. 小明C. 一样D. 无法确定7. 是关于的二次函数,当的取值范围是时,在时取得最大值,则实数的取值范围是A. B. C. D.8. 已知,,为非负实数,且,则代数式的最小值为B. C. D.9. 如图,已知:正方形边长为,,,,分别为各边上的点,且,设小正方形的面积为,为,则关于的函数图象大致是A. B.C. D.10. 如图,已知抛物线和直线.我们约定:当任取一值时,对应的函数值分别为,,若,取,中的较小值记为;若,记.下列判断:①当时,;②当时,值越大,值越大;③使得大于的值不存在;④若,则.其中正确的有A. 个B. 个C. 个D. 个二、填空题(共6小题;共18分)11. 某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活率的概率为(精确到).12. 抛物线经过点和两点,则.13. 函数:的顶点坐标是.14. 某果园有棵橘子树,平均每一棵树结个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结个橘子.设果园增种棵橘子树,果园橘子总个数为个,则果园里增种棵橘子树,橘子总个数最多.15. 已知和时,多项式的值相等,且,则当时,多项式的值等于.16. 抛物线经过点,,,已知,.(1)如图,为线段上一点,过点作轴平行线,交抛物线于点,当的面积最大时,点的坐标为;(2)抛物线顶点为,轴于点,是轴上一动点,是线段上一点,若,实数的变化范围是.三、解答题(共8小题;共102分)17. 如图所示,转盘被等分成八个扇形,并在上面依次标有数字,,,,,,,.(1)自由转动转盘,当它停止转动时,指针指向的数正好能被整除的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为18. 已知:抛物线.(1)完成下表:(2)在下面的坐标系中描点画出抛物线的图象.19. 如图,已知二次函数过点,.(1)求此二次函数的式;(2)在抛物线上存在一点使的面积为,请直接写出点的坐标.20. 根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润(千元)与进货量(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润(千元)与进货量(吨)之间的函数图象如图②所示.(1)分别求出,与之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共吨,设乙种蔬菜的进货量为吨,写出这两种蔬菜所获得的销售利润之和(千元)与(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?21. 一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球个,蓝球个,黄球若干个,现从中任意摸出一个球是红球的概率为(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用"画树状图法"或"列表法",求两次摸出都是红球的概率;(3)现规定:摸到红球得分,摸到黄球得分,摸到蓝球得分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球,第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于分的概率.22. 已知二次函数的图象经过点.(1)求的值并写出当时的取值范围;(2)设,,在这个二次函数的图象上,当取不小于的任意实数时,,,一定能作为同一个三角形三边的长,请说明理由.23. 已知,,,,五个点,抛物线经过其中的三个点.(1)求证:,两点不可能同时在抛物线上;(2)点在抛物线上吗?为什么?(3)求和的值.24. 如图,在平面直角坐标系中,矩形的边、分别在轴和轴的正半轴上,且长分别为、,为边的中点,一抛物线经过点、及点.(1)求抛物线的解析式(用含的式子表示);(2)把沿直线折叠后点落在点处,连接并延长与线段的延长线交于点,若抛物线与线段相交,求实数的取值范围;(3)在满足(2)的条件下,求出抛物线顶点到达最高位置时的坐标.答案第一部分1. D2. B3. B4. D5. C6. A7. B8. D9. B10. C第二部分11.13.14.【解析】假设果园增种棵橘子树,那么果园共有棵橘子树,每多种一棵树,平均每棵树就会少结个橘子,这时平均每棵树就会少结个橘子,则平均每棵树结个橘子.果园橘子的总产量为,则,当(棵)时,橘子总个数最多.15.【解析】先将和时,多项式的值相等理解为和时,二次函数的值相等,则抛物线的对称轴为直线,又二次函数的对称轴为直线,得出,化简得,即可求出当时,的值.第三部分17. (1)(2)根据随机事件概率的求法:当自由转动的转盘停止时,指针指向的区域的概率为个即可;如:当自由转动转盘停止时,指针指向区域的数小于的概率(答案不唯一).18. (1)填表如下:(2)如图所示:19. (1)二次函数过点,,解得二次函数的解析式为.(2)或.【解析】当时,,解得:,,,,,设,的面积为,,解得:,当时,,解得:,.当时,,方程无解,故.20. (1)由题意得:,解得.;由;(2)甲种蔬菜进货量为吨,乙种蔬菜进货量为吨时,获得的销售利润之和最大,最大利润是元.21. (1)设口袋中黄球的个数为,根据题意得:,解得.经检验是原分式方程的解.∴ 口袋中黄球的个数为.(2)画树状图,如图,∵ 共有种等可能的结果,两次摸出都是红球的有种情况,∴ 两次摸出都是红球的概率为.(3)∵ 摸到红球得分,摸到蓝球得分,摸到黄球得分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球,第二次又随机摸到一个蓝球,∴ 乙同学已经得了分,∴ 若随机再摸一次,共有种等可能的结果,乙同学三次摸球所得分数之和不低于分的有种情况,∴ 若随机再摸一次,乙同学三次摸球所得分数之和不低于分的概率为22. (1)把代入二次函数得:,,,抛物线的开口方向向上,对称轴是直线,把代入得:,把代入得:,当时的取值范围是.(2)把,,代入得:,,,,,,根据三角形的三边关系定理:三角形的任意两边之和大于第三边(也可求出两小边的和大于第三边),当取不小于的任意实数时,,,一定能作为同一个三角形三边的长.23. (1)抛物线的对称轴为,而,两点纵坐标相等,由抛物线的对称性可知,,关于直线对称,又与对称轴相距,与对称轴相距,,两点不可能同时在抛物线上.(2)假设点在抛物线上,则,解得,抛物线经过个点中的三个点,将,,,代入,得出的值分别为,,,,抛物线经过的点是,,又,与矛盾,假设不成立.不在抛物线上.(3)将,两点坐标代入中,得解得或将,两点坐标代入中,得解得综上所述,或24. (1)设抛物线的解析式为.将,,,得解得所以抛物线的解析式为.(2)过点作轴于点,设交轴于点.由折叠的性质可得..又,..设,则,在中,,解得.,..点坐标为.易求直线的解析式为,当时,.点坐标为.当抛物线经过点时,解得.当抛物线与经过点时,解得.的取值范围为.(3).抛物线开口向下,最大时,顶点达到最高位置.当时,随的增大而增大,在内,当时,.最高点的坐标为.。
人教版初三九年级上学期10月月考数学试题(含答案)一、选择题(每小题3分,共30分)1.下列方程一定是一元二次方程的是( ) A .22310x x+-= B .25630x y --=C .20ax bx c ++=D .23210x x --=2.下列说法正确的是( ) A .矩形对角线相互垂直平分 B .对角线相等的菱形是正方形 C .两邻边相等的四边形是菱形D .对角线分别平分对角的四边形是平行四边形3.若关于x 的方程20x x m --=没有实数根,则m 的值可以为( ) A .1-B .14-C .0D .14.若菱形ABCD 的一条对角线长为8,边CD 的长是方程210240x x -+=的一个根,则该菱形ABCD 的周长为( ) A .16B .24C .16或24D .485.如图,矩形ABCD 的对角线8AC =,120BOC ∠=︒,则BC 的长为( )A .B .4C .D .86.如图,在ABC ∆中,点E 、D 、F 分别在边AB 、BC 、CA 上,且//DE CA ,//DF BA ,下列四个判断中,不正确的是( ) A .四边形AEDF 是平行四边形B .如果AD EF =,那么四边形AEDF 是矩形C .如果AD 平分EAF ∠,那么四边形AEDF 是菱形 D .如果AD ⊥BC 且AB=AC ,那么四边形AEDF 是正方形7.如图,一块长方形绿地的长为100m ,宽为50m ,在绿地中开辟两条道路后剩余绿地面积为24704m 。
则根据题意可列出方程( ) A .50001504704x -=B .250001504704x x -+= C .250001504704x x --=D .21500015047042x x -+=8.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若140ABC ∠=︒,则OED ∠=( ) A .20︒B .30︒C .40︒D .50︒9.如图Rt ABC ∆中,90ABC ∠=︒,6AB cm =,8BC cm =,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 移动,点Q 从点B 出发,沿BC 边以2cm /秒的速度向点C 移动,如果点P ,Q 分别从点A ,B 同时出发,在运动过程中,设点P 的运动时间为t ,则当BPQ ∆的面积为8cm 时,t 的值( ) A .2或3B .2或4C .1或3D .1或410.如图,P 为正方形ABCD 的对角线BD 上任一点,过点P 作PE BC ⊥于点E ,PF CD ⊥于点F ,连接EF 。
2016-2017学年山东省潍坊市高密四中文慧学校九年级(上)月考数学试卷(10月份)一.选择题(每小题3分,共36分)1.sin60°的值等于()A.B.C.D.2.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8 D.43.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠ABC=3,则BD 等于()A.2 B.3 C.3 D.24.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形5.在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm6.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.7.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75° B.60° C.45° D.30°8.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A. cm B.5cm C.6cm D.10cm9.如图,在Rt△ABC中,∠C=90°,∠A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为()A.26° B.64° C.52° D.128°10.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.511.如图,圆内接四边形ABCD的两组对边的延长线分别相较于点E,F,若∠A=55°,∠E=30°,则∠F=()A.25° B.30° C.40° D.55°12.如图,⊙O的直径BD=6,∠A=60°,则BC的长度为()A.B.3 C.3 D.4二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,那么sinA= .14.如图,△ABC中,∠ACB=90°,tanA=,AB=15,AC= .15.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.16.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB= .17.如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为.18.在⊙O中,弦AB=2cm,圆心角∠AOB=60°,则⊙O的直径为cm.19.如图,在⊙O中, =,若∠AOB=40°,则∠COD= °.20.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD= .三.解答题(共60分)21.计算:sin30°+tan60°﹣cos45°+tan30°.22.如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽AB为24cm,求截面上有油部分油面高CD(单位:cm).23.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BD=2,连接CD,求BC的长.24.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)25.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)26.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.2016-2017学年山东省潍坊市高密四中文慧学校九年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(每小题3分,共36分)1.sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值求出答案.【解答】解:sin60°=.故选:C.2.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8 D.4【考点】解直角三角形.【分析】根据cosB=及特殊角的三角函数值解题即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cosB=,即cos30°=,∴BC=8×=4;故选:D.3.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠ABC=3,则BD 等于()A.2 B.3 C.3 D.2【考点】解直角三角形.【分析】根据三角函数定义可得AD=AC•sin45°,从而可得AD的长,再利用正切定义可得BD的长.【解答】解:∵AC=6,∠C=45°,∴AD=AC•sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选:A.4.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值得出∠A,∠B的度数,进而得出三角形的形状.【解答】解:∵cosA=,tanB=,∴∠A=45°,∠B=60°,∴∠C=75°,则这个三角形一定是锐角三角形.故选:D.5.在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm【考点】解直角三角形.【分析】根据三角函数的定义求得BC和AB的比值,设出BC、AB,然后利用勾股定理即可求解.【解答】解:∵sinA==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),则BC=4x=8cm,故选:C.6.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.【考点】锐角三角函数的定义.【分析】找到∠ABC所在的直角三角形,利用勾股定理求得斜边长,进而求得∠ABC的邻边与斜边之比即可.【解答】解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为=2.∴cos∠ABC==.故选B.7.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75° B.60° C.45° D.30°【考点】圆周角定理.【分析】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.8.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A. cm B.5cm C.6cm D.10cm【考点】圆周角定理;勾股定理.【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再来求半径即可.【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是: MN=5cm.故选:B.9.如图,在Rt△ABC中,∠C=90°,∠A=26°,以点C为圆心,BC为半径的圆分别交AB、AC于点D、点E,则弧BD的度数为()A.26° B.64° C.52° D.128°【考点】圆心角、弧、弦的关系.【分析】先利用互余计算出∠B=64°,再利用半径相等和等腰三角形的性质得到∠CDB=∠B=64°,则根据三角形内角和定理可计算出∠BCD,然后根据圆心角的度数等于它所对弧的度数求解.【解答】解:∵∠C=90°,∠A=26°,∴∠B=64°,∵CB=CD,∴∠CDB=∠B=64°,∴∠BCD=180°﹣64°﹣64°=52°,∴的度数为52°.故选:C.10.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.5【考点】垂径定理;勾股定理.【分析】根据垂径定理由OC⊥AB得到AD=AB=4,再根据勾股定理开始出OD,然后用OC﹣OD即可得到DC.【解答】解:∵OC⊥AB,∴AD=BD=AB=×8=4,在Rt△OAD中,OA=5,AD=4,∴OD==3,∴CD=OC﹣OD=5﹣3=2.故选A.11.如图,圆内接四边形ABCD的两组对边的延长线分别相较于点E,F,若∠A=55°,∠E=30°,则∠F=()A.25° B.30° C.40° D.55°【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质求出∠BCF,根据三角形的外角的性质求出∠CBF,根据三角形内角和定理计算即可.【解答】解:∵四边形ABCD是圆内接四边形,∴∠BCF=∠A=55°,∵∠CBF是△ABE的一个外角,∴∠CBF=∠A+∠E=85°,∴∠F=180°﹣∠BCF﹣∠CBF=40°,故选:C.12.如图,⊙O的直径BD=6,∠A=60°,则BC的长度为()A.B.3 C.3 D.4【考点】圆周角定理.【分析】根据圆周角定理求出∠D的度数,根据正弦的定义计算即可.【解答】解:由圆周角定理得,∠D=∠A=60°,则BC=BD×sin∠D=6×=3,故选:C.二.填空题(每小题3分,共24分)13.如图,在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,那么sinA= .【考点】锐角三角函数的定义.【分析】根据勾股定理求出斜边AB的长,根据正弦的概念求出sinA.【解答】解:∵,∠C=90°,BC=3,AC=4,由勾股定理得,AB=5,sinA==.故答案为:.14.如图,△ABC中,∠ACB=90°,tanA=,AB=15,AC= 9 .【考点】解直角三角形.【分析】根据锐角三角函数的定义先设BC=4x,得出AC=3x,再根据勾股定理求出求出x的值,从而得出AC.【解答】解:∵∠ACB=90°,tanA==,∴设BC=4x,则AC=3x,∵AB==15,∴15=,解得:x2=9,∴x1=3或x2=﹣3(不合题意,舍去),∴AC=3x=9;故答案为:9.15.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.【考点】解直角三角形;坐标与图形性质.【分析】过点A作AB⊥x轴于B,根据正切等于对边比邻边列式求解即可.【解答】解:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα===,∴t=.故答案为:.16.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB= 6 .【考点】锐角三角函数的定义.【分析】根据正弦函数的定义即可直接求解.【解答】解:∵sinB=,∴AB===6.故答案是:6.17.如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为.【考点】垂径定理.【分析】根据垂径定理求出AC,根据勾股定理求出OA即可.【解答】解:∵弦AB=6,圆心O到AB的距离OC为2,∴AC=BC=3,∠ACO=90°,由勾股定理得:OA===,故答案为:.18.在⊙O中,弦AB=2cm,圆心角∠AOB=60°,则⊙O的直径为 4 cm.【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.【分析】根据题意画出图形,再由等边三角形的性质即可得出结论.【解答】解:如图所示,∵在⊙O中AB=2cm,圆心角∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB=2cm,∴⊙O的直径=2OA=4cm.故答案为:4.19.如图,在⊙O中, =,若∠AOB=40°,则∠COD= 40 °.【考点】圆心角、弧、弦的关系.【分析】先根据在⊙O中, =,可得出=,再由∠AOB=40°即可得出结论.【解答】解:∵在⊙O中, =,∴=,∵∠AOB=40°,∴∠COD=∠AOB=40°.故答案为:40.20.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD= 2.【考点】锐角三角函数的定义.【分析】连接BC可得RT△ACB,由勾股定理求得BC的长,进而由tanD=tanA=可得答案.【解答】解:如图,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=6,AC=2,∴BC===4,又∵∠D=∠A,∴tanD=tanA===2.故答案为:2.三.解答题(共60分)21.计算:sin30°+tan60°﹣cos45°+tan30°.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=×+﹣+=.22.如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽AB为24cm,求截面上有油部分油面高CD(单位:cm).【考点】垂径定理的应用;勾股定理.【分析】根据垂径定理,易知AC、BC的长;连接OA,根据勾股定理即可求出OC的长,进而可求出CD的值.【解答】解:如图;连接OA;根据垂径定理,得AC=BC=12cm;Rt△OAC中,OA=13cm,AC=12cm;根据勾股定理,得:OC==5cm;∴CD=OD﹣OC=8cm;∴油面高为8cm.23.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BD=2,连接CD,求BC的长.【考点】圆周角定理;勾股定理;等腰直角三角形;锐角三角函数的定义.【分析】先根据圆周角定理可求出∠D=45°,∠BCD=90°,再根据三角形内角和定理可知△BCD是等腰直角三角形,由锐角三角函数的定义即可求出BC的长.【解答】解:在⊙O中,∵∠A=45°,∠D=45°,∵BD为⊙O的直径,∴∠BCD=90°,∴△BCD是等腰直角三角形,∴BC=BD•sin45°,∵BD=2,∴.24.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)【考点】解直角三角形的应用.【分析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为48m25.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)【考点】解直角三角形的应用-方向角问题.【分析】作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△PAC中利用正切的定义得到8+x=,解得x=4(+1)≈10.92,即AC≈10.92,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.【解答】解:没有触礁的危险.理由如下:作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,设PC=x,在Rt△PBC中,∵∠PB C=45°,∴△PBC为等腰直角三角形,∴BC=PC=x,在Rt△PAC中,∵tan∠PAC=,∴AC=,即8+x=,解得x=4(+1)≈10.92,即AC≈10.92,∵10.92>10,∴海轮继续向正东方向航行,没有触礁的危险.26.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.【考点】圆周角定理;等腰三角形的判定与性质;勾股定理.【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,证明△CDE∽△CBA后即可求得CD的长.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)方法一:解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2)2﹣a2∴42﹣(4﹣a)2=(2)2﹣a2整理得:a=,即:CD=.。
安丘市金冢子中学阶段性质量检测题(九年级数学学科)题号总分得分阅卷人一、选择题(12×3=36)1.关于相似的下列说法正确的是()A、所有直角三角形相似B、所有等腰三角形相似C、有一角是80°的等腰三角形相似D、所有等腰直角三角形相似2.如图,在□ABCD中,EF∥AB,DE∶EA=2∶3,EF=4,则CD的长为()A.163B.8 C.10 D.163.如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条B.2条C.3条D.4条4. 在△ABC中,∠C=90°,如果tanA=512,那么sinB的值的等于()A、513B、1213C、512D、1255.2sin60°的值等于()A.1B.C.D.236. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)7.如图,△ABC中,点D在线段BC上,且△ABC△△DBA,则下列结论一定正确的是()A.A B2=BC•BD B.A B2=AC•BD C.A B•AD=BD•BC D.A B•AD=AD•C D8.如图,在△ABC中,△C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos△BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm9. 河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米10. 如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米11. 将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是()A.247B.127C.247或4 D.127或4.12.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()检测等级:13.如图,在等边△ABC中,D为BC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为_________.14. 阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC= _________m.15. 某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点A的仰角为60°,则建筑物AB的高度是_________m.16.﹣4cos60°+(2014﹣π)0﹣tan45°=_________.17.已知△ABC中,AB=8,AC=6,点D是线段AC的中点,点E在线段AB上且△ADE∽△ABC,则AE=_______.18.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是.三、解答题19.[请单击此处编辑试题]如图,AD=2,AC=4,BC=6,△B=36°,△D=117°,△ABC△△DAC.(1)求AB的长;(2)求CD的长;(3)求△BAD的大小.20.如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD DE 21.⑴求证:△ABF ∽△CEB ; ⑵若△DEF 的面积为2,求□ABCD 的面积.21. 如图,四边形ABCD 中,AC 平分∠DAB,∠ADC=∠ACB=90°, E 为AB 的中点,(1)求证:AC 2=AB•AD; (2)求证:CE∥AD; (3)若AD=4,AB=6,求的值.FADEB C22.如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.11.732)23.已知,如图:△ABC是等腰直角三角形,△ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH△AB,垂足为H,交AC于E.(1)若△ABD是等边三角形,求DE的长;(2)若BD=AB,且tan△HDB=,求DE的长.24. 如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).数学月考答案:选择:1.D2.C 3C4 .B 5.C. 6.A 7.A 8.A 9.A 10.D 11.C. 12.A 13.9 14.4 16.1 17.9 418.74解答:19..21.22.23.24.。
九年级上学期月考数学试卷(10月份)一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=03.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+14.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.196.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10008.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1二、填空题(每空4分,20分)11.使分式的值等于零的x的值是.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0是.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(只填序号)三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.一、选择题(每题4分,40分)1.下列函数中,是二次函数的是()A.B.y=x2﹣(x﹣1)2C.D.考点:二次函数的定义.分析:根据二次函数的定义逐一进行判断.解答:解:A、等式的右边不是整式,不是二次函数,故本选项错误;B、原式化简后可得,y=2x﹣1,故本选项错误;C、符合二次函数的定义,故本选项正确;D、分母中含有未知数,不是整式方程,因而不是一元二次方程,故本选项错误;故选C.点评:本题考查了二次函数的定义,要知道:形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项.x为自变量,y为因变量.等号右边自变量的最高次数是2.2.把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣4x﹣4=0 B.x2﹣5=0 C.5x2﹣2x+1=0 D.5x2﹣4x+6=0考点:一元二次方程的一般形式.分析:先把(x﹣)(x+)转化为x2﹣2=x2﹣5;然后再把(2x﹣1)2利用完全平方公式展开得到4x2﹣4x+1.再合并同类项即可得到一元二次方程的一般形式.解答:解:(x﹣)(x+)+(2x﹣1)2=0即x2﹣2+4x2﹣4x+1=0移项合并同类项得:5x2﹣4x﹣4=0故选:A.点评:本题主要考查了利用平方差公式和完全平方公式化简成为一元二次方程的一般形式.3.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A.y=x2+2x﹣2 B.y=x2+2x+1 C.y=x2﹣2x﹣1 D.y=x2﹣2x+1考点:二次函数图象与几何变换.分析:由于抛物线的图象向左平移2个单位,再向下平移1个单位,则x'=x﹣2,y'=y﹣1,代入原抛物线方程即可得平移后的方程.解答:解:由题意得:,代入原抛物线方程得:y'+1=(x'+2)2,变形得:y=x2+2x+1.故选B.点评:本题考查了二次函数图象的几何变换,重点是找出平移变换的关系.4.将一元二次方程2x2﹣3x+1=0配方,下列配方正确的是()A.(x﹣)2=16 B.2(x﹣)2=C.(x﹣)2=D.以上都不对考点:解一元二次方程-配方法.分析:方程移项后,方程两边除以2变形得到结果,即可判定.解答:解:方程移项得:2x2﹣3x=﹣1,方程两边除以2得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,故选C.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.5.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为()A.11 B.17 C.17或19 D.19考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故选D.点评:求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.6.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限考点:二次函数图象与系数的关系.分析:由a>0可以得到开口方向向上,由b<0,a>0可以推出对称轴x=﹣>0,由c=0可以得到此函数过原点,由此即可确定可知它的图象经过的象限.解答:解:∵a>0,∴开口方向向上,∵b<0,a>0,∴对称轴x=﹣>0,∵c=0,∴此函数过原点.∴它的图象经过一,二,四象限.故选B.点评:此题主要考查二次函数的以下性质.7.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.解答:解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.点评:考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第一季度的营业额的等量关系是解决本题的关键.8.抛物线y=ax2+bx+c的图象如图,OA=OC,则()A.a c+1=b B.a b+1=c C.b c+1=a D.以上都不是考点:二次函数图象与系数的关系.分析:由OA=OC可以得到点A、C的坐标为(﹣c,0),(0,c),把点A的坐标代入y=ax2+bx+c得ac2﹣bc+c=0,c(ac﹣b+1)=0,然后即可推出ac+1=b.解答:解:∵OA=OC,∴点A、C的坐标为(﹣c,0),(0,c),∴把点A的坐标代入y=ax2+bx+c得,ac2﹣bc+c=0,∴c(ac﹣b+1)=0,∵c≠0∴ac﹣b+1=0,∴ac+1=b.故选A.点评:此题考查了点与函数的关系,解题的关键是灵活应用数形结合思想.9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向上;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<2,y随x的增大而减小;⑤当x=0时,y最小值为1.则其中说法正确的有()A.1个B.2个C.3个D.4个考点:二次函数的性质.专题:计算题.分析:利用抛物线的顶点式和二次函数的性质分别进行判断.解答:解:∵a=2>,∴抛物线开口向上,所以①正确;∵y=2(x﹣3)2+1,∴抛物线的对称轴为直线x=3,顶点坐标为(3,1),所以②③错误;当x<3时,y随x的增大而减小,所以④错误;当x=3时,y有最小值1,所以⑤错误.故选A.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c (a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.10.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1考点:根的判别式.分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.解答:解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选C.点评:此题考查了根的判别式,一元二次方程的定义,弄清题意是解本题的关键.二、填空题(每空4分,20分)11.使分式的值等于零的x的值是6.考点:分式的值为零的条件.专题:计算题.分析:分式的值为零:分子为0,分母不为0.解答:解:根据题意,得x2﹣5x﹣6=0,即(x﹣6)(x+1)=0,且x+1≠0,解得,x=6.故答案是:6.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,则a+b=﹣2.考点:二次函数图象上点的坐标特征.专题:压轴题.分析:由于P、Q两点的纵坐标相等,故这两点是抛物线上关于对称轴对称的两点;而抛物线y=2x2+4x ﹣3的对称轴为x=﹣1,根据对称轴x=,可求a+b的值.解答:解:已知点P(a,m)和Q(b,m)是抛物线y=2x2+4x﹣3上的两个不同点,因为点P(a,m)和Q(b,m)点的纵坐标相等,所以,它们关于其对称轴对称,而抛物线y=2x2+4x﹣3的对称轴为x=﹣1;故有a+b=﹣2.故答案为:﹣2.点评:本题考查了函数图象上的点的坐标与函数解析式的关系,以及关于y轴对称的点坐标之间的关系.13.一元二次方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.考点:根与系数的关系.专题:计算题.分析:先判断x2﹣x+3=0没有实数解,则两个方程的所有实数根的和就是2x2﹣3x﹣1=0的两根之和,然后根据根与系数的关系求解.解答:解:方程2x2﹣3x﹣1=0的两根之和为∵x2﹣x+3=0没有实数解,∴方程2x2﹣3x﹣1=0与x2﹣x+3=0的所有实数根的和等于.故答案为.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.14.若关于x的方程a(x+m)2+b=0的两个根﹣1和4(a.m.b均为常数,a≠0),则方程a(x+m﹣3)2+b=0x1=2,x2=7.考点:解一元二次方程-直接开平方法.分析:先利用直接开平方法得方程a(x+m)2+b=0的解为x=﹣m±,则﹣m+,=1,﹣m ﹣,=﹣2,再解方程a(x+m﹣2)2+b=0得x=3﹣m±,然后利用整体代入的方法得到方程a (x+m﹣3)2+b=0的根.解答:解:解:解方程a(x+m)2+b=0得x=﹣m±,∵方程a(x+m)2+b=0(a,m,b均为常数,a≠0)的根是x1=﹣1,x2=4,∴﹣m+,=﹣1,﹣m﹣,=4,∵解方程a(x+m﹣3)2+b=0得x=3﹣m±,∴x1=3﹣1=2,x2=3+4=7.故答案为x1=2,x2=7.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.15.如图所示的是二次函数y=ax2+bx+c的图象,某学霸从下面五条信息中:(1)a<0;(2)b2﹣4ac>0;(3)c>1;(4)2a﹣b>0;(5)a+b+c<0.准确找到了其中错误的信息,它们分别是(1)(2)(5)(只填序号)考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系;根据抛物线与x轴交点个数判断b2﹣4ac与0的关系;由抛物线与y轴的交点判断c与1的关系;根据对称轴在x=﹣1的左边判断2a﹣b与0的关系;把x=1,y=0代入y=ax2+bx+c,可判断a+b+c<0是否成立.解答:解:(1)∵抛物线的开口向下,∴a<0,故本信息正确;(2)根据图示知,该函数图象与x轴有两个交点,故△=b2﹣4ac>0;故本信息正确;(3)由图象知,该函数图象与y轴的交点在点(0,1)以下,所以c<1,故本信息错误;(4)由图示,知对称轴x=﹣>﹣1;又∵a<0,∴﹣b<﹣2a,即2a﹣b<0,故本信息错误;(5)根据图示可知,当x=1,即y=a+b+c<0,所以a+b+c<0,故本信息正确;故答案为(1)(2)(5).点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答题16.(16分)解方程①(5x﹣1)2=3(5x﹣1)②x2+2x=7.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:①先移项,再把等号左边因式分解,最后分别解方程即可;②先在等号左右两边加上一次项系数的一半的平方,再进行配方,然后开方即可得出答案.解答:解:①(5x﹣1)2=3(5x﹣1),(5x﹣1)2﹣3(5x﹣1)=0,(5x﹣1)(5x﹣1﹣3)=0,(5x﹣1)(5x﹣4)=0,x1=,x2=;②x2+2x=7,x2+2x+1=8,(x+1)2=8,x+1=±2,x1=﹣1+2,x2=﹣1﹣2.点评:本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.若抛物线y=ax2+bx+c的顶点是A(﹣2,1),且经过点B(1,0),求该抛物线的函数解析式.考点:待定系数法求二次函数解析式.分析:设抛物线的解析式为y=a(x+2)2+1,将点B(1,0)代入解析式即可求出a的值,从而得到二次函数解析式.解答:解:设抛物线的解析式为y=a(x+2)2+1,将B(1,0)代入y=a(x+2)2+1得,a=﹣,函数解析式为y=﹣(x+2)2+1,展开得y=﹣x2﹣x+.所以该抛物线的函数解析式为y=﹣x2﹣x+.点评:本题考查了待定系数法求函数解析式,知道二次函数的顶点式是解题的关键.18.若﹣3+是方程x2+kx+4=0的一个根,求另一根和k的值.考点:根与系数的关系.分析:设方程的另一个根是m,根据韦达定理,可以得到两根的积等于4,两根的和等于﹣k,即可求解.解答:解:设方程的另一个根是m,根据韦达定理,可以得到:(﹣3+)•m=4,且﹣3++m=﹣k,解得:m=﹣3﹣,k=6.即方程的另一根为﹣3﹣,k=6.点评:本题主要考查了一元二次方程的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.19.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?考点:二次函数的应用.专题:压轴题.分析:本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(﹣2,﹣4.4),B的坐标是(2,﹣4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=﹣1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是﹣1.2和1.2,因此将x=1.2代入函数式中可得y≈﹣1.6,因此大门顶部宽2.4m部分离地面的高度是4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.解答:解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.点评:本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m部分离地面的高度是解题的关键.20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?考点:一元二次方程的应用.专题:销售问题.分析:商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利﹣降价数.设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果.解答:解:设每件衬衫应降价x元,可使商场每天盈利2100元.根据题意得(45﹣x)=2100,解得x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.点评:需要注意的是:(1)盈利下降,销售量就提高,每件盈利减,销售量就加;(2)在盈利相同的情况下,尽快减少库存,就是要多卖,降价越多,卖的也越多,所以取降价多的那一种.21.如图,线段AB的长为2,C为线段AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE.(1)设DE的长为y,AC的长为x,求出y与x的函数关系式;(2)求出DE的最小值.考点:二次函数的应用.分析:(1)设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE长度的表达式;(2)利用函数的性质进行解答即可.解答:解:如图,设AC=x,则BC=2﹣x,∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=x,CE=(2﹣x),∴∠DCE=90°,故DE2=DC2+CE2=x2+(2﹣x)2=x2﹣2x+2=(x﹣1)2+1,∴y=.(2)y=当x=1时,DE取得最小值,DE也取得最小值,最小值为1.点评:此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值.22.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面高度为3.05m.(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?考点:二次函数的应用.分析:(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.解答:解:(1)∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵蓝球中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.点评:本题考查了函数类综合应用题,对函数定义、性质,以及在实际问题中的应用等技能进行了全面考查,对学生的数学思维具有很大的挑战性.23.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x轴上,点C 在直线y=x﹣2上.(1)求矩形各顶点坐标;(2)若直线y=x﹣2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由于AD=2,即C点的纵坐标为2,将其代入已知的直线解析式中,即可求得C点的横坐标,进而由AB的长,求得A、D的横坐标,由此可确定矩形的四顶点的坐标.(2)根据直线y=x﹣2可求得E点的坐标,进而可利用待定系数法求出该抛物线的解析式.(3)根据(2)所得抛物线的解析式,即可由配方法或公式法求得其顶点坐标,进而根据矩形的四顶点坐标,来判断此顶点是否在矩形的内部.解答:解:(1)如答图所示.∵y=x﹣2,AD=BC=2,设C点坐标为(m,2),把C(m,2)代入y=x﹣2,即2=m﹣2,∴m=4,∴C(4,2),∴OB=4,AB=3,∴OA=4﹣3=1,∴A(1,0),B(4,0),C(4,2),D(1,2).(2)∵y=x﹣2,∴令x=0,得y=﹣2,∴E(0,﹣2).设经过E(0,﹣2),A(1,0),B(4,0)三点的抛物线关系式为y=ax2+bx+c,∴,解得;∴y=.(3)抛物线顶点在矩形ABCD内部.∵y=,∴顶点为,∵,∴顶点在矩形ABCD内部.点评:此题主要考查了函数图象上点的坐标意义、矩形的性质、二次函数解析式的确定等知识,难度不大,细心求解即可.。
2023-2024学年重庆市九年级(上)月考数学试卷(10月份)一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣3的相反数是( )A.﹣B.3C.﹣3D.2.(4分)下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是( )A.B.C.D.3.(4分)在Rt△ABC中,∠C=90°,AC=5,则sin B的值为( )A.B.C.D.4.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间5.(4分)若点A(﹣2,y1)、B(2,y2)、C(5,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 6.(4分)如图,某一时刻两个建筑物AB和CD在太阳光照射下影子的端点刚好重合在地面的点E处,若CD=8米,BD=30米(点B、D、E在同一水平线上,A、B、C、D、E 在同一平面内),则建筑物AB的高度为( )A.8米B.16米C.24米D.32米7.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有4个正方形,第②个图案中有9个正方形,….按此规律排列下去,则第8个图案中正方形的个数为( )A.64B.72C.81D.1008.(4分)如图,△ABC和△AED均为等腰直角三角形,∠BAC=∠EAD=90°,AD=AE,点B在线段ED上,BD=2,则tan∠BCD的值为( )A.B.C.D.39.(4分)如图,在正方形ABCD中,E为BC上一点,DF⊥AE于点F,连接BF,若DF=2AF,则∠ABF一定等于( )A.B.90°﹣3αC.D.45°﹣α10.(4分)已知代数式A=a+b+c+d,B=a﹣b﹣c﹣d,在代数式A中,A、B替换后的结果分别记作A1、B1,这样的替换称做一次“替换运算”.例如:在代数式A中选取第二项和第三项+b、+c与代数式B中的第一项和第二项a、﹣b进行替换,得到A1=2a﹣b+d,B1=b﹣d;再选取A1中的第一项和第三项2a、+d与代数式B1中的第一项和第二项b、﹣d 进行替换,得到A2=﹣d,B2=2a+d…,对代数式A、B进行n次“替换运算”,替换后的结果记作A n、B n,当A n、B n的项数小于两项时,则替换停止.下列说法:①存在“替换运算”,使得A1+B1=2a+b;②当A n=0时,n的最小值为1;③所有的A1共有36种不同的运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:sin30°+||= .12.(4分)已知点(4,﹣2)、(1,n)都在同一反比例函数图象上,则n的值为 .13.(4分)已知一个不透明的盒子里装有4个球,其中2个红球,2个黄球,不放回,然后再从剩下的球中随机摸出一个球 .14.(4分)已知m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,则代数式10m﹣4m2﹣2023的值为 .15.(4分)如图,点A是反比例函数y=(k<0,x<0)图象上的一点,点D为x轴正半轴上一点且DO=2BO,连接AD交y轴于点C,则k的值为 .16.(4分)若关于x的一元一次不等式组有且仅有5个整数解,且关于y的分式方程,则所有满足条件的整数a的值之和是 .17.(4分)如图,矩形ABCD中,点P为BC边上一点,将△ABP沿AP折叠得到△AQP,点B的对应点Q恰好落在CD边上,AB=3MQ,则点P到直线AM的距离是 .18.(4分)一个四位正整数m,如果m满足各个数位上的数字均不为0,千位数字与个位数字相等,则称m为“对称数”.将m的千位数字与百位数字对调.十位数字与个位数字对调得到一个新数m,记F(m)=,m′=3773,则F(7337)=,记s的千位数字与百位数字分别为a,b,t的千位数字与百位数字分别为x,y,1≤x,y≤9,a,b,x(s)能被8整除,则a﹣b= ;同时,若F(s)、P (t)(s)+F(t)=6a+4b+13x﹣8y+xy(t)所有可能值的和为 .三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x﹣y)2﹣x(x﹣3y);(2).20.(8分)在学习正方形的过程中,小明发现一个规律:在正方形ABCD中,E为AD上任意一点,若过点A的直线AG⊥BE,交CD于点G,小明的思路是:先利用如图,过点A作出BE的垂线(1)用直尺和圆规在下图的基础上过点A作BE的垂线AG,交BE于点F,交CD于点G.(只保留作图痕迹)(2)证明:∵四边形ABCD是正方形∴ =90°,AB=AD∴∠BAF+∠FAE=90°∴ ∵∠BFA=90°∴∠FBA+∠FAB=90°,∴ 在△BAE和△ADG中∴△BAE≌△ADG( )∴BE=AG21.(10分)北京时间8月24日中午12点,日本福岛第一核电站启动核污染水排海,预估排放时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,得分采用百分制,得分越高(得分用x表示,且得分为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:七年级被抽取的学生测试得分的所有数据为:48,62,79,88,70,55,74,88,93,90,74,63,68,82;八年级被抽取的学生测试得分中C等级包含的所有数据为:72,77,78,75;七年级、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5八年级7789b根据以上信息,解答下列问题:(1)上述图表中:a= ,b= ,c= ;(2)根据以上数据,你认为该校七年级、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?22.(10分)重百商场有A、B两款电器.已知每台A款电器的售价是每台B款电器售价的倍,顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.(1)求每台B款电器的售价为多少元?(2)经统计,商场每月卖出A款电器100台,每台A款电器的利润为100元.为了尽快减少库存,每台A款电器的售价每降低10元,那么平均每月可多售出20台.重百商场要想每月销售A款电器的利润达到10800元23.(10分)如图1,在平行四边形ABCD中,∠A=30°,AD=4,点E为AD中点,沿折线A→B→A方向运动,当动点P返回到A点时停止运动.动点Q以每秒1个单位长度的速度从点C出发,到达点B时停止运动.P、Q两点同时出发,设运动时间为x秒1,△BDQ的面积为y2.(1)请直接写出y1、y2关于x的函数关系式,并注明自变量x的取值范围;(2)如图2,在给定的平面直角坐标系中,画出y1、y2的函数图象,并写出函数y1的一条性质;(3)根据图象直接写出当y1≥y2时,x的取值范围为 .24.(10分)周末,小明和小红相约爬山到山顶点C处观景(山脚处的点A、B在同一水平线上).小明在A点处测得山顶点C的仰角为30°,沿AC爬山到达山顶C.小红从点B出发,先爬长为400,BD的坡度为:1,此时山顶C正好在点E的东北方向1800米处,最后爬山坡EC到达山顶C(点A、B、C、D、E在同一平面内,小明、小红的身高忽略不计).(参考数据:≈1.414,≈1.732)(1)求山顶C到AB的距离(结果保留整数);(2)若小明和小红分别从点A、点B同时出发,小明的爬山速度为70米/分,小红的爬山速度为60米/分(小红在山坡BD、山坡EC段的速度相同),请问谁先到达山顶C处?请通过计算说明理由.25.(10分)在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点A,点E为线段AB的中点.直线l2经过点E,且与x轴交于点,与y轴交于点D.(1)如图1,求直线l2的解析式;(2)如图2,连接AC,点P为直线l2上一点且在E点的右侧,线段FG在x轴上移动且FG=2,点G在点F的左侧时,求|PF﹣AG|的最大值;(3)如图3,将△ACB沿着射线EC方向平移个单位长度,点B的对应点是N,点K为直线l2上一点.在平面直角坐标系中是否存在点H,使以M、N、K、H四点构成的四边形是以MN为边的菱形,若存在;若不存在,请说明理由.26.(10分)在△ABC中,过点B作BD⊥AC于点D,∠BAC=2∠ACB.(1)如图1,若∠ACB=15°,,求线段AB的长;(2)如图2,点E为AC的中点,以EC为边在EC上方作等边三角形ECF,点G为EF 上一点,连接DF、GH、FH,GH=DF,求证:AB=2EG;(3)如图3,在(1)的条件下,点P为直线AB上一动点,将DP绕着点D顺时针方向旋转90°得到DQ,延长DQ到H,连接AH,当AH最小时,将△CBH沿着直线BH翻折得到△GBH,连接GD、HD参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=4.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】直接根据直角三角形中锐角三角函数的定义解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AC=5,∴sin B=.故选:D.【点评】此题比较简单,考查的是锐角三角函数的定义,关键是根据直角三角形中锐角三角函数的定义解答.4.【分析】将原式计算后再进行估算即可.【解答】解:原式=+3,∵49<54<64,∴7<<3,∴10<+3<11,即原式的值在10和11之间,故选:C.【点评】本题考查二次根式的运算及无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.5.【分析】先根据k>0判断出反比例函数图象所在的象限,再由各点横坐标的大小判断出各点所在的象限,进而可得出结论.【解答】解:∵反比例函数,∴此函数图象的两个分支分别位于一、三象限.∵﹣2<8<2<5,∴点A(﹣5,y1)位于第三象限,B(2,y7),C(﹣5,y3)位于第一象限,∴y6>y3>y1.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:由题意得,△CDE∽△ABE,∴,∴,∴AB=24米,答:建筑物AB的高度为24米,故选:C.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定和性质定理是解题的关键.7.【分析】根据图形的变化规律得出第n个图形中有(4n+1)个正方形即可.【解答】解:由题知,第①个图案中有1+3=6=22个正方形,第②个图案中有5+3+5=3=32个正方形,第③个图案中有6+3+5+5=16=42个正方形,…,第n个图案中有(n+3)2个正方形,∴第⑧个图案中正方形的个数为94=81,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有(n+1)2个正方形是解题的关键.8.【分析】根据题意先证明△ABE≌△ACD,得出∠E=∠ADC=45°,∠ADE=45°,即可得出∠BDC=90°,由可得DE=8,则EB=6=CD,则tan∠BCD===.【解答】解:∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∠E=∠EDA=45°,∴EB=DC,∠E=∠ADC=45°,∴∠BDC=90°,∵,∴DE=8,∴EB=DC=6,∴tan∠BCD===.故选:A.【点评】本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,熟练掌握以上性质是解题关键.9.【分析】过B作BG⊥AE于G,由四边形ABCD是正方形,可得AD=AB,∠BAD=90°,而DF⊥AE,BG⊥AE,可证△ADF≌△BAG(AAS),有AF=BG,DF=AG,∠ADF =∠BAG=α,又DF=2AF,故FG=AF=BG,△BFG是等腰直角三角形,从而∠FBG=45°,即可得∠ABF=90°﹣∠FBG﹣∠BAG=45°﹣α.【解答】解:过B作BG⊥AE于G,如图:∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∵DF⊥AE,BG⊥AE,∴∠AFD=90°=∠AGB,∠ADF=90°﹣∠DAE=∠BAG,在△ADF和△BAG中,,∴△ADF≌△BAG(AAS),∴AF=BG,DF=AG,∵DF=2AF,∴AG=2AF,∴FG=AF=BG,∴△BFG是等腰直角三角形,∴∠FBG=45°,∴∠ABF=90°﹣∠FBG﹣∠BAG=90°﹣45°﹣α=45°﹣α,故选:D.【点评】本题考查正方形性质及全等三角形判定与性质,解题的关键是作辅助线,构造全等三角形解决问题.10.【分析】根据新定义分别对①②③验证即可.【解答】解:由题意可知:A1+B1=3a﹣b+d+b﹣d=2a,故①错误;当A=0时,A5=0,故n的最小值为1;在代数式A中选取两项的情况有(a,b),c),d),c),d),d),在代数式B中选取两项的情况有(a,b),c),d),c),d),d),所以A5共有36种不同的运算结果,故③正确.故答案选:C.【点评】本题考查整式的加减运算以及新定义下的运算,理解题意是解决问题的关键.二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】利用特殊锐角的三角函数值及绝对值的性质计算即可.【解答】解:原式=+﹣=,故答案为:.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.12.【分析】将A坐标代入反比例解析式求出k的值,确定出反比例解析式,将B坐标代入反比例解析式即可求出n的值.【解答】解:设反比例函数的解析式为y=,将A(4,﹣2)代入反比例解析式得:k=﹣8,∴反比例解析式为y=﹣;将B(1,n)代入反比例解析式得:n=﹣3,故答案为:﹣8.【点评】本题考查了反比例函数图象上的坐标特征,图象上的点的坐标适合解析式.13.【分析】画树状图得出所有等可能的结果数以及摸出的两个球恰好是一个红球和一个黄球的结果数,再利用概率公式可得出答案.【解答】解:画树状图如下:共有12种等可能的结果,其中摸出的两个球恰好是一个红球和一个黄球的结果有8种,∴摸出的两个球恰好是一个红球和一个黄球的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】根据m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,可以得到2m2﹣5m的值,然后将所求式子变形,再将2m2﹣5m的值代入计算即可.【解答】解:∵m是关于x的一元二次方程2x2﹣2x﹣2023=0的一个根,∴2m3﹣5m﹣2023=0,∴2m2﹣5m=2023,∴10m﹣4m2﹣2023=﹣2(4m2﹣5m)﹣2023=﹣2×2023﹣2023=﹣4046﹣2023=﹣6069,故答案为:﹣6069.【点评】本题考查一元二次方程的解,解答本题的关键是明确方程的解一定使得原方程成立.15.【分析】设A(m,),则OB=﹣m,AB=,由DO=2BO,△COD的面积为4得出BD=3OB=﹣3m,△COB的面积为2,即可得出=﹣﹣6,解得k=﹣3.【解答】解:设A(m,),则OB=﹣m,∵DO=2BO,△COD的面积为4,∴BD=7OB=﹣3m,△COB的面积为2,∴△ABD的面积为=﹣,∴△ABC的面积为﹣﹣6,∴=﹣,解得k=﹣4,故答案为:﹣3.【点评】本题考查了反比例函数的比例系数k的几何意义,反比例函数图象上点的坐标特征,得到关于k的方程是解题的关键.16.【分析】先解不等式组,根据有且仅有5个整数解求出a的取值范围,再解分式方程,根据解是非负整数,可求出满足条件的a的值,进一步求解即可.【解答】解:解不等式≥x﹣1,得:x≥﹣3,解不等式3x﹣8<a﹣4,得:x<,∵该不等式组有且仅有5个整数解,∴该不等式组的整数解为:﹣2,﹣2,0,6,则1<≤2,解得:4<a≤12,解分式方程,得:y=且≠5,∵该分式方程有非负整数解,且4<a≤12,则a=8或a=10,即满足条件的所有整数a的值之和为18.故答案为:18.【点评】本题考查了分式方程的解,一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法和解分式方程得方法是解题的关键.17.【分析】过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,过点P作PG⊥AM于G,设MQ=x,BP=y,则AB=CD=3MQ=3x,CP=6﹣x,由折叠的性质得AQ=AB=3x,PQ=PB=y,∠BAP=∠QAP,先证EQ=AQ=3x,再证△EQM∽△ADM 得MD=2,则MF=2,证Rt△AFM和Rt△ADM全等得AF=AD=6,则FQ=3x﹣6,在Rt△MFQ中由勾股定理求出x=MQ=2.5,进而得AB=CD=3x=7.5,CQ=3,在Rt△PCQ中由勾股定理求出y=PB=,在Rt△ABP中由勾股定理可求出AP=,然后证△APG为等腰直角三角形,最后在Rt△APM中由勾股定理求出PG即可.【解答】解:过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,如图:∵四边形ABCD为矩形,AD=6,∴BC=AD=6,AB=CD,设MQ=x,BP=y,CP=BC﹣BP=3﹣x,由折叠的性质可知:AQ=AB=3x,PQ=PB=y,∵QE∥AD,∴∠E=∠DAM,∵AM平分∠DAQ,∴∠DAM=∠QAM,∴∠E=∠QAM,∴EQ=AQ=3x,∵QE∥AD,∴△EQM∽△ADM,∴QE:AD=QM:MD,即2x:6=x:MD,∴MD=2,∵AM平分∠DAQ,∠D=90°,∴MF=MD=4,在Rt△AFM和Rt△ADM中,,∴Rt△AFM≌Rt△ADM(HL),∴AF=AD=6,∴FQ=AQ﹣AF=3x﹣3,在Rt△MFQ中,MF=2,MQ=x,由勾股定理得:MQ2=MF4+MQ2,∴x2=3+(3x﹣6)4,整理得:2x2﹣4x+10=0,解得:x1=8.5,x2=8(不合题意,舍去),∴MQ=2.5,∴AB=CD=6x=7.5,∴CQ=CD﹣DM﹣MQ=6.5﹣2﹣2.5=3,在Rt△PCQ中,CQ=8,PQ=y,由勾股定理得:PQ2=CQ2+CP2,∴y2=9+(3﹣y)2,解得:y=,∴PB=y=,在Rt△ABP中,PB=,由勾股定理得:AP==,∵∠BAP=∠QAP,∠DAM=∠QAM,∴∠BAP+∠DAM=∠QAP+∠QAM,∵∠BAD=90°,∴∠BAP+∠DAM=∠QAP+∠QAM=45°,即∠MAP=45°,∵PG⊥AM,∴△APG为等腰直角三角形,∴PG=AG,在Rt△APM中,PG=AG,由勾股定理得:PG2+AG4=AP2,∴PG=•AP=×=.故答案为:.【点评】此题主要考查了矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,勾股定理的应用,熟练掌握矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,灵活运用勾股定理构造方程是解决问题的关键.18.【分析】根据对称数定义表示出s=1001a+110b,s′=1001b+110a,得到F(s)==11(a﹣b),根据F(s)能被8整除,1≤b<a≤9,得到a﹣b=8;同理得F(t)==11(x﹣y),根据条件得到1la﹣11b+11x﹣11y=6a+4b+13x﹣8y+xy,由a﹣b=8,1≤b<a<9得到a=9,b=1,得到2x+3y+xy=30,根据x,y均为整数,分别列举出x,y的值代入F(t)求和即可.【解答】解:∵s的千位数字与百位数字分别为a,b,∴s=100la+110b,s′=1001b+110a,∴F(s)==11(a﹣b),∵F(s)能被8整除,且1≤b<a≤8,∴a﹣b=8;同理得F(t)==11(x﹣y),∵F(s)+F(t)=6a+6b+13x﹣8y+xy,∴1la﹣11b+3lx﹣1ly=6a+8b+13x﹣8y+xy,∵a﹣b=8,4≤b<a≤9,∴a=9,b=4,∴2x+3y+xy=30,即y=,∵x,y均为整数,当x=1时,y==,符合题意;当x=2时,y===,当x=3时,y==,符合题意;当x=7时,y===;当x=5时,y==,不符合题意;当x=5时,y==,符合题意;当x=7时,y==,不符合题意;当x=8时,y===,当x=5时,y==,不符合题意;∴F(t)所有可能值的和为﹣66+(﹣11)+44+88=55,故答案为:8;55.【点评】本题考查了新定义,因式分解的应用,数的整除性,关键是正确理解新定义,利用代数式的值进行相关分类讨论,把新知识转化为熟悉的知识进行解答.三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)根据单项式乘多项式的方法进行解题即可;(2)利用平方差公式和分式的混合运算进行解题即可.【解答】解:(1)原式=x2﹣2xy+y8﹣(x2﹣3xy)=x7﹣2xy+y2﹣x7+3xy=xy+y2;(2)原式=÷()=÷()=×=m+5.【点评】本题考查分式的混合运算、单项式乘多项式和完全平方公式,熟练掌握相关的知识点是解题的关键.20.【分析】(1)根据过一点作已知直线的垂线的方法作图即可;(2)根据正方形的性质得到∠EAB=∠GDA=90°,AB=AD,利用余角的性质得到∠FBA=∠EAF,利用ASA证明△BAE≌△ADG,即可得到结论.【解答】解:(1)如图,AG即为所求;(2)证明:∵四边形ABCD是正方形,∴∠EAB=∠GDA=90°,AB=AD,∴∠BAF+∠FAE=90°,∵AG⊥BE,∴∠BFA=90°,∴∠FBA+∠FAB=90°,∴∠FBA=∠EAF,在△BAE和△ADG中,,∴△BAE≌△ADG(ASA),∴BE=AG.【点评】本题考查了正方形的性质,全等三角形的判定和性质,余角的性质,尺规作图,解题的关键是掌握全等三角形的判定和性质.21.【分析】(1)根据众数的定义确定七年级的众数a;根据中位数的定义确定八年级的中位数b;根据八年级C组所占百分比确定C的值;(2)根据平均数或中位数或众数的意义回答即可;(3)将样本中七年级得分再C组的比例乘以900,将样本中八年级得分再C组的比例乘以800,再相加即可.【解答】解:(1)∵被抽取的学生测试得分的所有数据中,88出现3次是出现次数最多的数据,∴a=88;∵C组占比为:=25%,∴c=25;∵八年级被抽取的学生测试得分A组有:20×15%=5(个),B组有:20×(100%﹣15%﹣25%﹣30%﹣10%)=4(个),∴八年级被抽取的学生测试得分的中位数是第10,第11个数据是C组的77,∴b==77.8.故答案为:88,77.5;(2)答案不唯一,比如:七年级更高.理由:因为七,八年级成绩的平均数相同,所以七年级的学生对事件的关注与了解程度更高;(3)∵七年级处于C组的有4个数据,占比,八处于C组的占比25%,∴估计该校这两个年级的学生测试得分在C组的人数一共有20%×900+25%×800=380(人),答:估计该校这两个年级的学生测试得分在C组的人数一共有380人.【点评】本题考查频数分布直方图,扇形统计图,平均数,中位数,众数,用样本估计总体,能从统计图中获取信息,理解相关概念的大于是解题的关键.22.【分析】(1)设每台B款电器的售价为x元,则每台A款电器的售价为x元,根据顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.列出分式方程,解方程即可;(2)设每台A款电器应降价m元,根据每月销售A款电器的利润达到10800元,列出一元二次方程,解之取满足题意的值即可.【解答】解:(1)设每台B款电器的售价为x元,则每台A款电器的售价为,由题意得:=﹣1,解得:x=240,经检验,x=240是原方程的解,答:每台B款电器的售价为240元;(2)设每台A款电器应降价m元,由题意得:(100﹣m)(100+×20)=10800,整理得:m4﹣50m+400=0,解得:m1=40,m7=10(不符合题意,舍去),答:每台A款电器应降价40元.【点评】本题考查了一元二次方程的应用以及分式方程的应用,找准等量关系,正确列出分式方程和一元二次方程是解题的关键.23.【分析】(1)直接确定三角形的底和高求解即可;(2)y1,y2都是一次函数,只需描两个点即可画出图象,再观察y1的图象,可以从增减性写出函数的一条性质;(3)先从图象上确定交点的横坐标,再利用y1≥y2确定y2在y1下面的范围即可.【解答】解:(1)过点E作EF⊥AB于点F,过点D作DH⊥CB,∵∠A=30°,AD=4,∴EF=AE=1,∵四边形ABCD是平行四边形,∴∠C=∠A=30°,AB=CD=8,∴DH=CD=4,当7<x<4时,y1=AP•EF=;当4≤x<8时,y3=AP•EF=.当0<x<6时,y2=BQ•DH=.∴y6关于x的函数关系式为y1=,y2关于x的函数关系式为y2=﹣2x+8(0≤x<3);(2)画出y1,y2的函数图象如下,函数y3的一条性质:当0<x<4时,y随x的增大而增大;当5≤x<8,y随x的增大而减小(答案不唯一);(3)观察图象可得:当y1≥y3时,x的取值范围是.故答案为:≤x<4.【点评】本题考查了动点的函数,包括求函数的解析式,画函数图象,根据图象写函数的性质,比较函数值的大小,正确求出函数解析式并画出图象是解题的关键.24.【分析】(1)过点D作DF⊥BA,垂足为F,延长DE交CH于点G,根据题意可得:DG ⊥CH,CH⊥BA,DF=GH,∠CEG=45°,在Rt△BDF中,根据已知易得tan B=,从而可得∠B=60°,然后利用锐角三角函数的定义求出DF,BF的长,再在Rt△CEG 中,利用锐角三角函数的定义求出CG的长,最后利用线段的和差关系进行计算,即可解答;(2)利用(1)的结论,然后在Rt△ACH中,利用含30度角的直角三角形的性质可求出AC的长,最后进行计算比较即可解答.【解答】解:(1)如图:过点D作DF⊥BA,垂足为F,由题意得:DG⊥CH,CH⊥BA,∠CEG=45°,在Rt△BDF中,tan B===,∴∠B=60°,∵BD=400米,∴DF=BD•sin60°=400×=600(米),BF=BD•cos60°=400×=200,∴DF=GH=600米,在Rt△CEG中,CE=1800米,∴CG=CE•sin45°=1800×=900,∴CH=CG+GH=600+900≈1873(米),∴山顶C到AB的距离约为1873米;(2)小红先到达山顶C,理由:在Rt△ACH中,∠A=30°)米,∴AC=2CH=(1200+1800)米,∵DE=900米,小明的爬山速度为70米/分,小红的平路速度为90米/分,∴小明到达山顶C需要的时间==≈53.5(分),小红到达山顶C需要的时间=+=+≈51.5(分),∵51.5分<53.5分,∴小红先到达山顶C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【分析】(1)由待定系数法即可求解;(2)将点P向左平移2个单位得到点P′(1,5),连接P′A交x轴于点G,取GF=2,连接PF,此时,|PF﹣AG|最大,即可求解;(3)当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK列出方程组,即可求解.【解答】解:(1)直线l1与x轴交于点B,与y轴交于点A,则点A、B的坐标为(4、(7,∵点E为线段AB的中点,则点E(2,设直线E、C的表达式为:y=k(x﹣),将点E的坐标代入上式得:1=k(2﹣),解得:k=4,即直线l8的解析式为:y=4x﹣7;(2)设点P(t,3t﹣7),则四边形PACB的面积=S△PBC+S梯形PTOC﹣S△AOC﹣S△ATP=(4﹣(t+2×﹣,解得:t=3,即点P(3,3);将点P向左平移2个单位得到点P′(1,2),取GF=2,此时,理由:∵P′P=GF且P′P∥GF,则四边形PFGP′为平行四边形,则PF=P′G,则|PF﹣AG|=P′G﹣AG=AP′为最大,即|PF﹣AG|最大值=AP′==;(3)存在,理由:由图象的平移知,将△ACB沿着射线EC方向平移,相当于向左平移3个单位,则点M,﹣2),﹣4)6=20,设点K(t,4t﹣7),n),当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK得:或,解得:m=或.【点评】本题是一次函数综合题,考查了待定系数法求函数解析式,二次函数图象和性质,菱形性质,图象平移等知识点,,其中(2)解题的关键是通过确定平行四边形PP′GF,得到最大值,这是一道关于一次函数综合题和压轴题,综合性强,难度较大.26.【分析】(1)在AC上截取DK=AD,连接BK,设BD=x,根据正弦、余弦的定义得到AD =DK=x,AB=BK=KC=2x,再利用等腰三角形的性质,得到AC=AD+DK+KC,由AC =2+2即可求解;(2)在EC上截取EK=EG,连接GK,取AB得中点Q,连接DQ、EQ,根据题意先证明△DEF≌△CHF(SAS),得到△EGK是等边三形,再证明△DEF≌△GKH(AAS),由点E为AC的中点,点Q是AB的中点,得到QE∥BC,进而得到QD=DE,即可得出结论;(3)点H的轨迹是一条垂直AB的直线,当H在AB上时,此时AH最小,AH=,利用S△DGH=S△CDG﹣S△CGH﹣S△CDH求解即可.【解答】(1)解:在AC上截取DK=AD,连接BK,∵∠BAC=2∠ACB,∠ACB=15°,∴∠BAC=30°,∵BD⊥AC,∴∠BDA=∠BDC=90°,∵DK=AD,∴AB=BK,∴∠BAC=∠BKD=30°,∵∠ACB=15°,∴∠KBC=∠BCA=15°,∴BK=KC,在Rt△ABD中,,,设BD=x,则,AB=BK=KC=2x,∵,∴x=1,∴AB=3;(2)证明:在EC上截取EK=EG,连接GK,连接DQ,如图,∵三角形ECF是等边三角形,∴EF=EC=FC,∠FEC=∠FCE=∠EFC=60°,∴∠FED=∠FCH=120°,在△DEF和△CHF中,,∴△DEF≌△CHF(SAS),∴DF=FH,∠1=∠CFH,∵GH=DF,∴GH=FH,∴∠FGH=∠GFH,∴∠FGH﹣∠FEC=∠GFH﹣∠EFC,∴∠EHG=∠CFH,∴∠1=∠EHG,∵EG=EK,∴△EGK是等边三角形,∴EG=GK=EK,∠FEC=∠8=∠EGK=60°,∴∠FED=∠CKG=120°,在△DEF和△GKH中,,∴△DEF≌△GKH(AAS),∴DE=GK,∴DE=EG,∵点Q是AB的中点,BD⊥AC,∴AB=2AQ=4QB=2QD,∴∠BAC=∠4,∵点E为AC的中点,点Q是AB的中点,∴QE∥BC,∴∠BCA=∠2,∵∠BAC=2∠ACB,∠4=∠DQE+∠6,∴∠DQE=∠3,∴QD=DE,∴AB=2DQ=2DE=2EG;(3)解:如图,点H的轨迹是一条垂直AB的直线,此时AH最小,, S△DGH=S△CDG﹣S△CGH﹣S△CDH==.∴S△DGH=.【点评】本题是三角形综合题,考查了全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、解直角三角形等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
2019-2020年九年级数学上学期10月月考试卷(含解析)新人教版一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差B.众数C.平均数D.中位数2.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是()A.12,13 B.12,14 C.13,14 D.13,163.某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9 B.众数是9 C.中位数是9 D.方差是94.下列方程:①2x2﹣=1;②2x2﹣5xy+y2=0;③7x2﹣1=0;④ =0.其中是一元二次方程的有()A.①和②B.②和③C.③和④D.①和③5.一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是()A.B.C.D.以上都不对6.方程x(x﹣2)+x﹣2=0的解是()A.2 B.﹣2,1 C.﹣1 D.2,﹣17.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2 B.3 C.4 D.88.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是()A.0 B.8 C.4±2 D.0或89.已知x1,x2是一元二次方程x2﹣2x=0的两根,则x1+x2的值是()A.0 B.2 C.﹣2 D.410.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182 B.x(x﹣1)=182 C.x(x+1)=182×2 D.x(x﹣1)=182×2 11.已知关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,则b与c的值分别为()A.b=﹣1,c=2 B.b=1,c=﹣2 C.b=1,c=2 D.b=﹣1,c=﹣2 12.△ABC与△DEF的相似比为1:4,则△DEF与△ABC的相似比为()A.1:2 B.1:3 C.4:1 D.1:1613.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若=,DE=4,则EF的长是()A.B.C.6 D.1014.已知x1,x2是一元二次方程x2﹣2x=0的两根,则x12+x22的值是()A.0 B.2 C.﹣2 D.415.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或916.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=900 二、填空题(本大题共4小题,每小题4分,共12分.请把正确答案填在题中的横线上)17.已知一个样本﹣1,0,2,x,3,它们的平均数是2,则这个样本的方差S2= .18.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m的值是.19.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC= cm.20.如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.三、解答题(本大题共6小题,共66分.解答时应写出必要的文字说明、证明过程或演算步骤)21.用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0.(4)x2﹣2x+1=0.22.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,求m的值.23.某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考试成绩统计如下:如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.24.李明准备进行如下操作实验:把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.李明认为这两个正方形的面积之和不可能等于48cm2.你认为他的说法正确吗?请说明理由.25.如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.(1)求运动时间t的取值范围;(2)t为何值时,Rt△POQ与Rt△AOB相似?26.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?此时的利润率是多少?xx学年河北省石家庄市复兴中学九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差B.众数C.平均数D.中位数【考点】方差;统计量的选择.【分析】根据方差的意义作出判断即可.【解答】解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是()A.12,13 B.12,14 C.13,14 D.13,16【考点】众数;中位数.【分析】根据众数与中位数的定义分别进行解答即可,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大重新排列后,找出最中间的那个数.【解答】解:在这组数据14,12,13,12,17,18,16中,12出现了2次,出现的次数最多,则这组数据的众数是12,把这组数据从小到大排列为:12,12,13,14,16,17,18,最中间的数是14,则这组数据的中位数是14;故选B.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.3.某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9 B.众数是9 C.中位数是9 D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是: =9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选D.【点评】本题考查了加权平均数公式、方差公式以及众数、中位数的定义,理解方差的计算公式是关键.4.下列方程:①2x2﹣=1;②2x2﹣5xy+y2=0;③7x2﹣1=0;④ =0.其中是一元二次方程的有()A.①和②B.②和③C.③和④D.①和③【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:③7x2﹣1=0;④ =0是一元二次方程,故选:C.【点评】此题主要考查了一元二次方程的定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.5.一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是()A.B.C.D.以上都不对【考点】解一元二次方程-配方法.【分析】先把常数项1移到等号的右边,再把二次项系数化为1,最后在等式的两边同时加上一次项系数一半的平方,然后配方即可.【解答】解:∵2x2﹣3x+1=0,∴2x2﹣3x=﹣1,x2﹣x=﹣,x2﹣x+=﹣+,(x﹣)2=;∴一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式是:(x﹣)2=;故选C.【点评】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.方程x(x﹣2)+x﹣2=0的解是()A.2 B.﹣2,1 C.﹣1 D.2,﹣1【考点】解一元二次方程-因式分解法.【分析】先提取公因式x﹣2,然后利用因式分解法解一元二次方程求解.【解答】解:x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,所以,x﹣2=0,x+1=0,解得x1=2,x2=﹣1.故选:D.【点评】本题考查了因式分解法解一元二次方程,把方程的左边正确进行因式分解是解题的关键.7.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2 B.3 C.4 D.8【考点】根与系数的关系.【分析】利用根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为α,则α+2=6,解得α=4.故选C.【点评】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.8.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是()A.0 B.8 C.4±2 D.0或8【考点】根的判别式.【分析】根据一元二次方程根的判别式的意义,由程x2+(m﹣2)x+m+1=0有两个相等的实数根,则有△=0,得到关于m的方程,解方程即可.【解答】解:∵一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=0,即(m﹣2)2﹣4×1×(m+1)=0,整理,得m2﹣8m=0,解得m1=0,m2=8.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.已知x1,x2是一元二次方程x2﹣2x=0的两根,则x1+x2的值是()A.0 B.2 C.﹣2 D.4【考点】根与系数的关系.【分析】利用根与系数的关系即可求出两根之和.【解答】解:∵x1,x2是一元二次方程x2﹣2x=0的两根,∴x1+x2=2.故选B【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.10.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182 B.x(x﹣1)=182 C.x(x+1)=182×2 D.x(x﹣1)=182×2 【考点】由实际问题抽象出一元二次方程.【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182.故选B.【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.11.已知关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,则b与c的值分别为()A.b=﹣1,c=2 B.b=1,c=﹣2 C.b=1,c=2 D.b=﹣1,c=﹣2 【考点】根与系数的关系.【分析】由关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,利用根与系数的关系,即可求得b与c的值.【解答】解:∵关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,∴x1+x2=b=1+(﹣2)=﹣1,x1x2=c=1×(﹣2)=﹣2,∴b=﹣1,c=﹣2.故选D.【点评】此题考查了根与系数的关系.此题比较简单,注意掌握若二次项系数为1,x1,x2是方程x2+px+q=0的两根时,则x1+x2=﹣p,x1x2=q.12.△ABC与△DEF的相似比为1:4,则△DEF与△ABC的相似比为()A.1:2 B.1:3 C.4:1 D.1:16【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC与△DEF的相似比为1:4∴=,∴=,∴△DEF与△ABC的相似比为4:1.故选C.【点评】本题考查的是相似三角形的性质,熟知相似三角形对应边的比叫相似比是解答此题的关键.13.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若=,DE=4,则EF的长是()A.B.C.6 D.10【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵l1∥l2∥l3,∴,即,解得:EF=6.故选:C.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.14.已知x1,x2是一元二次方程x2﹣2x=0的两根,则x12+x22的值是()A.0 B.2 C.﹣2 D.4【考点】根与系数的关系.【分析】根据韦达定理得出x1+x2=2,x1x2=0,再代入到x12+x22=(x1+x2)2﹣2x1x2可得答案.【解答】解:∵x1,x2是一元二次方程x2﹣2x=0的两根,∴x1+x2=2,x1x2=0,则x12+x22=(x1+x2)2﹣2x1x2=4,故选:D.【点评】本题主要考查韦达定理,熟练掌握韦达定理是解题的关键.15.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或9【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】求出方程的解,即可得出三角形的边长,再求出即可.【解答】解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.【点评】本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.16.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=900 【考点】由实际问题抽象出一元二次方程.【分析】首先用x表示出矩形的长,然后根据矩形面积=长×宽列出方程即可.【解答】解:设绿地的宽为x,则长为10+x;根据长方形的面积公式可得:x(x+10)=900.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,记住长方形面积=长×宽是解决本题的关键,此题难度不大.二、填空题(本大题共4小题,每小题4分,共12分.请把正确答案填在题中的横线上)17.已知一个样本﹣1,0,2,x,3,它们的平均数是2,则这个样本的方差S2= 6 .【考点】方差;算术平均数.【分析】先由平均数公式求得x的值,再由方差公式求解.【解答】解:∵平均数=(﹣1+2+3+x+0)÷5=2∴﹣1+2+3+x+0=10,x=6∴方差S2=[(﹣1﹣2)2+(0﹣2)2+(2﹣2)2+(6﹣2)2+(3﹣2)2]÷5=6.故答案为6.【点评】本题考查方差的定义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m的值是 2 .【考点】一元二次方程的解;代数式求值.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.【解答】解:把m代入方程x2﹣x﹣2=0,得到m2﹣m﹣2=0,所以m2﹣m=2.故本题答案为2.【点评】本题考查的是一元二次方程的根的定义,是一个基础题.19.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC= 12 cm.【考点】平行线分线段成比例.【分析】过点A作AE⊥CE于点E,交BD于点D,根据平行线分线段成比例可得,代入计算即可解答.【解答】解:如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴,即,∴BC=12cm.故答案为:12.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.20.如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是 6 .【考点】相似三角形的判定与性质.【分析】由平行可得对应线段成比例,即AD:AB=DE:BC,再把数值代入可求得BC.【解答】解:∵DE∥BC,∴,∵AD:DB=1:2,DE=2,∴,解得BC=6.故答案为:6.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段是解题的关键.三、解答题(本大题共6小题,共66分.解答时应写出必要的文字说明、证明过程或演算步骤)21.用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0.(4)x2﹣2x+1=0.【考点】换元法解一元二次方程;解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-因式分解法.【分析】(1)根据公式法,可得答案;(2)根据开平方法,可得答案;(3)根据完全平方公式,可得答案;(4)根据完全平方公式,可得答案.【解答】解:(1)a=1,b=4,c=﹣2,△=b2﹣4ac=16+8=24,x=,x1=﹣2+,x2=﹣2﹣;(2)移项,得4x2=25,x=±,x1=,x2=﹣;(3)配方,得(2x+3)2=0.解得x1=x2=﹣3;(4)配方,得(x﹣1)2=0,解得x1=x2=1.【点评】本题考查了解一元二次方程,根据方程的特点选择适当方法是解题关键.22.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,求m的值.【考点】根的判别式.【分析】由方程有两个相等的实数根结合根的判别式即可得出△=m2﹣8m=0,解之即可得出结论.【解答】解:∵方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=(m﹣2)2﹣4(m+1)=m2﹣8m=0,解得:m1=0,m2=8.答:m的值为0或8.【点评】本题考查了根的判别式,熟练掌握“当方程有两个相等的实数根时,△=0”是解题的关键.23.某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考试成绩统计如下:如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.【考点】加权平均数.【分析】根据题意先算出按6和4的甲、乙、丙的平均数,再进行比较,即可得出答案【解答】解:根据题意得:甲的平均成绩为:(85×6+92×4)÷10=87.8(分),乙的平均成绩为:(91×6+85×4)÷10=88.6(分),丙的平均成绩为:(80×6+90×4)÷10=84(分),因为乙的平均分数最高,所以乙将被录取【点评】此题考查了平均数,用到的知识点是加权平均数的计算公式,注意计算平均数时按6和4进行计算.24.李明准备进行如下操作实验:把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.李明认为这两个正方形的面积之和不可能等于48cm2.你认为他的说法正确吗?请说明理由.【考点】一元二次方程的应用;根的判别式.【分析】假设这两个正方形的面积之和可以等于48cm2.设一段铁丝的长度为4xcm(0<x<10),则另一段铁丝的长度为(40﹣4x)cm,根据两个正方形的面积之和为48cm2,即可列出关于x的一元二次方程,根据根的判别式△<0可得出该方程无解,由此得出假设不成立,从而得出这两个正方形的面积之和不可能等于48cm2.【解答】解:假设这两个正方形的面积之和可以等于48cm2.设一段铁丝的长度为4xcm(0<x<10),则另一段铁丝的长度为(40﹣4x)cm,根据题意,得: +=48,整理,得:x2﹣10x+26=0.∵在方程x2﹣10x+26=0中,△=(﹣10)2﹣4×26=﹣4<0,∴方程x2﹣10x+26=0无解.故假设不成立,即这两个正方形的面积之和不可能等于48cm2.【点评】本题考查了一元二次方程的应用以及根的判别式,利用反证法找出方程x2﹣10x+26=0无解是解题的关键.25.如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.(1)求运动时间t的取值范围;(2)t为何值时,Rt△POQ与Rt△AOB相似?【考点】相似三角形的判定;坐标与图形性质.【分析】(1)由点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动,可得:2t=8,解得:t=4,进而可得:0≤t≤4;(2)分两种情况讨论:①Rt△POQ∽Rt△AOB;②Rt△QOP∽Rt△AOB,然后根据相似三角形对应边成比例,即可求出相应的t的值.【解答】解:(1)∵点A(0,6),B(8,0),∴OA=6,OB=8,∵点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动,∴2t=8,解得:t=4,∴0≤t≤4;(2)①若Rt△POQ∽Rt△AOB时,∵Rt△POQ∽Rt△AOB,∴=,即=,解得:t=;②若Rt△QOP∽Rt△AOB时,∵Rt△QOP∽Rt△AOB,∴=,即=,解得:t=.所以当t为或时,Rt△POQ与Rt△AOB相似.【点评】此题是一次函数的综合题型,主要考查了三角形的面积,二次函数的最值,相似三角形的判定与性质,第(2)问的解题的关键是:分两种情况讨论:①Rt△POQ∽Rt△AOB;②Rt△QOP∽Rt△AOB.26.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是100+200x 斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?此时的利润率是多少?【考点】一元二次方程的应用.【分析】(1)销售量=原来销售量﹣下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【解答】解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x (斤);故答案为:100+200x.(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.【点评】本题主要考查的是一元二次方程的应用,明确利润、销售量、售价之间的关系是解题的关键.。
10月九年级上月考数学试卷 (有答案)一、填空题(每题2分,共24分)1.已知线段b=2,c=8,若线段a 是线段b 与c 的比例中项,则a= .2.如果,那么= .3.一元二次方程x 2﹣2x ﹣1=0的根的情况为 .4.已知关于x 的二次三项式4x 2﹣mx +25是完全平方式,则常数m 的值为 . 5.关于x 的一元二次方程(a ﹣1)x 2+x +|a |﹣1=0的一个根是0,则实数a 的值是 . 6.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是 . 7.若a 是方程x 2﹣2x ﹣2=0的一个根,则2a 2﹣4a= .8.如图∠DAB=∠CAE ,请补充一个条件: ,使△ABC ∽△ADE .9.如图,点P 是△ABC 中AB 边上的一点,过P 作直线(不与AB 重合)截△ABC ,使截得的三角形与原三角形相似,满足条件的直线最多有 条.10.如图△ABC 中,DE ∥BC ,AD :BD=1:2,则DE :BC= .11.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN :S △CEM 等于.12.已知如图,梯形ABCD中,AB∥CD,△COD与△AOB的周长比为1:2,则S△COB:S△COD=.二.选择题(每题3分,共15分)13.若关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤1 D.k≤1且k≠014.根据下列表格对应值:)A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.3.25<x<3.2815.在△ABC中,点D、E分别在AB、AC边上.下列各比例式中,能够判定DE∥BC的是()A.=B.= C.= D.=16.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.1217.下列四个三角形中,与图中的三角形相似的是()A. B.C.D.三、解答题(共81分)18.选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).19.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?20.已知:如图,△ABC中,CE⊥AB,BF⊥AC.求证:△AEF∽△ACB.21.如图,在▱ABCD中,点E在BC上,∠CDE=∠DAE.(1)求证:△ADE∽△DEC;(2)若AD=6,DE=4,求BE的长.22.两棵树的高度分别是AB=16米,CD=12米,两棵树的根部之间的距离AC=6米.小强沿着正对这两棵树的方向从右向左前进,如果小强的眼睛与地面的距离为1.6米,当小强与树CD 的距离等于多少时,小强的眼睛与树AB、CD的顶部B、D恰好在同一条直线上,请说明理由.23.如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.24.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?25.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)试说明△ABD≌△BCE;(2)△AEF与△ABE相似吗?说说你的理由;(3)BD2=AD•DF吗?请说明理由.26.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O 出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.27.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.九年级(上)月考数学试卷(10月份)参考答案与试题解析一、填空题(每题2分,共24分)1.已知线段b=2,c=8,若线段a 是线段b 与c 的比例中项,则a= 4 . 【考点】比例线段.【分析】由线段a 是线段b 与c 的比例中项,根据线段比例中项的概念,可得b :a=a :c ,可得a 2=bc=16,故a 的值可求.【解答】解:∵线段a 是线段b 与c 的比例中项, ∴a 2=bc=2×8=16, 解得a=±4, 又∵线段是正数, ∴a=4. 故答案为:4.2.如果,那么=.【考点】分式的基本性质.【分析】由可知:若设a=2x ,则b=3x .代入所求式子就可求出.【解答】解:∵,∴设a=2x,则b=3x,∴.故答案为.3.一元二次方程x2﹣2x﹣1=0的根的情况为两个不相等的实数根.【考点】根的判别式.【分析】根据方程的系数结合根的判别式即可得出△>0,由此即可得出结论.【解答】解:∵在方程x2﹣2x﹣1=0中,△=(﹣2)2﹣4×1×(﹣1)=8>0,∴方程x2﹣2x﹣1=0有两个不相等的实数根.故答案为:两个不相等的实数根.4.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为±20.【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是2x和5这两个数的平方,那么中间一项为加上或减去2x和5的积的2倍.【解答】解:∵4x2﹣mx+25是一个完全平方式,∴mx=±2•2x×5=±20x,∴m=±20,故答案为±20.5.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值是﹣1.【考点】一元二次方程的解.【分析】把x=0代入已知方程,得到关于a的方程,通过解新方程求得a的值.注意二次项系数不等于零.【解答】解:依题意得:|a|﹣1=0且a﹣1≠0,解得a=﹣1.故答案是:﹣1.6.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【考点】根的判别式.【分析】由关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且k≠0,则可求得k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.7.若a是方程x2﹣2x﹣2=0的一个根,则2a2﹣4a=4.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,把x=a代入方程得到a2﹣2a﹣2=0,则a2﹣2a=2,然后把2a2﹣4a变形为2(a2﹣2a),再利用整体代入的方法计算.【解答】解:把x=a代入方程得a2﹣2a﹣2=0,则a2﹣2a=2,所以2a2﹣4a=2(a2﹣2a)=2×2=4.故答案为4.8.如图∠DAB=∠CAE,请补充一个条件:∠D=∠B(答案不唯一),使△ABC∽△ADE.【考点】相似三角形的判定.【分析】根据相似三角形的判定方法,已知一组角相等则再添加一组相等的角可该角的两个边对应成比例即可推出两三角形相似.【解答】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.故答案为:∠D=∠B(答案不唯一).9.如图,点P是△ABC中AB边上的一点,过P作直线(不与AB重合)截△ABC,使截得的三角形与原三角形相似,满足条件的直线最多有4条.【考点】相似三角形的判定.【分析】两个角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似.利用相似三角形的判定方法分别得出符合题意的图形即可.【解答】解:第一种情况如图1所示,过点P作PD∥BC,理由:因为一条直线平行于三角形的一边,且与三角形的另两边相交,则所得三角形与原三角形相似.第二种情况如图2所示,以PA为角的一边,在△ABC内作∠APE=∠C,理由:因为△APE与△ACB中还有公共角∠A,所以这两个三角形也相似.第三种情况如图3所示,过点P作PF∥AC,理由:因为一条直线平行于三角形的一边,且与三角形的另两边相交,则所得三角形与原三角形相似.第四种情况如图4所示,作∠BPG=∠C,理由:因为△GBP与△ACB中还有公共角∠B,所以这两个三角形也相似.故答案为:4.10.如图△ABC中,DE∥BC,AD:BD=1:2,则DE:BC=1:3.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理进行解答. 【解答】解:∵DE ∥BC , ∴AD :AB=DE :BC , ∵AD :BD=1:2, ∴AD :AB=1:3, ∴DE :BC=1:3.11.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN :S △CEM 等于1:3 .【考点】相似三角形的判定与性质.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半,可以求出DE=BC ,又点M 是DE 的中点,可以求出DM :BC 的值,也就等于MN :NC 的值,从而可以得到MN :MC 的比值,也就是点N 到DE 的距离与点C 到DE 的距离之比,又DM=ME ,所以S △DMN :S △CEM =MN :MC .【解答】解:∵DE 是△ABC 的中位线,∴DE ∥BC ,DE=BC , ∵M 是DE 的中点,∴DM=ME=BC ,∴==,∴==,即:点N 到DE 的距离与点C 到DE 的距离之比为,∵DM=ME ,∴S △DMN :S △CEM =1:3.故答案为:1:3.12.已知如图,梯形ABCD 中,AB ∥CD ,△COD 与△AOB 的周长比为1:2,则S △COB :S △COD = 2:1 .【考点】相似三角形的判定与性质;梯形.【分析】先证明△COD 与△AOB 相似,再根据相似三角形周长的比等于相似比,推出DO 与OB 的比值,又△COB ,△COD 是等高三角形,所以面积的比等于底边BO 与OD 的比.【解答】解:∵AB ∥CD ,∴△COD ∽△AOB ,∵△COD 与△AOB 的周长比为1:2,∴DO :OB=1:2;∵△COB ,△COD 是等高三角形,∴S △COB :S △COD =BO :OD=2:1.故答案为2:1.二.选择题(每题3分,共15分)13.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则k 的取值范围是( )A .k ≥﹣1B .k ≥﹣1且k ≠0C .k ≤1D .k ≤1且k ≠0【考点】根的判别式.【分析】分两种情况讨论:(1)当k=0时,方程为一元一次方程,必有实数根;(2)当k≠0时,方程为一元二次方程,当△≥0时,必有实数根.【解答】解:(1)当k=0时,方程为一元一次方程,必有实数根;(2)当k≠0时,方程为一元二次方程,当△≥0时,方程有实数根:△=4﹣4k(﹣1)≥0,解得k≥﹣1,综上所述,k≥﹣1.故选A.14.根据下列表格对应值:)A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.3.25<x<3.28【考点】估算一元二次方程的近似解.【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.24~3.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.【解答】解:由图表可知,ax2+bx+c=0时,3.24<x<3.25.故选B.15.在△ABC中,点D、E分别在AB、AC边上.下列各比例式中,能够判定DE∥BC的是()A.=B.= C.= D.=【考点】平行线分线段成比例.【分析】根据对应线段成比例,两直线平行,可得出答案.【解答】解:∵,∴DE∥BC,故选D.16.如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.12【考点】相似三角形的判定与性质;正方形的性质.【分析】根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【解答】解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,即x2﹣4x﹣3x+12=12,∴x=0(不符合题意,舍去),x=7.故选C.17.下列四个三角形中,与图中的三角形相似的是()A. B.C.D.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.三、解答题(共81分)18.选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)直接利用公式法求出方程的根即可;(2)先移项,使方程的右边化为零,再利用提取公因式法分解因式得出即可.【解答】解:(1)x2﹣5x+1=0,∵△=b2﹣4ac=25﹣4×1×1=21>0,∴x=;(2)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,解得:x1=2,x2=3.19.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】一元二次方程的应用;平行四边形的性质;菱形的性质.【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.20.已知:如图,△ABC中,CE⊥AB,BF⊥AC.求证:△AEF∽△ACB.【考点】相似三角形的判定.【分析】根据两角对应相等的三角形是相似三角形可得△AEC∽△AFB,根据两边对应成比例且夹角相等的三角形是相似三角形可证明△AEF∽△ACB.【解答】证明:∵CE⊥AB于E,BF⊥AC于F,∴∠AFB=∠AEC.∵∠A为公共角,∴△ABF∽△ACE(两角对应相等的两个三角形相似).∴AB:AC=AF:AE,∠A为公共角.∴△AEF∽△ACB(两边对应成比例且夹角相等的两个三角形相似).21.如图,在▱ABCD中,点E在BC上,∠CDE=∠DAE.(1)求证:△ADE∽△DEC;(2)若AD=6,DE=4,求BE的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据AD∥BC,可以证得∠ADE=∠DEC,然后根据∠CDE=∠DAE即可证得;(2)根据相似三角形对应边的比相等,即可求得EC的长,则BE即可求解.【解答】(1)证明:∵▱ABCD中AD∥BC,∴∠ADE=∠DEC,又∵∠CDE=∠DAE,∴△ADE∽△DEC;(2)解:∵△ADE∽△DEC,∴=,∴=,∴EC=.又∵BC=AD=6,∴BE=6﹣=.22.两棵树的高度分别是AB=16米,CD=12米,两棵树的根部之间的距离AC=6米.小强沿着正对这两棵树的方向从右向左前进,如果小强的眼睛与地面的距离为1.6米,当小强与树CD 的距离等于多少时,小强的眼睛与树AB、CD的顶部B、D恰好在同一条直线上,请说明理由.【考点】相似三角形的应用.【分析】本题需先过O点作平行于地面的线段交CD于E,交AB于F,再根据△ODE∽△OBF,列出方程即可求出结果.【解答】解:设小强的眼睛的位置为O,过O点作平行于地面的线段交CD于E,交AB于F,连接O、D、E得△ODE和△OBF,设小强与树CD的距离为x,有OE=x,OF=6+x.因为△ODE∽△OBF,所以:=,解得x=15.6米.23.如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.【考点】一元二次方程的应用.【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【解答】解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长19m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为10米,18米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长19m,满足条件的花园面积不能达到200m2.24.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【考点】一元二次方程的应用.【分析】(1)先求出每件的利润.再乘以每月销售的数量就可以得出每月的总利润;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)由题意,得60=4800元.答:降价前商场每月销售该商品的利润是4800元;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由题意,得(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.25.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)试说明△ABD≌△BCE;(2)△AEF与△ABE相似吗?说说你的理由;(3)BD2=AD•DF吗?请说明理由.【考点】相似三角形的判定与性质;全等三角形的判定;等边三角形的性质.【分析】(1)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以证明△BDF∽△ADB,然后可以得到,即BD2=AD•DF.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,又∵BD=CE,∴△ABD≌△BCE;(2)△AEF与△ABE相似.由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)BD2=AD•DF.由(1)得:∠BAD=∠FBD,又∵∠BDF=∠ADB,∴△BDF∽△ADB,∴,即BD2=AD•DF.26.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O 出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为(t,t),F的坐标为(10﹣t,t);(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)过点A作AD⊥OB,由点A的坐标为(6,8),可得OD=6,AD=8,然后由勾股定理得:OA=10,由OA=OB可得:OB=10,进而可得:BD=4,进而可得点B的坐标为:(10,0),然后设OA的关系式:y=kx,然后将A(6,8)代入即可得直线OA的关系式,然后设直线AB 的关系式为:y=kx+b,然后将A,B两点代入,即可确定直线AB的关系式,由过点Q作x轴的平行线分别交OA,AB于E,F,可知点Q、E、F三点的纵坐标相等均为t,然后由点E在OA上,点F在AB上,将点E、F的纵坐标分别代入对应的关系式,即可得到得到点E、F的坐标;(2)由EF∥OP,欲使四边形POFE是平行四边形,只需EF=OP即可,从而可得关于t的等式,解答即可;(3)分三种情况讨论:①PE⊥EF,②PE⊥PF,③EF⊥PF即可.【解答】解:(1)过点A作AD⊥OB,垂足为D,如图1,∵点A的坐标为(6,8),∴OD=6,AD=8,由勾股定理得:OA=10,∵OA=OB,∴OB=10,∴BD=4,∴点B的坐标为:(10,0),设直线OA的关系式:y=kx,将A(6,8)代入上式,得:6k=8,解得:k=,所以直线OA的关系式:y=x,设直线AB的关系式为:y=kx+b,将A,B两点代入上式得:,解得:,所以直线AB的关系式为:y=﹣2x+20,∵过点Q作x轴的平行线分别交OA,AB于E,F,∴点Q、E、F三点的纵坐标相等,∵动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,∴t秒后,OQ=t,OP=2t,∴Q、E、F三点的纵坐标均为t,将点E的纵坐标t代入y=x,得:x=t,∴E点的坐标为:(,t),将点E的纵坐标t代入y=﹣2x+20,得:x=10﹣t,∴F点的坐标为:(10﹣t,t),故答案为:(t,t),(10﹣t,t);(2)由(1)知:E(t,t),F(10﹣t,t),∴EF=10﹣t﹣t=10﹣t,∵四边形POFE是平行四边形,∴EF∥OP,且EF=OP,即10﹣t=2t,解得:t=,∴当t为时,四边形POFE是平行四边形;(3)过点E作EM⊥OB,垂足为M,过点F作FN⊥OB,垂足为N,可得四边形EMNF是矩形,如图2,①当PE⊥PF时,PE2+PF2=EF2,由(1)知:OM=t,EM=FN=t,ON=10﹣t,EF=10﹣,∴PM=,PN=10﹣,∵PE2=ME2+MP2,PF2=PN2+FN2,∴t2+(t)2+(10﹣t)2+t2=(10﹣)2,解得:t1=0(舍去),t2=;②当PE⊥EF时,如图3,可得四边形EPNF是矩形,∵四边形EPNF是矩形,∴EF=PN,即:EF=ON﹣OP,∴10﹣=10﹣﹣2t,解得t=0(舍去);③当EF⊥PF时,如图4,可得四边形EMPF是矩形,∵四边形EMPF是矩形,∴EF=MP,即EF=OP﹣OM,∴10﹣=2t﹣t,解得:t=4,∴当t=和4时,使△PEF为直角三角形.27.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.2017年2月11日。
人教版九年级上册数学十月份月考试卷一、选择题(共10小题,每小题3分,共30分)1. 一个小组有若干人,每人互送贺卡一张,全组共送贺卡72张,则这个小组有( )A. 12人B. 10人 C ・9人D. 18人2. 在抛物线上有£( 一 0. 5, %)、凤2,北)、Q (3, yj 三点,若抛物线与y 轴的交点在正半轴上,则的大小关系为()抛物线y = F_2j!r + 2与坐标轴交点个数为( )一元二次方程H +271丫 +加=0有两个不相等的实数根,飞机着陆后滑行的距离P (单位:m )关于滑行时间f (单位:s )的函数解析式是y = 60/-|z 2.在飞机着陆滑行中,最后6 s 滑行的距离是 ______ m14. _____________ 两年前生产1 r 药品的成本是6000元,现在生产1 r 药品的成本是4860元,则药品成本的年平均 下降率是15. 二次函数y = |x 2的图象如图,点儿位于坐标原点,点儿、Az.儿、…、儿在卩轴的正半轴上,点&、足、&、…、3,在二次函数位于第一象限的图象上,点G 、 G 、G 、…、G 在二次函数位于第二彖限的图象上.四边形儿3儿G 、四边形 四边形四边形都是菱形,上述A : = Z 小£= S 民仏••• = Z 儿 風£=60° ,菱形A 的周长为—16. 如图,平行于*轴的直线M 分别交抛物线(心0)与 〉,2=壬(谤0) B 、C 两点,过点Q 作y 轴的平行线交%于点Q, 三、解答题(共8题,共72分)17. (本题8分)解方程:Y +A —3 = 0A. 3・ A. 4. A. 5. 戶VyiVjtB ・C ・北<乃<戶 二次函数尸一左一2x+c 在一3 W2的范围内有最小值一5, -6 B ・ 2 C ・ 一2 抛物线7=2(^+3):+5的顶点坐标是() (3, 5)B. (一3, 5)C. (一3, 方程X& — 5)= 0化成一般形式后,它的常数项是( 5B. 一 5C. 0D.处<上<戶则c 的值是(D. 3—5) D. (3, -5) D. 1 6. A.B. 1C. 2D. 31. A. 8. A. 9.A. m = 3 B ・ zn >3 C ・ ZZF <3用配方法解方程/一2x —5=0时,原方程应变形为( Cr+l )s =6 B ・(x-l )2=6 C ・ 二次函数 y=2(x-3)3-6 ( ) 最小值为一6 B.最小值为3 C.最大值为一6 -Yix 加是方程2-Y "_4x —1=0的两个根,则必+加=( B ・ 1 或一1 C. —2 )(x-2)s =9 D. C Y +2)2=910. 若 A. 1 二、填空题(本大题共6个小题,每小题3分,共18分) 耙抛物线y=/先向下平移1个单位,再向左平移2个单位, 一元二次方程+—&=0的一个根是2,则a 的值是 ________________________D.最大值为3)D ・211. 得到的抛物线的解析式是. r )p直线应必交北于点丄则丽= --------------------13.18.(本题8分)⑴ 请用描点法画出二次函数y=—空+心一3的图象(2)根据函数图象回答:不等式一£+4x—3>0的解集为____________ :不等式一+4x—3< —3的解集为_______________19.(本题8分)已知关于%的方程/一(2&+1)%+尸+£=0(1)求证:无论&取任何实数值,方程总有两个不相等的实数根(2)若两实数根满足(小+1)(出+1)=12,求&的值20.(本题8分)某商店经销一种销售成本为每千克40元的水产品,据市场分析:若每千克50元销售. 一个月能售岀500 kg.销售单价每涨1元,月销售虽就减少10 kg(1)当销售单价立为每千克55元时,讣算销售量和月销售利润(2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?21・(本题8分)已知抛物线y=ay+bx+e的顶点P(2, —1),且过点(0, 3)(1)求抛物线的解析式⑵ 过龙点的直线y=^-2m-3 5<0 )与抛物线y=a^+bx+c交于点"、A:若△£!£¥的而积等于1.求ZZ?的值22.(本题10分)如图,在正方形救P中,疋是边曲上的一动点(不与点小万重合),连接広点/!关于直线力的对称点为尸,连接〃并延长交證于点G,连接%,过点£作曲丄血交%的延长线于点/连接册(1)求证:GF=GC(2)用等式表示线段阳与M的数量关系,并证明(3)若正方形救P的边长为4,取加的中点胚请直接写岀线段3”长的最小值23.(本题10分)投资8000元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长35 m、平行于墙的边的费用为100元/m,垂直于墙的边的费用为250元/皿设平行于墙的边长为x加(1)设垂直于墙的一边长为ym直接写岀y与*之间的函数关系式⑵若菜园面积为300乩求"的值(3)求菜园的最大面积24.(本题12分)如图,抛物线y=/+bY+c (aHO)与直线y=x+1相交于0)、B(4,加)两点,且抛物线经过点C5, 0)(1)求抛物线的解析式(2)点尸是抛物线上的一个动点(不与点么点万重合),过点尸作直线PDLx轴于点2交直线初于点E①当朋=2和时,求P点坐标②是否存在点F使△毗为等腰三角形?若存在,请直接写出点尸的坐标:若不存在,请说明理由人教版九年级上册数学十月份月考试卷一.选择题(共10小题,每小题3分,共30分)二、填空题(共小题,每小题分,共分)11. y=Gr+2尸一1 12. 4 13. 5414. 10% 15. 4n 16.三.解答题(共8题,共72分)18.解:(1) 1<-Y<3: (2) %<0 或正>419.证明:(1) VA = (2A+1):-4 = 1 >0•••求证:无论&取任何实数值,方程总有两个不相等的实数根(2) T・Y>+X:=2&+1, xg=艮+k•••3+1)(£+1)=上上+弘+£+1=2比+1+尸+&+1 = 12,解得人=一5, k尸220.解:(1)销售量:500-5X10=540(kg)销售利润:450X(55-40)=6750 (元)(2)设销售单价应为'元(JT-40) [500-10(x-50)] =8000,解得及=80,挹=60①当<=80时,进货500-10X (80-50)=200滋<250 kg.符合题意②当-Y=60时.进货500-10X (60-50)=400転>250 kg.不符合题意21.解:(1) y=(x-2)3-l(2)过点尸作PQ//y轴交MV于Q设P(2, -1),则0(2, -3):・PQ=2联立< ' A 4x + 3 ,整理得y*—Gz?+4)x+2zz?+6 = 0y = 加一3如+ Xr=也+ 4 > -Y K X V= 2e+ 6:.XN-g J(加+ 4)2 -4(2加 + 6) = 1,解得血=-3,处=3 (舍去)22.证明:(1)连接莎•••点A关于直线加对称点为尸:・DF=DA=DC, ZDFE= ZA=90°可证:Rt\DGF仝Rt'DGC:・GF=GC(2) •:乙 ADE= ZFDE、乙 GDF= ZGDC:.£EDG=^9 JEHA.DE:4EH为等腰直角三角形过点〃作HMA.AB于“由三垂直,得厶ADE^/\MEH (AAS):.HM=AE. EM=AD=AB:.AE=B\f=HM17.:.BH= 41 HM= 41 AE(3)对角互补找疋点轨迹2^223.解:(1) V100x+250y 2 = 8000y =-丄x+165(2)S=xy= -lx2 + 16.v = 300,解得弘=30, £=50••X35••」=30(3)S =-丄(x-40)2+3205•••0W30•••S随X的增大而增大・••当x=30时,S有最大值为30024.解:(1) y=-"+4x+5(2)① 设尸(<•, — F+4r+5),则r+1)、D(t, 0)•••彤=一/+4丫+5 —(r+1) =|-f+3t+4L DE= t+1•: PE=2ED/. |-f+3t+4|=2| t+1 =|2t+2当一F+3r+4=2r+2 时,解得t t=-l (舍去),t==2当一F+3r+4+2r+2=0时,解得仁=一1 (舍去),空=6•••P(2, 9)或(6, -7)② BE = QmE=Jlt2-& + 26 , BC =压当BE=CE时,-41 = 如-8/ + 26 ,解得心丄,此时X-,—) 4 4 16当爾=庞时,V2I/-4I = V26 ,解得『=4士加,此时P(4 + VH, - 4圧- 8) 或(4-713,4713-8)当陽=證时,J力2-& + 26 = 極,解得r=0或4 (舍去),此时F(0, 5)。
黑龙江省哈尔滨七十二中2017届九年级(上)月考数学试卷(10月份)一、选择题(请将正确的选项填入表中,每小题3分,共计30分)1.若cosA=,则锐角∠A为()A.30° B.15° C.45° D.60°2.二次函数y=3(x﹣1)2+2的最小值是()A.2 B.1 C.﹣1 D.﹣23.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y=﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3 4.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30° B.40° C.50° D.60°5.如图,△ABC中,∠ACB=90°,CD⊥AB于点D,若CD:AC=2:3,则sin∠BCD的值是()A.B.C.D.6.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为()A.15m B.20m C.10m D.20m7.已知抛物线的解析式为y=﹣2(x﹣2)2+1,则当 x≥2时,y随x增大的变化规律是()A.增大 B.减小 C.先增大再减小 D.先减小后增大8.如图,CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠A 的度数为()A.50° B.40° C.30° D.25°9.如图,在矩形纸片ABCD中,点E在BC上,且AE=EC=2.若将纸片沿AE折叠,点B好落在AC上,则AC等于()A.3 B.2 C.2 D.10.某天早晨,张强从家跑去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象.则下列说法:①张强返回时的速度为150米/分②张强在离家750米处的地方追上妈妈③妈妈回家的速度是50米/分④妈妈与张强一起回家比按原速度返回提前10分钟.正确的个数为()A.1个B.2个C.3个D.4个二、填空题11.在Rt△ABC中,∠C=90°,AB=5,AC=4,则sinA的值为.12.已知二次函数y=﹣x2+mx+2的对称轴为直线x=,则m= .13.如图,在⊙O中,AB为直径,C为⊙O上一点,∠A=40°,则∠B= .14.已知AB是⊙O的弦,OA=3,sin∠OAB=,则弦AB的长是.15.一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为.16.如图,ABCD是⊙O的内接四边形,∠B=130°,则∠AOC的度数是度.17.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为.18.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.19.在△ABC中,AB=AC,若BD⊥AC于D,若cos∠BAD=,BD=,则CD为.20.已知:如图,在△ABC中,AB=AC且tanA=,P为BC上一点,且BP:PC=3:5,E、F 分别为AB、AC上的点,且∠EPF=2∠B,若△EPF的面积为6,则EF= .三、解答题(共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中x=2sin60°﹣1,y=tan45°.22.(7分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为;(2)在方格纸中画出以AB为一边的矩形ABDE,点D、E均在小正方形的顶点上,且矩形ABDE 的面积为10.23.(8分)已知:如图,二次函数y=ax2+bx+3的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),且抛物线经过点(2,3),M为抛物线的顶点.(1)求M的坐标;(2)求△MCB的面积.24.(8分)如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知sin∠BAH=,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.25.(10分)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B 两种礼盒的单价比为2:3,单价和为200元,该店主购进这两种礼盒恰好用去9600元,且购进B种礼盒的数量是A种礼盒数量的2倍.(1)请问,A、B两种礼盒各购进多少个?(2)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,若要使全部礼盒销售结束且捐款基金也成功交接后,利润率仍可不低于10%,则m的值最多不超过多少元?26.(10分)已知AB为⊙O的直径,CD、BC为⊙O的弦,CD∥AB,半径OD⊥BC于点E.(1)如图1,求证:∠BOD=60°;(2)如图2,点F在⊙O上(点F与点B不重合),连接CF,交直径AB于点H,过点B作BG⊥CF,垂足为点G,求证:BG=FG;(3)在(2)的条件下,如图3,连接EG,若GH=2FG,BH=,求线段EG的长.27.(10分)在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴负半轴交于A,与x轴的正半轴交于点B,与y轴的正半轴交于点C,且AB=4.(1)如图1,求a的值;(2)如图2,连接AC,BC,点D在第一象限内抛物线上,过D作DE∥AC,交线段BC于E,若DE=EC,求点D的坐标;(3)如图3,在(2)的条件下,连接DC并延长,交x轴于点F,点P在第一象限的抛物线上,连接PF,作CQ⊥PF,交x轴于Q,连接PQ,当∠PQC=2∠PFQ时,求点P的坐标.2016-2017学年黑龙江省哈尔滨七十二中九年级(上)月考数学试卷(10月份)(五四学制)参考答案与试题解析一、选择题(请将正确的选项填入表中,每小题3分,共计30分)1.若cosA=,则锐角∠A为()A.30° B.15° C.45° D.60°【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由cosA=,则锐角∠A为45°,故选:C.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.二次函数y=3(x﹣1)2+2的最小值是()A.2 B.1 C.﹣1 D.﹣2【考点】二次函数的最值.【分析】根据完全平方式和顶点式的意义,可直接得出二次函数的最小值.【解答】解:由于(x﹣1)2≥0,所以当x=1时,函数取得最小值为2,故选:A.【点评】本题考查了二次函数的性质,要熟悉非负数的性质,找到完全平方式的最小值即为函数的最小值.3.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y=﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3 【考点】二次函数图象与几何变换.【分析】根据图象右移减,上移加,可得答案.【解答】解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.【点评】本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.4.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30° B.40° C.50° D.60°【考点】圆周角定理.【分析】根据图形,利用圆周角定理求出所求角度数即可.【解答】解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,故选C【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.5.如图,△ABC中,∠ACB=90°,CD⊥AB于点D,若CD:AC=2:3,则sin∠BCD的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据正弦的定义求出sin∠A,根据同角的余角相等得到∠A=∠BCD,得到答案.【解答】解:sin∠A==,∵∠ACB=90°,CD⊥AB,∴∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴sin∠BCD=sin∠A==,故选:B.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.6.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为()A.15m B.20m C.10m D.20m【考点】解直角三角形的应用-仰角俯角问题.【分析】由题意得,在直角三角形ACB中,知道了已知角的邻边求对边,用正切函数计算即可.【解答】解:∵自楼的顶部A看地面上的一点B,俯角为30°,∴∠ABC=30°,∴AC=AB•tan30°=30×=10(米).∴楼的高度AC为10米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.7.已知抛物线的解析式为y=﹣2(x﹣2)2+1,则当 x≥2时,y随x增大的变化规律是()A.增大 B.减小 C.先增大再减小 D.先减小后增大【考点】二次函数的性质.【分析】由解析式可求得对称轴为x=2,再利用增减性可求得答案.【解答】解:∵y=﹣2(x﹣2)2+1,∴抛物线开口向下,对称对轴为x=2,∴当x≥2时,y随x的增大而减小,故选B.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x ﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).8.如图,CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠A 的度数为()A.50° B.40° C.30° D.25°【考点】圆周角定理.【分析】根据平行线的性质可证∠D=∠AOD=50°,又根据三角形外角与内角的关系可证∠ACO=∠OAC=∠AOD=25°【解答】解:∵OA∥DE,∴∠D=∠AOD=50°,∵OA=OC,∴∠ACO=∠OAC=∠AOD=25°.故选D.【点评】此题主要考查了考查的是两直线平行的性质及三角形外角与内角的关系的知识.关键是掌握三角形的外角等于与它不相邻的两个内角的和.9.如图,在矩形纸片ABCD中,点E在BC上,且AE=EC=2.若将纸片沿AE折叠,点B好落在AC上,则AC等于()A.3 B.2 C.2 D.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据等腰三角形的性质得到∠EAC=∠ECA,根据翻折变换的性质得到∠BAE=∠EAC,根据三角形内角和定理得到∠BAE=∠EAC=∠ECA=30°,根据直角三角形的性质和勾股定理计算即可.【解答】解:∵AE=EC,∴∠EAC=∠ECA,∵将纸片沿AE折叠,点B好落在AC上,∴∠BAE=∠EAC,∴∠BAE=∠EAC=∠ECA=30°,∴BE=AE=1,BC=BE+EC=3,由勾股定理得,AB=,AC==2,故选:C.【点评】本题考查的是翻折变换的性质、矩形的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.某天早晨,张强从家跑去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象.则下列说法:①张强返回时的速度为150米/分②张强在离家750米处的地方追上妈妈③妈妈回家的速度是50米/分④妈妈与张强一起回家比按原速度返回提前10分钟.正确的个数为()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】①根据速度=路程÷时间,即可判断;②根据张强所走的时间和速度可求得张强追上妈妈时所走的路程,可判断;③根据速度=路程÷时间,即可判断;④求出妈妈原来走完3000米所用的时间,即可判断.【解答】解:①3000÷(50﹣30)=3000÷20=150(米/分),∴张强返回时的速度为150米/分,正确;②(45﹣30)×150=2250(米),点B的坐标为(45,750),∴张强在离家750米处的地方追上妈妈,正确;③妈妈原来的速度为:2250÷45=50(米/分),正确;④妈妈原来回家所用的时间为:3000÷50=60(分),60﹣50=10(分),∴妈妈比按原速返回提前10分钟到家,正确;∴正确的个数是4个,故选D.【点评】本题主要考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息,并用待定系数法求函数解析式二、填空题11.在Rt△ABC中,∠C=90°,AB=5,AC=4,则sinA的值为.【考点】锐角三角函数的定义.【分析】根据三角函数的定义就可以求解.【解答】解:根据题意画出图形如图所示:在Rt△ABC中,∠C=90°,AB=5,AC=4,∴BC=3.则sinA=.【点评】本题可以考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比边.12.已知二次函数y=﹣x2+mx+2的对称轴为直线x=,则m= .【考点】二次函数的性质.【分析】把二次函数解析式化为顶点式可用m表示出其对称轴,再由条件可得到关于m的方程,可求得m的值.【解答】解:∵y=﹣x2+mx+2=﹣(x﹣)2++2,∴二次函数对称轴为直线x=,∵二次函数的对称轴为直线x=,∴=,解得m=,故答案为:.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x ﹣h)2+k中,对称轴为直线x=h,顶点坐标为(h,k).13.如图,在⊙O中,AB为直径,C为⊙O上一点,∠A=40°,则∠B= 50°.【考点】圆周角定理.【分析】本题利用了直径对的圆周角是直角,然后利用直角三角形的俩锐角互余即可求解.【解答】解:∵AB是直径,则∠C=90°,∴∠A=90°﹣∠A=50°.故答案是:50°.【点评】本题重点考查了直径所对的圆周角为直角的知识.14.已知AB是⊙O的弦,OA=3,sin∠OAB=,则弦AB的长是2.【考点】垂径定理;解直角三角形.【分析】作弦心距OD,根据三角函数设OD=2x,OA=3x,则3x=3,x=1,利用勾股定理求AD 的长,所以由垂径定理得:AB=2AD,得结论.【解答】解:如图,过O作OD⊥AB于D,在Rt△OAD中,sin∠OAB==,设OD=2x,OA=3x,则3x=3,x=1,∴OA=3,OD=2,由勾股定理得:AD==,∵OD⊥AB,∴AB=2AD=2.【点评】本题考查了垂径定理和解直角三角形,知道圆中常作的辅助线方法:①连接半径,②作弦心距;明确三角函数定义:sinA==,cosA==,tanA==(a,b,c分别是∠A、∠B、∠C的对边).15.一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为.【考点】圆周角定理;等腰直角三角形.【分析】连接OB,由同弧说对圆周角等于圆心角的一半可知∠AOB=90°,在Rt△AOB中,由勾股定理可知,AO=50m,所以AD=.【解答】解:∵∠ACB=45°,∴∠AOB=90°,∵AB=100m,∴AO=50m,∴AD=2AO=100m,故答案为:.【点评】此题主要考查了圆周角定理,以及勾股定理的应用,关键是证出∠AOB=90°,在Rt△AOB中,由勾股定理算出AO的长.16.如图,ABCD是⊙O的内接四边形,∠B=130°,则∠AOC的度数是100 度.【考点】圆内接四边形的性质;圆周角定理.【分析】首先根据圆内接四边形的对角互补,得∠D=180°﹣∠B=50°.再根据圆周角定理,得∠AOC=2∠D=100°.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D=180°﹣∠ABC=50°;∴∠AOC=2∠D=100°.【点评】本题考查了圆内接四边形的性质以及圆周角定理的应用.17.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为3.【考点】垂径定理;勾股定理.【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长【解答】解:作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=8,∴BM=DN=4,∴OM=ON==3,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3.故答案为:3.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.【考点】线段垂直平分线的性质.【分析】设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度.【解答】解:设CE=x,连接AE,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.故答案为:.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.19.在△ABC中,AB=AC,若BD⊥AC于D,若cos∠BAD=,BD=,则CD为1或5 .【考点】解直角三角形;等腰三角形的性质.【分析】分△ABC为锐角三角形和钝角三角形两种情况,在Rt△ABD中由cos∠BAD==,可设设AD=2x,则AB=3x,结合BD的长根据勾股定理可得,求得x的值后即可得AB=AC=3,AD=2,在锐角三角形中CD=AC﹣AD,在钝角三角形中CD=AC+AD即可得答案.【解答】解:①如图1,若△ABC为锐角三角形,∵BD⊥AC,∴∠ADB=90°,∵cos∠BAD==,∴设AD=2x,则AB=3x,∵AB2=AD2+BD2,∴,解得:x=1或x=﹣1(舍),∴AB=AC=3x=3,AD=2x=2,∴CD=AC﹣AD=1;②如图2,若△ABC为钝角三角形,由①知,AD=2x=2,AB=AC=3x=3,∴CD=AC+AD=5,故答案为:1或5.【点评】本题考查了等腰三角形的性质,解直角三角形,勾股定理的应用,解此题的关键是根据三角形的形状分类讨论.20.已知:如图,在△ABC中,AB=AC且tanA=,P为BC上一点,且BP:PC=3:5,E、F分别为AB、AC上的点,且∠EPF=2∠B,若△EPF的面积为6,则EF= 2.【考点】解直角三角形;三角形的面积;等腰三角形的性质.【分析】由∠B=∠C、∠A+∠B+∠C=180°知∠A+2∠B=180°,由∠β=2∠B得∠A+∠β=180°,根据四边形内角和得∠3+∠4=180°,继而由∠4+∠1=180°知∠3=∠1,再分两种可能:①∠3=∠4=90°,结合∠B=∠C可得△PBE∽△PFC,从而得知==;②∠3≠∠4,以P为圆心,PF为半径画弧交CF于点G,证△PBE∽△PCG得===;作FD⊥EP,由∠β+∠A=∠β+∠α=180°知∠A=∠α,从而得tanA=tanα==,故可设FD=4x,则PD=3x,求出PF=PG=5x,PE=3x,根据S△PEF=P E•DF=6可得x的值,从而得出DE、DF的长,即可得答案.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∴∠A+2∠B=180°,如图所示,∵∠β=∠EPF=2∠B,∴∠A+∠β=180°,∵∠A+∠3+∠β+∠4=360°,∴∠3+∠4=180°,∵∠4+∠1=180°,∴∠3=∠1,若∠3=∠4=90°,∵∠B=∠C,∴△PBE∽△PFC,∴==,若∠3≠∠4,不放设∠4>∠3,则可以P为圆心,PF为半径画弧交CF于点G,∴PF=PG,∴∠1=∠2,∵∠3=∠1,∴∠3=∠2,∴∠5=∠6,∴△PBE∽△PCG,∴===,作FD⊥EP于点D,∵∠β+∠A=∠β+∠α=180°,∴∠A=∠α,∵tanA=tanα==,设FD=4x,则PD=3x,(x>0),由勾股定理得PF=5x,即PG=5x,∵=,∴PE=3x,∴S△PEF=PE•DF=×3x×4x=6x2,∵S△PEF=6,∴6x2=6,解得:x=1或x=﹣1(舍),∴DE=6x=6,DF=4x=4,由勾股定理可得EF====2,故答案为:2.【点评】本题主要考查解直角三角形、相似三角形的判定与性质、勾股定理等知识点,证△PBE∽△PFC或△PBE∽△PCG得出PE:PF的值是解题的关键.三、解答题(共计60分)21.先化简,再求代数式(﹣)÷的值,其中x=2sin60°﹣1,y=tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先将分子、分母因式分解、将括号内通分,同时将除法转化为乘法,再计算括号内的减法,最后约分可得,将x、y的值整理后代入即可.【解答】解:原式=[﹣]•=•=﹣=﹣,∵x=2sin60°﹣1=2×﹣1=﹣1,y=tan45°=1,∴原式=﹣=﹣=﹣.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算的顺序和运算法则是解题的关键.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为;(2)在方格纸中画出以AB为一边的矩形ABDE,点D、E均在小正方形的顶点上,且矩形ABDE 的面积为10.【考点】作图—应用与设计作图;勾股定理.【分析】(1)根据勾股定理即三角形的面积公式可得;(2)根据勾股定理及矩形的面积公式可得.【解答】解:(1)如图1,Rt△ABC即为所求三角形,(2)如图2,矩形ABDE即为所求,【点评】本题主要考查勾股定理及作图,熟练掌握勾股定理是解题的关键.23.已知:如图,二次函数y=ax2+bx+3的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),且抛物线经过点(2,3),M为抛物线的顶点.(1)求M的坐标;(2)求△MCB的面积.【考点】抛物线与x轴的交点.【分析】(1)根据题意求出二次函数的解析式,然后求出M的坐标;(2)过点M作MN⊥OB于点G,交BC于点N,然后根据M和B的坐标求出MN、OG、BG的长度,在根据三角形面积公式即可求出答案.【解答】解:(1)把(﹣1,0)和(2,3)代入y=ax2+bx+3,∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3,∴M的坐标为:(1,4);(2)过点M作MN⊥OB于点G,交BC于点N,令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或x=3,∴B(3,0),设直线BC的解析式为:y=mx+n,把C(0,3)和B(3,0)代入y=mx+n,∴,∴解得:,∴直线BC的解析式为:y=﹣x+3,令x=1代入y=﹣x+3,∴y=2,∴N(1,2),∴MN=2,OG=1,BG=2,∴S△MCB=S△MNC+S△MNB=MN•OG+MN•BG=MN(BG+OG)=MN•OB=×2×3=3【点评】本题考查二次函数综合问题,涉及三角形面积,待定系数法求解析式,一次函数解析式等知识,综合程度较高.24.如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知sin∠BAH=,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据正弦的概念求出BH的长;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出广告牌的高度.【解答】解:(1)由题意得,sin∠BAH==,又AB=10米,∴BH=AB=5米;(2))∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10.答:广告牌CD的高度为(20﹣10)米.【点评】此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.25.(10分)(2016秋•道外区校级月考)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B 两种礼盒的单价比为2:3,单价和为200元,该店主购进这两种礼盒恰好用去9600元,且购进B种礼盒的数量是A种礼盒数量的2倍.(1)请问,A、B两种礼盒各购进多少个?(2)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,若要使全部礼盒销售结束且捐款基金也成功交接后,利润率仍可不低于10%,则m的值最多不超过多少元?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)直接利用已知求出A种礼盒的单价为:80元,B种礼盒的单价为:120元,再利用该店主购进这两种礼盒恰好用去9600元,且购进B种礼盒的数量是A种礼盒数量的2倍,分别得出等式求出答案;(2)根据题意表示出总利润,进而得出不等式求出答案.【解答】解:(1)∵A、B 两种礼盒的单价比为2:3,单价和为200元,∴A种礼盒的单价为:80元,B种礼盒的单价为:120元,设A种礼盒购进x个,B种礼盒购进y个,根据题意可得:,解得:,答:A种礼盒购进32个,B种礼盒购进64个;(2)由题意可得:32×10+(18﹣m)×64≥9600×10%,解得:m≤8,答:m的值最多不超过8元.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出两种礼盒的利润是解题关键.26.(10分)(2016秋•道外区校级月考)已知AB为⊙O的直径,CD、BC为⊙O的弦,CD ∥AB,半径OD⊥BC于点E.(1)如图1,求证:∠BOD=60°;(2)如图2,点F在⊙O上(点F与点B不重合),连接CF,交直径AB于点H,过点B作BG⊥CF,垂足为点G,求证:BG=FG;(3)在(2)的条件下,如图3,连接EG,若GH=2FG,BH=,求线段EG的长.【考点】圆的综合题.【分析】(1)只要证明△ODB是等边三角形即可解决问题.(2)如图2中,连接OC、BF,在Rt△BFG中,根据∠BGF=90°,∠BFG=60°,tan∠BFG=,即可解决问题.(3)如图3中,连接AC、BF.设FG=a.则GH=2a,在Rt△BHG中,利用BH2=BG2+HG2列出方程求出a;,设AC=b,则BC=b,AB=2a,由△AHC∽△FHB,得=,即=,属于AH=b,由AH+HB=AB列出方程求出b,即可解决问题.【解答】(1)证明:如图1中,连接BD.∵OD⊥BC,∴EC=EB,DC=DB,∴∠DCB=∠DBC,∠CDO=∠BDO,∵CD∥AB,∴∠CDO=∠DOB=∠ODB,∵OD=OB,∴∠ODB=∠OBD=∠DOB=60°.(2)证明:如图2中,连接OC、BF.由(1)可知,∠COD=∠DOB=60°,∴∠COB=60°,∴∠BFC=∠BOC=60°,在Rt△BFG中,∵∠BGF=90°,∠BFG=60°,tan∠BFG=,∴BG=FG•tan60°=FG.(3)解:如图3中,连接AC、BF.设FG=a.则GH=2a.∵BG⊥CF,∴∠BGF=90°,∵∠F=60°,∴BG=FG=a,在Rt△BHG中,∵BH2=BG2+HG2,∴7=3a2+4a2,∴a2=1,∵a>0,∴a=1,∴GH=2,FG=1,BF=2,∵AB是直径,∴∠ACB=90°,∵∠CAB=∠F=60°,设AC=b,则BC=b,AB=2a,∵∠A=∠F,∠AHC=∠FHB,∴△AHC∽△FHB,∴=,∴=,∴AH=b,∵AH+HB=AB,∴b+=2b,∴b=2,∴BC=2b=4,在Rt△BCG中,∵CE=EB,∴EG=BC=2.【点评】本题考查圆综合题、垂径定理、等边三角形的判定和性质、圆周角定理、勾股定理、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线,学会用方程的思想思考问题,属于中考压轴题.27.(10分)(2016秋•道外区校级月考)在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴负半轴交于A,与x轴的正半轴交于点B,与y轴的正半轴交于点C,且AB=4.(1)如图1,求a的值;(2)如图2,连接AC,BC,点D在第一象限内抛物线上,过D作DE∥AC,交线段BC于E,若DE=EC,求点D的坐标;(3)如图3,在(2)的条件下,连接DC并延长,交x轴于点F,点P在第一象限的抛物线上,连接PF,作CQ⊥PF,交x轴于Q,连接PQ,当∠PQC=2∠PFQ时,求点P的坐标.【考点】二次函数综合题.【分析】(1)根据抛物线的对称轴x=1,AB=4,求出点A、B坐标,利用待定系数法即可解决问题.(2)如图2中,作DH⊥AB于H交BC于K,作EM⊥DH于M,交OC于N.设EM=x.想办法表示出点D坐标,代入抛物线的解析式即可解决问题.(3)如图3中,作PN⊥AB于N,QM⊥AB交BC于M.设P(m,n),想办法列出关于m,n 的方程组即可解决问题.【解答】解:(1)∵抛物线的对称轴x=﹣=1,AB=4,∴A(﹣1,0),B(3,0),把A(﹣1,0)代入抛物线的解析式得a+2a+3=0,∴a=﹣1.(2)如图2中,作DH⊥AB于H交BC于K,作EM⊥DH于M,交OC于N.设EM=x.∵AC∥DE,CO∥DM,∴∠ACO=∠EDM,∵∠AOC=∠EMD,∴△ACO∽△EDM,∴=,∴=,∴DM=3x,DE==x,∵DE=CE,∴EC=x,∵OC=OB=3,∴BC=3,∠OCB=∠OBC=45°,∴EN=EM=MK=x,EC=EK=x,∴BK=3﹣2x,∴BH=KH=3﹣2x,∴DH=3+2x,∴D(2x,3+2x)代入y=﹣x2+2x+3,3+2x=﹣4x2+4x+3,解得x=或0(舍弃),∴D(1,4).(3)如图3中,作PN⊥AB于N,QM⊥AB交BC于M.设P(m,n).∵C(0,3),D(,),∴直线CD的解析式为y=x+3,∴F(﹣2,0)∵∠OCQ+∠OQC=90°,∠PFO+∠CQF=90°,∴∠PFQ=∠OCQ,∵OC∥QM,∴∠OCQ=∠CQM,∵∠CQP=2∠PFQ,∴∠PQM=∠CQM,∵QM∥PN,∴∠MQP=∠QPN,∴∠QPN=∠NFP,∵∠PNQ=∠PNF,∴△PNQ∽△FNP,∴PN2=NQ•NF,∴NQ=,OQ=m﹣,∵tan∠OCQ=tan∠PFN,∴=,∴n﹣m=1 ①,又∵n=﹣m2+m+3 ②,由①②可得,或(舍弃),∴点P坐标(,1+).【点评】本题考查二次函数综合题、一次函数、待定系数法、勾股定理、锐角三角函数等知识,解题的关键是灵活运用待定系数法确定函数解析式,学会利用转化的思想思考问题,把问题转化为方程组解决,属于中考压轴题.。