福建省泉州市2017-2018学年高二上学期期末考试数学文试题 Word版含解析
- 格式:doc
- 大小:961.03 KB
- 文档页数:15
峨山一中2017—2018学年上学期期末考试高二年级文科数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,每小题只有一项符合题目要求。
)1.设集合A={3,5,6,8},集合B={5,7,8},则A ∪B 等于( )A. {5,8}B. {5,7,8}C. {3,4,5,6,7,8}D. {3,5,6,7,8} 2.计算:=( )A. B. 12-C.D.123.如右图所示,一个空间几何体的正视图和侧视图都是边长为的正方形,俯视图是一个圆,那么这个几何体的表面积为( ) A.B.C.D.4.在平行四边形ABCD 中,AB AC CD ++uu u r uuu r uu u r等于( )A. AC uuu rB. BD uuu rC. DB uuu rD. AD uuu r5.下列函数中,既是奇函数,又在定义域内为增函数的是( )A. xy ⎪⎭⎫ ⎝⎛=21 B. 1y x = C. 3log y x = D. 3y x =6.运行如图所示程序,则输出结果是( )A. 7B. 9C. 11D. 137.函数()23xf x x =-的零点所在的区间是( )正视图侧视图俯视图A. (1,2)B. ()0,1C. (-2,-1)D. (-1,0)8.过点P (-1,3),且平行于直线24+10x y -=的直线方程为( ) A. 2+-50x y = B. 2+10x y -=C. -2+70x y =D. -250x y -=9.已知数列{}n a 是公比为实数的等比数列,且11a =,59a =,则3a 等于( ) A.-3 B. 2 C. 3 D. ±310.要得到函数3cos 2+4y x π⎛⎫= ⎪⎝⎭的图象,只需要将函数3cos 2y x =的图象( )A. 向右平行移动4π个单位长度 B. 向左平行移动4π个单位长度 C. 向右平行移动8π个单位长度 D. 向左平行移动8π个单位长度 11.三个数231.0=a ,31.0log 2=b ,31.02=c 之间的大小关系为( )A . a <b <cB .a <c <bC . b <a <cD .b <c <a 12.中角A,B,C 所对边分别为a,b,c ,若co s s i n ,2a b C c B b =+=,则面积的面积的最大值为( )A. 1B. 1C.1D.1第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡上。
2024-2025学年福建省泉州市部分地区高二上学期开学考试数学试卷(答案在最后)【满分:150】一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1.复数2023i 12iz =-在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知向量a ,b 满足3a =,5a b ⋅=- ,则()2a b a -⋅= ()A.-1B.2C.15D.193.为了迎接2025年第九届亚冬会的召开,某班组织全班学生开展有关亚冬会知识的竞赛活动.已知该班男生30人,女生20人.按照分层抽样的方法从该班共抽取10人,进行一轮答题.相关统计情况如下:男生答对题目的平均数为10,方差为1;女生答对题目的平均数为15,方差为0.5,则这10人答对题目的方差为()A.6.8B.6.9C.7D.7.24.已知m ,n 是空间中两条不同的直线,α,β是两个不同的平面,则下列说法错误的是()A.若m α⊥,//n α,则m n ⊥B.若m α⊥,//m n ,则n α⊥C.若//m n ,n β⊥,m α⊥,则//αβD.若m α⊥,m n ⊥,则//n α5.为了加深师生对党史的了解,激发广大师生知史爱党,知史爱国的热情,某校举办了“学党史,育文化的党史知识竞赛,并将1000名师生的竞赛成绩(满分100分,成绩取整数)整理成如图所示的频率分布直方图,则下列说法错误的为()A.a 的值为0.005B.估计这组数据的众数为75分C.估计这组数据的第85百分位数为85分D.估计成绩低于60分的有250人6.在ABC △中,2AE EB = ,12AF FC =,M ,N 为线段BC 上(不包含端点)不同的两个动点.若(),AM AN AE AF λμλμ+=+∈R,则2λμ+=()A.3B.4C.6D.77.某人抛掷一枚质地均匀的骰子一次,记事件A =“出现的点数为奇数”,B =“出现的点数不大于3”,事件C =“出现点数为3的倍数”,则下列说法正确的是()A.A 与B 互为对立事件 B.()()()P A B P A P B =+ C.()23P C =D.()()P A P C =8.在正三棱柱111ABC A B C -中,2AB =,123AA =O 为BC 的中点,M ,N 分别为线段11B C ,AM 上的动点,且MN MOMO MA=,则线段MN 的长度的取值范围为()A.31513,54⎡⎤⎢⎥⎣⎦ B.)15,4⎡⎣C.115,47⎡⎢⎣⎦D.1513,54⎡⎤⎢⎥⎣⎦二、选择题:本题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得补部分分,有选错的得0分.9.已知圆22:(1)(2)25C x y ++-=,直线()():311420l m x m y m +++--=,直线l 与圆C 交于A ,B 两点,则()A.直线l 恒过定点()1,1B.当15m =时,AB 最长C.当35m =-时,弦AB 最短D.最短弦长AB =10.已知向量(,1)x =a ,(4,2)=b ,则下列结论正确的是()A.若//a b ,则2x =B.若⊥a b ,则12x =C.若3x =,则向量a 与向量b 的夹角的余弦值为10D.若1x =-,则向量b 在向量a 上的投影向量为11.在菱形ABCD 中,1AB =,120ABC ∠=︒,将ABD △沿对角线BD 折起,使点A 至点P (P 在平面ABCD 外)的位置,则()A.在折叠过程中,总有BD PC ⊥B.存在点P ,使得2PC =C.当1PC =时,三棱锥P BCD -的外接球的表面积为3π2D.当三棱锥P BCD -的体积最大时,32PC =三、填空题:本题共3小题,每小题5分,共15分.12.在空间直角坐标系中,已知()5,2,1A ,()4,2,1B -,()0,1,0C -,()1,0,1D ,则直线AB 与CD 所成角的余弦值为______.13.已知互不相等的4个正整数从小到大排序为x ,y ,z ,6.若这4个数据的极差是中位数的2倍,则这4个数据的第75百分位数为________.14.在圆台12O O 中,圆1O 的半径是2,母线2PC =,圆2O 是ABC △的外接圆,60ACB ∠=︒,AB =则三棱锥P ABC -体积最大值为___________.四、解答题:本题共5分,共77分.解答应写出文字说明,证明过程或演算步骤.15.(13分)如图,在ABC △中,25AD AB =,点E 为AC 中点,点F 为BC 上的三等分点,且靠近点C ,设CA a = CB b = .(1)用a ,b 表示EF ,CD ;(2)如果60ACB ∠=︒,2AC =,且CD EF ⊥,求||CD.16.(15分)甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.17.(15分)如图,在三棱台111ABC A B C -中,90BAC ∠=︒,4AB AC ==,1112A A A B ==,侧棱1A A ⊥平面ABC ,点D 是棱1CC 的中点.(1)证明:1BB ⊥平面1AB C ;(2)求平面BCD 与平面ABD 的夹角的余弦值.18.(17分)某校高一年级开设有羽毛球训练课,期末对学生进行羽毛球五项指标(正手发高远球、定点高远球、吊球、杀球以及半场计时往返跑)考核,满分100分.参加考核的学生有40人,考核得分的频率分布直方图如图所示.(1)由频率分布直方图,求出图中t 的值,并估计考核得分的第60百分位数:(2)为了提升同学们的羽毛球技能,校方准备招聘高水平的教练.现采用分层抽样的方法(样本量按比例分配),从得分在[)70,90内的学生中抽取5人,再从中挑出两人进行试课,求两人得分分别来自[)70,80和[)80,90的概率:(3)现已知直方图中考核得分在[)70,80内的平均数为75,方差为6.25,在[)80,90内的平均数为85,方差为0.5,求得分在[)70,90内的平均数和方差.19.(17分)在①b a =,②2sin tan b A a B =,③()sin sin()sin a c A c A B b B -++=这三个条件中任选一个,补充在下面的横线上,并加以解答.已知ABC △的内角A ,B ,C 所对的边分别是a ,b ,c ,若___________.(1)求角B ;(2)若2,3a c ==,点D 在ABC △外接圆上运动,求BD BC ⋅的最大值.答案以及解析1.答案:D解析:因为20233i i i ==-,所以()()()i 12i i 2i12i 12i 12i 5z -+--===--+,所以,复数z 在复平面内所对应的点为21,55⎛⎫- ⎪⎝⎭,所以,复数z 在复平面内所对应的点位于第四象限.故选:D.2.答案:D解析:因为3a = ,5a b ⋅=-,所以()()22292519a b a a a b -⋅=-⋅=-⨯-= .故选:D.3.答案:A解析:男生30人,女生20人,则抽取的时候分层比为3:2.则10个人中男女分别抽取了6人和4人.这10人答对题目的平均数为1(610415)1210⨯⨯+⨯=.所以这10人答对题目的方差为22641(1012)0.5(1512) 6.81010⎡⎤⎡⎤⨯+-+⨯+-=⎣⎦⎣⎦.故选:A.4.答案:D解析:对于A ,当//n α时,过n 作平面β,使l βα= ,则//n l ,因为m α⊥,l α⊂,所以m l ⊥,所以m n ⊥,故A 正确;对于B ,由线面垂直的性质知B 正确;对于C ,因为//m n ,n β⊥,所以m β⊥,又m α⊥,所以//αβ,故C 正确;对于D ,当m α⊥,m n⊥时,n 可能在平面α内,故D 错误.故选D.5.答案:C解析:根据频率分布直方图可知:10(23365)1a a a a a a +++++=,即0.005a =,故A 正确;由图易得在区间[70,80)的人最多,故可估计这组数据的众数为75,故B 正确;100.005(23)1000250⨯⨯+⨯=,故成绩低于60(分)的有250人,即D 正确;由图中前四组面积之和为:(2336)0.005100.7+++⨯⨯=,图中前五组面积之和为:(23365)0.005100.95++++⨯⨯=,故这组数据的第85百分位数在第五组数据中,设这组数据的第85百分位数为m ,则有0.750.005(80)0.85m +⨯-=,故86m =,即估计这组数据的第85百分位数为86分,故C 错误.故选:C.6.答案:C解析:因为2AE EB = ,12AF FC =,所以23AE AB = ,13AF AC = ,设()()101AM a AB a AC a =+-<< ,()()101AN bAB b AC b =+-<<,则()()11AM AN a AB a AC bAB b AC +=+-++- 3()(2)()3(2)2a b AB a b AC a b AE a b AF =++--=++--,又(),AM AN AE AF λμλμ+=+∈R ,且AE ,AF不共线,则()()3232a b a b λμ⎧+=⎪⎨⎪--=⎩,所以26λμ+=.7.答案:C解析:抛掷一枚质地均匀的骰子,出现的点数构成的样本空间为()()()()()(){}1,2,3,4,5,6,则()()(){}()()(){}()(){}1,3,5,1,2,3,6,3A B C ===,对于A,事件A ,B 可同时发生,故不是对立事件,A 错误,对于B,()()()(){}1,2,3,5A B = ,()23P A B = ,()()1P A P B +=,故B 错误,对于C,()()213P C P C =-=,C 正确,对于D,()12P A =,()13P C =,D 错误,故选:C 8.答案:D解析:取11B C 的中点Q ,连接OQ ,如图,以O 为坐标原点,OC ,OA ,OQ的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,则()0,0,0O ,(0A ,(11,0,B -,(11,0,C .因为M 是棱11B C 上一动点,设(,0,M a ,且[]1,1a ∈-,所以(,0,OM a = ,(MA a =--.因为MN MOMO MA =,所以222MO MN MA ===.令t =4t ⎤∈⎦,则2233t t t t -==-,4t ⎤∈⎦.又函数3y t t =-在4⎤⎦上为增函数,所以线段MN 的长度的取值范围为13,54⎡⎤⎢⎥⎣⎦.9.答案:AC解析:直线方程可化为()3420x y m x y +-++-=,当340120x y x x y +-=⎧⇒=⎨+-=⎩,1y =,故直线l 恒过定点()1,1P ,A 正确;易知圆心()1,2C -,半径=5r ,显然当直线l 过圆心时,AB 最长,则()()()1311124205m m m m +⨯-++⨯--=⇒=-,故B 错误;当CP l ⊥时,此时弦AB 最短,即()3112311115m m m +--⨯=-⇒=-+--,故C 正确;当35m =-时,则弦长AB ==故D 错误.故选:AC 10.答案:AC解析:若//a b ,则240x -=,解得2x =,故A 正确;若⊥a b ,则420x +=,解得12x =-,故B 错误;若3x =,则(3,1)=a .又(4,2)=b ,所以向量a 与向量b的夹角的余弦值为10⋅==a b a b ,故C 正确;若1x =-,则(1,1)=-a .又(4,2)=b ,所以向量b 在向量a上的投影向量为(1,1)||||⋅⋅=-a b a a a ,故D 错误.故选AC.11.答案:AC解析:如图所示,取PC 的中点E ,连接BE ,DE ,则BE PC ⊥,DE PC ⊥,因为BE DE E = ,BD ,DE ⊂平面BDE ,所以PC ⊥平面BDE ,又BD ⊂平面BDE ,所以BD PC ⊥,A 项正确;在菱形ABCD 中,1AB =,120ABC ∠=︒,所以AC =,当ABD △沿对角线BD 折起时,0PC <<,所以不存在点P ,使得2PC =,B 项错误;当PC =1时,将正四面体补成正方体,根据正方体的性质可知,三棱锥P BCD -的外接球就是该正方体的外接球,因为正方体的各面的对角线长为1.所以正方体的棱长为2,设外接球的半径为R ,则22234122R ⎛=+= ⎝⎭,所以三棱锥P BCD -的外接球的表面积2342S R ππ==球,C 项正确;当三棱锥P BCD -的体积最大时,取BD 的中点O ,连接PO ,OC ,易知PO ⊥平面BCD,则PO OC ⊥,又122PO OC AC ===,所以2PC ==,D 项错误.故选:AC.12.答案:5解析:因为()1,0,2AB =-- ,()1,1,1CD =,所以cos ,5AB CD AB CD AB CD⋅===-,所以直线AB 与CD 所成角的余弦值为155.13.答案:4.5/92解析:易知这4个数据的极差为6x -,中位数为2y z+,即可得622y zx +-=⨯,所以6x y z ++=;又因为正整数x ,y ,z 互不相等且16x y z ≤<<<,可得1x =,2y =,3z =;由475%3⨯=为正数,因此这4个数据的第75百分位数为第三个数和第四个数的平均数,即364.52+=,则这4个数据的第75百分位数为4.5.故答案为:4.514.答案:34解析:如图,设圆1O ,2O 的半径分别为1r ,2r ,则12r =,由正弦定理,232sin 60r =︒,解得21r =,设圆台的高为h ,则12h O O ===,在ABC △中,取AC b =,BC a =,由余弦定理,222cos 603a b ab +-︒=,即得2232a b ab ab +=+≥,即得3ab ≤,当且仅当a b ==.因三棱锥P ABC -的体积为11113sin 6033244ABC V S h ab ab =⋅=⨯=≤△,即a b ==,三棱锥P ABC -的体积的最大值为34.故答案为:3.415.答案:(1)3255CD a b =+ ,1132EF b a=-(2)635解析:(1)因为25AD AB =,所以()223232555555CD CA AD CA AB CA CB CA CA CB a b =+=+=+-=+=+ ,11113232EF CF CE CB CA b a =-=-=-;(2)因为CD EF ⊥,所以231105532CD EF b a b a ⎛⎫⎛⎫⋅=+⋅-= ⎪ ⎪⎝⎭⎝⎭ ,所以222301510b a -= ,由2a = ,可得3b = ,又60ACB ∠=︒,所以12332a b ⋅=⋅⋅= ,所以635CD === .16.答案:(1)427(2)265432解析:(1)设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=(2)设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲以积分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=17.答案:(1)见解析(2)3015解析:(1)证明:以A 为坐标原点,以AB ,AC ,1AA 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,根据题意可得()0,0,0A ,()4,0,0B ,()0,4,0C ,()12,0,2B ,()10,2,2C ,()0,3,1D ,∴()12,0,2BB =- ,()0,4,0AC = ,()12,0,2,AB =设平面1AB C 的法向量为(),,n d e f =,则140220n AC e n AB d f ⎧⋅==⎪⎨⋅=+=⎪⎩,令1d =,即1f =-,0e =,则()1,0,1n =- ,12BB n ∴=- ,1//BB n ∴,1BB ∴⊥平面1AB C .(2)由(1)知()4,4,0BC =- ,()0,1,1CD =- ,设平面BCD 的法向量为(),,m x y z =,则4400m BC x y m CD y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1y =,即1x =,1z =,即()1,1,1m = ,由(1)知,()4,0,0AB = ,()0,3,1AD = ,设平面ABD 的法向量为(),,e a b c =,则4030e AB a e AD b c ⎧⋅==⎪⎨⋅=+=⎪⎩ ,令1b =,即0a =,3c =-.即()0,1,3e =- ,设平面BCD 与平面ABD 的夹角为θ,则1330cos cos ,15310m e m e m e θ⋅-====⨯,∴平面BCD 与平面ABD 的夹角的余弦值为3015.18.答案:(1)0.030t =,85;(2)35;(3)得分在[70,90)内的平均数为81,方差为26.8.解析:(1)由题意得:10(0.010.0150.0200.025)1t ⨯++++=,解得0.03t =,设第60百分位数为x ,则0.01100.015100.02100.03(80)0.6x ⨯+⨯+⨯+⨯-=,解得85x =,第60百分位数为85.(2)由题意知,抽出的5位同学中,得分在[70,80)的有85220⨯=人,设为A 、B ,在[80,90)的有125320⨯=人,设为a 、b 、c .则样本空间为{(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)}A B A a A b A c B a B b B c a b a c b c Ω=,()10n Ω=.设事件M =“两人分别来自[70,80)和[80,90),则{(,),(,),(,),(,),(,),(,)}M A a A b A c B a B b B c =,()6n M =,因此()63()()105n M P M n ===Ω,所以两人得分分别来自[70,80)和[80,90)的概率为35.(3)由题意知,落在区间[70,80)内的数据有40100.028⨯⨯=个,落在区间[80,90)内的数据有40100.0312⨯⨯=个.记在区间[70,80)的数据分别为1x ,2x , ,8x ,平均分为x ,方差为2x s ;在区间[80,90)的数据分别为为1y ,2y , ,12y ,平均分为y ,方差为2y s ;这20个数据的平均数为z ,方差为2s .由题意,75x =,85y =,26.25xs =,20.5ys =,且8118i i x x ==∑,121112j j y y ==∑,则8128751285812020x y z +⨯+⨯===.根据方差的定义,()()()()812812222221111112020i j i j i j i j s x z y z x x x z y y y z ====⎡⎤⎡⎤=-+-=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()()()88812121222221111111()2((2(20i i j j i i i j j j x x x z x z x x y y y z x z y x ======⎡⎤=-+-+--+-+-+--⎢⎥⎣⎦∑∑∑∑∑∑由()()881212111180,120i i j j i i j y x x x x y y y y ====-=-=-=-=∑∑∑∑,可得()()8812122222211111()()20i j i i j j s x x x z y y y z ====⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑∑∑2222188(1212(20x y s x z s y z ⎡⎤=+-++-⎣⎦222223(()55x y s x z s y z ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦22236.25(7581)0.5(8581)26.855⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦故得分在[70,90)内的平均数为81,方差为26.8.19.答案:(1)π3(2)213⎛⎫+ ⎪ ⎪⎝⎭解析:(1)选①,由正弦定理得sin sin B A =sin 0A ≠,cos 1B B -=,即π1sin 62B ⎛⎫-= ⎪⎝⎭,0πB << ,ππ5π666B -<-<∴,ππ66B ∴-=,π3B ∴=.选②,2sin tan b A a B = ,sin 2sin cos a Bb A B=,由正弦定理可得sin 2sin sin sin cos B B A A B =⋅,sin 0A ≠,1cos 2B ∴=,(0,π)B ∈ ,π3B ∴=.选③,sin()sin(π)sin A B C C +=-=,由已知结合正弦定理可得22()a c a c b -+=,222a cb ac ∴+-=,2221cos 222a cb ac B ac ac +-∴===,(0,π)B ∈ ,π3B ∴=.(2)π2,3,3a c B ===,,,根据余弦定理2222cos 4967b a c ac B =+-=+-=,b ∴=ABC∴△外接圆的直径2sin 2bR B===过D 作DG BC ⊥,垂足为G ,而cos BC BD BC BD DBC ⋅=∠,若BC BD ⋅取到最大值,则cos BD DBC ∠ 取最大值,故可设DBC ∠为锐角,故此时BC BD BC BG ⋅=,当BG取最大值时,DG 与圆相切且G 在BC 的延长线上(如图所示),设此时切点为H ,垂足为F ,取BC 的中点E ,外接圆圆心为O ,连接OE ,OH ,则//OE FH 且OH FH ⊥,故四边形OHFE 为矩形,故3EF OH R ===,故1123BF BC R =+=+,()max21213BC BD⎛⎫∴⋅=+ ⎪ ⎪⎝⎭ .。
2017——2018学年度第二学期八县(市)一中期末联考高中二年语文科试卷命题学校:闽侯一中命题教师:高二语文集备组复核教师:赵晓莺张岚考试日期:7月2日完卷时间:150分钟满分:150分一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1〜3题。
很多人认为社交网络的实时性加速了谣言的传播,这似乎是有道理的,但先于社交网络存在的BBS、“论坛”和“社区”等交流平台也有实时性;很多研究复杂网络的分析则认为,社交网络的复杂结构更易于传播谣言,复杂网络的结构特性确实会加速谣言的传播,但事实上社交网络的复杂结构特性在人际社会中同样具备,因此这不能解释两者的区别。
实时性所带的信息成本降低因素不是决定性的,网络结构因素又不能完全说明问题,真正造成社交网络谣言传播加剧的根是信息反馈机制的失效。
在传统的人际社会中,谣言传播是在一对一或者一对多的人际圈子中,首先由“谣言感染者”发起谣言,接着倾听者们会逐一表示自己的态度:认同、反对或沉默。
“认同”会增加圈子中的个体进一步将谣言带入另一个交际圈的兴趣;相反,“反对”会减弱圈子里的个体对于谣言的兴趣。
如果反对者的态度足够强烈且理由充分,圈子中的其他人也会成为“谣言免疫者”甚至“谣言粉碎者”——当其在别的圈子中再次听到该谣言时,也会加以反对。
在虚拟的社交网络中,由于信息发布的单向性和局域广播性,谣言的传播机制通常是:谣言发布——推送给交际圈中的每一个个体——个体转发——再次推送给新的圈子,而反馈并不在再次推送的内容中。
在整个传播机制中,一方面,个体对谣言的反馈无法与谣言的传播同步,谣言的单向发布使得信息并不需要获得反馈就可以传播,这样导致反馈远远滞后;另一方面,社交网络的反馈只针对谣言发起者,并不具有等同的局域广播性,这使得反馈变得异常微弱。
严重滞后和微弱到不起眼的音量,使得人际社会的反馈机制在社交网络中根本无法发挥作用——这就是为什么社交网络中“智者”的声音会为谣言所淹没。
2017—2018学年第二学期高二级期末考试语文试题第Ⅰ卷阅读题一、现代文阅读(23分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
中国传统社会给人两个相互矛盾的印象:一方面,它十分注重平等;另一方面,它又十分注重纲常伦理,表现出严格的等级秩序。
不过,无论如何解释这种印象,它至少说明在中国传统社会中同时存在人与人之间的平等和差异两个问题。
在西方由正义原则加以处理的人与人之间平等与差异的关系问题在中国社会同样存在,而且同样也需要某种协调机制。
概而言之,从功能的角度看,中国传统社会,特别是在儒家思想中,对这一关系的处理,是通过“仁”“礼”“义”三项基本原则彼此支撑、相互为用实现的。
“仁”是对他人之爱,在儒家的价值体系中处于核心地位,所以孔子说:“志士仁人,无求生以害仁,有杀身以成仁。
”“仁”的基础则是对亲人之爱,所谓“仁者人也,亲亲为大”。
孟子进一步指出:“孩提之童,无不知爱其亲者;……亲亲,仁也。
”并且孟子认为,这种爱的基础,是“不忍人之心”,即同情心。
同情即同样的感情,是“人同此心,心同此理”这一心理事实的体现。
因此,“仁”的生发机制,是一个推己及人,由近及远的过程,即把对亲人之爱扩展为对邻人之爱,再扩展到对天下人之爱,也就是孟子所说的:“老吾老,以及人之老;幼吾幼,以及人之幼。
”与“仁”所体现的“合和”精神不同,“礼”强调的是人与人之间尊卑贵贱(纵向)、亲疏厚薄(横向)的差秩格局和纲常秩序,反映“别”与“分”的一面。
“礼”在儒家思想中的重要地位是一个众人皆知的事实,“礼,国之干也。
”“礼”提供了一套基本的政治架构,对中国传统社会的稳定有序具有举足轻重的作用,后者因此也被称为“礼治社会”。
儒家强调“礼”治,但目的不是造成一个等级森严、上下隔阂的社会,而是通过“礼”的规范与约束,实现社会的和谐和睦。
用以平衡“仁”与“礼”的就是“义”的原则。
在中国传统文献中,“义”是一个含义比较丰富的概念。
一、单选题1.已知直线,则直线的倾斜角为( ) :l y =l A . B .C .D .30 60 120 150 【答案】B【分析】设直线l 的倾斜角为,,可得,即可得出. θ0θ180<< tan θ=【详解】设直线l 的倾斜角为,. θ0θ180<<则tan θ=.60θ∴= 故选:B2.已知点P 为椭圆上的一点,,为该椭圆的两个焦点,若,则22142x y +=1F 2F 21=3PF PF 1PF =( )A .BC .1D .312【答案】C【分析】利用椭圆的定义进行求解.【详解】因为点P 为椭圆上的一点,所以,因为,所以22142x y +=12+=4PF PF 21=3PF PF .1=1PF 故选:C.3.已知数列为等比数列,若,则数列的公比为( ) {}n a 26182a a a a ={}n a A .B .C .2D .41412【答案】B【分析】根据给定条件,利用等比数列通项列式计算作答.【详解】设等比数列的公比为,由,得,而,解得{}n a q 26182a a a a =7111512a q a a q q a =⋅⋅10a q ≠, 12q =所以数列的公比为. {}n a 12故选:B4.三棱锥中,D 为BC 的中点,E 为AD 的中点,若,则=O ABC -OA a,OB b,OC c === OE( )A .B .1122a b c --+ 1122-++a b c C . D .111244a b c --+ 111244a b c ++ 【答案】D【分析】利用给定的空间向量的基底,结合空间向量的线性运算表示作答.OE【详解】三棱锥中,D 为BC 的中点,E 为AD 的中点,且,如图,O ABC -OA a,OB b,OC c ===.11111111()22222244OE OA OD OA OB OC a b c =+=+⋅+=++故选:D5.已知O (0,0,0),B (2,0,0),C (0,2,2),则点O 到直线BC的距离为( ) A BCD【答案】A【分析】先求得,得到向量在方向上的投影为(2,0,0),(2,2,2)OB BC ==- OB BC ||OB BC BC ⋅=,进而求得点O 到直线的距离.BC 【详解】由O (0,0,0),B (2,0,0),C (0,2,2),,可得, (2,0,0),(2,2,2)OB BC ==-则向量在方向上的投影为OB BC||OB BC BC⋅==所以点O 到直线 BC =故选:A.6.已知双曲线C 的右顶点为A ,左、右焦点分别为,,以为直径22221(0,0)x y a b a b -=>>:1F 2F 12F F 的圆与C 的渐近线在第一象限的交点为M ,且,则该双曲线的离心率为( )1||2MFMA =A BC .2 D1【答案】C【分析】设出双曲线半焦距,由双曲线渐近线斜率求出,再由余弦定理求出,判断cos MOA ∠||MA 形状即可求解作答.MOA A 【详解】设双曲线的半焦距为c ,直线的方程为,有,如图 C OM by x a =tan b MOA a∠=即有,而,解得, sin cos bMOA MOA a ∠=∠22sin cos 1MOA MOA ∠+∠=cos a MOA c∠==在中,由余弦定理得:MOA A ||MA b ===,因此,即有,而,则,222||||||MA OA OM +=90OAM ∠= 1||2MF MA =130MF A ∠=又,于是,1||||OM OF c ==1260MOA MF A ∠=∠=所以双曲线的离心率. ||112||cos cos 60c OM e a OA MOA =====∠故选:C7.数列满足,∀,则实数的取值范围是( ){}n a 114,32n n a a a +==-()*N 128n n n a a λ∈-<-,λA . B . (,9)-∞-(,8)-∞-C . D .(12,9)--(12,7)--【答案】B【分析】根据给定的递推公式,利用构造法求出数列的通项,再分离参数,借助数列单调性求{}n a 解作答.【详解】因为数列满足,则,而, {}n a 132n n a a +=-113(1)n n a a +-=-113a -=因此数列是以3为首项,3为公比的等比数列,则,即,{1}n a -11333n n n a --=⨯=31n n a =+又∀,因此对恒成立,即, ()*N 128n n n a a λ∈-<-,3327n n λ<-N n *∈2713nλ<-而数列是递增数列,则当时,,有, 27{1}3n -1n =min 27(183n-=-8λ<-所以实数的取值范围是.λ(,8)-∞-故选:B8.已知平面内两个定点,及动点,若(且),则点的轨迹是圆.后世把这A B P PBPAλ=0λ>1λ≠P种圆称为阿波罗尼斯圆.已知,,直线,直线()0,0O Q ⎛ ⎝1:230l kx y k -++=,若为,的交点,则的最小值为( ) 2:320l x ky k +++=P 1l 2l 32PO PQ +A .B .C .D .6-9-3【答案】A【分析】由直线方程可得,则点的轨迹是以为直径的圆,除去点,得到的轨迹方程12l l ⊥P CD D P为,即,取()()22293x y y ++=≠-()22453x y x y ++=≠-)3y ≠-,则,结合,可得,进而求解.5,02A ⎛⎫⎪⎝⎭32PQ PA =()3222PO PQ PA PQ AQ +=+≥【详解】由已知过定点,1:230l kx y k -++=()2,3C -过定点,2:320l x ky k +++=()2,3D --因为,,所以,即,1l k k =21l k k=-121l l k k ⋅=-12l l ⊥所以点的轨迹是以为直径的圆,除去点,故圆心为,半径为3,P CD D ()2,0-则的轨迹方程为,即,易知O 、Q 在该圆内,P ()()22293x y y ++=≠-()22453x y x y ++=≠-又32PO ===即, )332PO y ==≠-取,则,又 5,02A ⎛⎫ ⎪⎝⎭32PO PA ==所以()3322222PO PQ PO PQ PA PQ AQ ⎛⎫+=+=+≥= ⎪⎝⎭所以的最小值为32PO PQ +故选:A.二、多选题9.记是数列的前n 项和,且,则下列说法正确的有( ) n S {}n a 112n a n =-A .数列是等差数列 B .数列是递减数列 {}n a {}n S C . D .当 时,取得最大值46S S =5n =n S 【答案】ACD【分析】由等差数列的定义可判断A ;求出可判断B 、C ;根据的表达式结合二次函数的46,S S n S 性质可判断D.【详解】∵,∴数列是等差数列,故A 正确;1112(1)(112)2n n a a n n +-=-+--=-{}n a , 21()(9112)1022n n n a a n n S n n ++-===-+∵,从而,可知数列不是递减数列,故B 错误,C 正确;4624,24S S ==46S S ={}n S ∵,,∴当 时,取得最大值,故D 正确.2210(5)25n S n n n =-+=--+*N n ∈5n =n S 故选:ACD.10.已知点P 为圆上的动点,直线l 过点,过l 上一点Q 作圆O 的229O x y +=:(6,0),(0,6)A B --切线QC ,QD ,切点分别为C ,D ,则下列说法正确的有( )A .当∠PAB 最大时,PA =B .点P 到l 的距离的最大值为 3C .四边形CQDO 的面积的最小值为9D .四边形CQDO 的面积最小时,直线OQ 的方程为 220x y -+=【答案】BC【分析】选项A ,当PA 与圆相切时,∠PAB 最大;选项B ,点P 到l 最大距离为圆心到直线l O O 的距离加上半径;选项C ,D ,当时,四边形CQDO 的面积最小.OQ AB ⊥【详解】对于A ,如图1,当PA 与圆相切时,∠PAB 最大,设圆半径为,229O x y +=:O r,,A 错误;OP PA ⊥6OA =3OP r ==对于B ,由已知直线l 的方程为,当点P 到l 的距离最大时,最大距离为圆心到直线60x y ++=Ol 的距离加上半径,即为,故B 正确; 33d r +==对于C ,如图2,QC ,QD 是圆O 的切线,则,, OC CQ ⊥OD DQ ⊥四边形CQDO 的面积, 1232S OC CQ OC CQ CQ =⨯==四边形CQDO 的面积最小时,即为取最小,又,即, CQ 222OC CQ OQ +=229CQ OQ =-所以当最小时,取最小,即当时, OQ CQ OQ AB ⊥OQ d ==则,四边形CQDO 的面积的最小值为9,故C 正确;3CQ =对于D ,四边形CQDO 的面积最小时,,直线OQ 的斜率为,方程为,故OQ AB ⊥1k =0x y -=D 错误;故答案为:BC.11.已知椭圆的左、右焦点分别为,,过下顶点A 和右焦点的直线与E 交于2212x E y +=:1F 2F 2F 另一点B ,与y 轴交于点P ,则( ) 1BFA .B . 12AF AF ⊥2BF =C .△D .1ABF 1430F P PB -= 【答案】ABD【分析】根据给定条件,求出焦点及下顶点坐标,画出图形,再逐项分析计算、判断作答.【详解】依题意,椭圆的焦点,下顶点,如图,22:12+=x E y 12(1,0),(1,0)F F -(0,1)A -对于A ,,因此,A 正确;12||||||OF OF OA ==12AF AF ⊥对于B ,直线,由消去y 得:,则点, 2:1AF y x =-22122y x x y =-⎧⎨+=⎩2340x x -=41(,)33B于是,B 正确;2||BF ==对于C ,的周长为,, 1ABF A r ()1121141233ABF S F F =⋅--=A因此,解得C 错误;1423⨯=r =对于D ,,设点,则,而,即有,41(,)33B 0(0,)P y 10041(1,),(,)33F P y PB y ==- 1//F P PB 143F P PB = 因此,D 正确. 1430F P PB -=故选:ABD12.正方体的棱长为2,H 为线段AB 中点,P 在正方体的内部及其表面运动,若1111ABCD A B C D -,则( )1HP DB ⊥A .三棱锥的体积为定值 11P A BC -B .若P DP =C .正方体的每个面与P 的轨迹所在平面所成角都相等D .正方体的每条棱与P 的轨迹所在平面所成角不都相等 【答案】ABC【分析】根据给定条件,作出点P 的轨迹所在平面截正方体所得截面,再逐项分析、计算判断作答.【详解】点O 为正方体的中心,连接,过AB 的中点H 作交BC 1111ABCD A B C D -,BD AC //HI AC 于I ,则I 为的中点,如图,BC平面,平面,有,而,1BB ⊥ABCD AC ⊂ABCD 1BB AC ⊥1,BD AC BD BB B ⊥= 平面,则平面,又平面,即有,1,BD BB ⊂1BB D AC ⊥1BB D 1DB ⊂1BB D 1AC DB ⊥连接,同理,而平面,则1111,,A B BC A C 1111,A B DB BC DB ⊥⊥1111,,A B BC B A B BC =⊂ 11A BC 1DB ⊥平面,11A BC 令点P 的轨迹所在平面与正方体的棱所在直线交于点, 1111ABCD A B C D -,,,,,H I J K L M 平面平面,平面平面,而平面平面HIJKLM ABCD HI =HIJKLM 1111A B C D KL =//ABCD ,1111D C B A 于是,同理,依题意,平面,因此平面平面//KL HI //,//IJ LM HM JK 1DB ⊥HIJKLM 11//A BC ,HIJKLM 平面平面,平面平面,于是, 11A BC ⋂111BCC B BC =HIJKLM 11BCC B IJ =1//IJ BC 又为棱中点,则为棱中点,同理点分别为棱中点, I BC J 1CC ,,K L M 11111,,C D A D AA 因此点P 的轨迹为正六边形及内部,HIJKLM 对于A ,因为平面平面,则点P 到平面的距离为定值,又的面积为11//A BC HIJKLM 11A BC 11A BC V 定值,于是三棱锥的体积为定值,A 正确; 11P A BC -对于B ,P 在以点D 为半径的球面上,而点D 到正六边形DP =HIJKLM 则点P 的轨迹是该球截正六边形所得截面小圆,而点D 到平面距离HIJKLM HIJKLM112DO DB ==因此这个截面小圆半径,B 正确; r ===对于C ,由于平面平面,则正方体的每个面与平面所成角等于正方体该11//A BC HIJKLM HIJKLM 面与平面所成角,11A BC 又三棱锥是正三棱锥,即正方体的侧面,侧面,上底面与平面111B A BC -11ABB A 11BCC B 1111D C B A 所成角都相等,11A BC 又正方体的相对面平行,所以正方体的每个面与P 的轨迹所在平面所成角都相等,C 正确; 对于D ,正三棱锥的侧棱与平面所成角都相等, 111B A BC -11111,,A B B C BB 11A BC 即正三棱锥的侧棱与P 的轨迹所在平面所成角都相等,111B A BC -11111,,A B B C BB而,,, 1111/////AB CD C D A B 1111//////BC AD A D B C 1111//////AA DD CC BB 所以正方体的每条棱与P 的轨迹所在平面所成角都相等,D 错误. 故选:ABC【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.三、填空题13.已知空间向量,若,则x =___________. (1,2,),(3,2,1)a x b x =-= a b ⊥【答案】1【分析】根据给定条件,利用空间向量垂直的坐标表示求解作答.【详解】空间向量,由,得,解得, (1,2,),(3,2,1)a x b x =-= a b ⊥ 340a b x x ⋅=-+=1x =所以. 1x =故答案为:114.若圆M 的圆心在直线上,且与两坐标轴都相切,则圆M 的标准方程可以为___________.y x =(写出满足条件的一个答案即可)【答案】(答案不唯一)22(1)(1)1x y -+-=【分析】由题意可设圆心为,与两坐标轴都相切可得出半径为, (,)a a ||a 列出圆的标准方程,取一个特殊值即可得出结果.【详解】因为圆的圆心在直线上,所以可设圆心坐标为, M y x =(,)a a 又因为与两坐标轴都相切,所以圆的半径为,即圆的标准方程为||a ,取,得, 222()()x a y a a -+-=1a =22(1)(1)1x y -+-=故答案为:(答案不唯一)22(1)(1)1x y -+-=15.已知P 是圆上任一点,,线段PA 的垂直平分线l 和半径CP 交于点()22:116C x y -+=(1,0)A -Q ,当点P 在圆上运动时,点Q 的轨迹方程为___________.【答案】22143x y +=【分析】根据给定条件,结合图形的几何性质探求点Q 满足的关系等式,再借助椭圆的定义求出方程作答.【详解】圆的圆心,半径,点Q 在线段PA 的中垂线l 上,如图,22:(1)16C x y -+=(1,0)C 4r=有,则,||||QP QA =||||||||4||QA QC QP QC r AC +=+==>因此点Q 的轨迹是以A ,C 为焦点,实轴长的椭圆,则虚半轴长,24a=b ==所以点Q 的轨迹方程为.22143x y +=故答案为:22143x y +=16.对于数列,记:…,(其中),并称{}n a ()()()()()()()1212311112n n n nn n n n n a a +++∆∆∆=∆=∆=∆∆,,()()()111k k n n k n-+-∆∆=∆*n ∈N 数列为数列的k 阶商分数列.特殊地,当为非零常数数列时,称数列是k 阶等(){}k n ∆{}n a (){}kn ∆{}n a 比数列.已知数列是2阶等比数列,且,若,则{}n a 20123220482a a a ===,,n m n a a -=m =___________. 【答案】23【分析】根据给定的定义,计算,进而求出数列的公比及通项,再借助累乘法求出数(1)(1)12,∆∆(1){}n ∆列的通项即可推理计算作答.{}n a 【详解】由数列是2阶等比数列,得,即, {}n a (2)(0)nq q ∆=≠(1)(2)1(1)n nnq +∆∆==∆且,即数列是首项为,公比为的等比数列, (1)(1)10(1)932212(1)12112,2,2a a q a a ∆∆==∆====∆(1){}n ∆10212则有,即,当时, (1)10111112()()22n n n --∆=⨯=1111(2n n n a a -+=2n ≥,22320109121(10)(9)(12)3221121111112(((()()22222nn n n n n n a a a a a a a a -+----+-+-++--=⋅⋅⋅⋅=⨯⨯⨯⨯== 而满足上式,因此,12a =22320212n n n a -+⎛⎫= ⎪⎝⎭由得:,即,n m n a a -=222320()23()202211()()22n n m n m n -+---+=222320()23()20n n m n m n -+=---+整理得,又为小于的任意正整数,所以. (2)23(2)m n m n m -=-n m 23m =故答案为:23【点睛】关键点睛:涉及数列新定义问题,关键是正确理解给出的定义,由给定的数列结合新定义探求数列的相关性质,并进行合理的计算、分析、推理等方法综合解决.四、解答题17.已知抛物线经过点(),焦点为F ,且. 2:2(0)C y px p =>()2,A t 0t >52AF =(1)求抛物线C 的方程;(2)若过点A 且斜率为2的直线交C 于另一点B ,求|AB |. 【答案】(1) 22y x =【分析】(1)由抛物线定义得,解得,得到抛物线方程.5222p ⎛⎫--= ⎪⎝⎭1p =(2)求得,得到直线的方程,与抛物线方程联立,利用韦达定理,弦长公式求解. ()2,2A AB 【详解】(1)因为抛物线的焦点为,准线为, 2:2(0)C y px p =>F 2p x =-点是抛物线上一点,且, ()2,A t C 52AF =所以由抛物线定义得,解得,5222p ⎛⎫--= ⎪⎝⎭1p =因此抛物线的方程为.C 22y x =(2)点在抛物线上,则,又,可得,. ()2,A t 222t =⨯0t >2t =()2,2A 直线的方程:,即,AB 22(2)y x -=-22y x =-联立方程,整理得:,2222y x y x=-⎧⎨=⎩22520x x -+=设,则,1122(,),(,)A x y B x y 12125,12x x x x +==AB ∴==18.设等差数列的前n 项和为,已知 {}n a n S 452439.a S a ==+,(1)求数列{}的通项公式;n a (2)若,求数列{}的前n 项和.2n an n b a =+n b n T 【答案】(1);n a n =(2).21112222n n T n n +=+-+【分析】(1)设出等差数列的公差,利用给定条件列出方程组,解方程组作答. {}n a (2)由(1)的结论,利用分组求和法及等差等比数列前n 项和公式求解作答.【详解】(1)设等差数列的公差为,依题意,,解得,{}n a d 111345103()9a d a d a d +=⎧⎨+=++⎩111a d =⎧⎨=⎩所以数列{}的通项公式是.n a 1(1)n a a n d n =+-=(2)由(1)知,,2nn b n =+所以. 2321(1)2(12)11(123)(2222)2221222n n n n n n T n n n ++-=+++++++++=+=+-+- 19.四棱锥中,底面ABCD 为菱形,,.P ABCD -60BAD ∠= BDP CDP ∠∠=(1)求证::DP BC ⊥(2)若,平面PBC ⊥平面ABCD ,且,求平面与平面PBC 的夹角大小. 2AB =PB PC ⊥PAD 【答案】(1)证明见解析; (2). π3【分析】(1)根据给定条件,利用三角形全等证明,再取中点,借助线面垂直的判定PB PC =BC 性质推理作答.(2)建立空间直角坐标系,利用空间向量计算二面角大小作答.【详解】(1)四边形为菱形,,则为正三角形,即, ABCD 60BAD ∠= BDC A BD CD =在与中,,而为公共边,则≌, PDB △PDC △BDP CDP ∠=∠PD PDB △PDC △有,取的中点O ,如图,连接,则有,PB PC =BC ,PO DO ,PO BC DO BC ⊥⊥而平面,则平面,又平面, ,,PO DO O PO DO =⊂POD BC ⊥POD DP ⊂POD 所以.DP BC ⊥(2)由(1)知,,因为平面平面,平面平面,OD BC OP BC ⊥⊥PBC ⊥ABCD PBC ⋂,ABCD BC =平面,于是平面,又平面,则,OP ⊂PBC OP ⊥ABCD OD ⊂ABCD OP OD ⊥以O 为原点,射线分别为轴的非负半轴建立空间直角坐标系, ,,OD OB OP ,,x y z 因为,,则由(1)得,,PB PC ⊥2BC AB ==1OP=(0,0,1),2,0)D P A ,令平面的一个法向量,(0,2,0),1)DA PD ==- PAD (,,)n x y z =则,令,得,200n DA y n PD z ⎧⋅==⎪⎨⋅=-=⎪⎩1x=n = 显然平面的一个法向量为,设平面与平面PBC 的夹角为PBC OD =PAD θ因此,则,||1cos |cos ,|2||||n OD n OD n OD θ⋅=〈〉===π3θ=所以平面与平面PBC 的夹角大小为. PAD π320.设为数列的前项和,,,,令. n S {}n a n 123n n n a a S +=-11a =0n a ≠21n n b a -=(1)求,,及数列的通项公式;2b 3b {}n b (2)令,求数列的前项和.2n bn n c b =⋅{}n C n n T 【答案】(1),, 23b =35b =21n b n =-(2)()21106529n n n T ++-⋅=【分析】(1)利用和的关系,可得,进而求解;n a n S ()1122n n a a n +--=≥(2)利用错位相减法求和即可. 【详解】(1)由, 123n n n a a S +=-所以时,,2n ≥1123n n n a a S --=-两式相减,可得, ()11123232n n n n n n n a a a a S S a +----=--=由,所以, 0n a ≠112n n a a +--=当时,,即,1n =21123a a a =-21a =-所以当为奇数时,数列是以1为首项,2为公差的等差数列, n {}n a 当为偶数时,数列是以为首项,2为公差的等差数列. n {}n a 1-所以,, 23123b a a ==+=351225b a a ==+⨯=.()2111221n n b a a n n -==+-⨯=-(2)由,()212122n b n n n n c b --⋅==⋅所以,()13521123123252212n n n T c c c c n -=++++=⨯+⨯+⨯+-⋅ 则,()2357212123252212n n T n +⋅=⨯+⨯+⨯+-⋅两式相减可得,,()()352121322222212n n n T n -+-=+⋅+++--⋅ 即, ()()21321221232221212n n n T n -+⎡⎤⋅-⎣⎦-=+⋅--⋅-即, 2110532233n n T n +⎛⎫-=-+-⋅ ⎪⎝⎭即.()21106529n n n T ++-⋅=21.如图,圆台的轴截面为等腰梯形,,B 为底面圆周上异于12O O 11A ACC 111224AC AA A C ===A ,C 的点.(1)在平面内,过作一条直线与平面平行,并说明理由;1BCC 1C 1A AB(2)设平面∩平面,与平面QAC 所成角为,当四棱锥的体积1A AB 1C CB l Q l =∈,1BC α11B A ACC -最大时,求的取值范围. sin α【答案】(1)作图及理由见解析;(2).【分析】(1)取中点P ,作直线,再利用线面平行的判定推理作答.BC 1C P (2)延长交于点O ,作直线,再确定四棱锥体积最大时,点B 的位置,然后建立空间11,AA CC BO 直角坐标系,利用空间向量建立线面角正弦的函数关系,求出其范围作答. 【详解】(1)取中点P ,作直线,则直线即为所求, BC 1C P 1C P 取中点H ,连接,则有,如图, AB 1,A H PH 1//,2PH AC PH AC =在等腰梯形中,,有,则四边形为平行四边形, 11A ACC 1112AC AC =1111//,HP A C HP A C =11A C PH 即有,又平面,平面, 11//C P A H 1A H ⊂1A AB 1C P ⊄1A AB 所以平面.1//C P 1A AB (2)延长交于点O ,作直线,则直线即为直线,如图,11,AA CC BO BO l过点B 作于,因为平面平面,平面平面,BO AC '⊥O '11A ACC ⊥ABC 11A ACC ⋂ABC AC =BO '⊂平面,ABC 因此平面,即为四棱锥的高,在中,,BO '⊥11A ACC BO '11B A ACC -Rt ABC △90ABC ∠= ,当且仅当时取等号,此时点与重合,22122BA BC BA BC BO AC AC AC ⋅+'=≤=BA BC =O '2O 梯形的面积为定值,四棱锥的体积,11A ACC S 11B A ACC -1113B A ACC V S BO -'=⋅于是当最大,即点与重合时四棱锥的体积最大,, BO 'O '2O 11B A ACC -22,2BO AC BO ⊥=以为原点,射线分别为轴的非负半轴建立空间直角坐标系, 2O 2221,,O A O B O O ,,x y z 在等腰梯形中,,此梯形的高11A ACC 111224AC AA A C ===h ==显然为的中位线,则,11A C OACA 1(0,0,(2,0,0),(0,2,0),(O ABC -, 12(1,(2,2,0),(0,2,(2,0,0)BC AB BO O A =--=-=-=设,则,R BQ BO λλ=∈ (2,22,)AQ AB BQ AB BO λλ=+=+=--设平面的一个法向量,则,令,得QAC (,,)n x y z = 2202(22)0n O A x n AQ xy z λ⎧⋅==⎪⎨⋅=-+-+=⎪⎩y =,,1)n λ=-则有111||sin |cos ,|||||n BC n BC n BC α⋅=〈〉===,令,则时,,1t λ=+sin α=0=t sin 0α=当时,,即时取0t≠0sin α<==≤75t =2=5λ等号,综上得, 0sin α≤≤所以的取值范围是. sin α【点睛】思路点睛:求空间角的最值问题,根据给定条件,选定变量,将该角的某个三角函数建立起选定变量的函数,求出函数最值即可.22.圆锥曲线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形. 在一次以“圆锥曲线的阿基米德三角形”为主题的数学探究活动中,甲同学以如图示的抛物线C :的阿22(0)y px p =>基米德三角形为例,经探究发现:若AB 为过焦点的弦,则:①点P 在定直线上;②PAB ;③.已知△PAB 为等轴双曲线的阿基米德三角形,AB 过PF AB ⊥PA PB ⊥220x y λλΓ-=>:()Γ的右焦点F .(1)试探究甲同学得出的结论,类比到此双曲线情境中,是否仍然成立?(选择一个结论进行探究即可)(2)若,弦AB 的中点为Q ,,求点P 的坐标.2λ=3AB FP FQ =(注:双曲线的以为切点的切线方程为 22221x y a b -=00(,)x y 0022 1.x x y y a b -=)【答案】(1)条件选择,答案见解析; (2),. (1,(1,【分析】(1)选①②③,设出点A ,B ,P 的坐标,借助切线方程求出直线AB 的方程,代入焦点坐标,求出点P 的横坐标,再利用斜率计算判断作答.(2)设出直线AB 的方程,与双曲线方程联立,借助弦长公式及已知等式求解作答.【详解】(1)选①,设点,双曲线的焦点, 112200(,),(,),(,)A x y B x y P x yΓF 依题意,过点A 的切线方程为,过点B 的切线方程为, 11x x y y λ-=22x x y y λ-=而两切线交于点,于是,且,00(,)P x y 1010x x y y λ-=2020x x y y λ-=因此是方程的两组实数解,即点在直线1122(,),(,)x y x y 00x x y y λ-=1122(,),(,)A x y B x y 00x x y y λ-=上,则直线AB 的方程为,又直线AB 过点,解得, 00x x y y λ-=F 0λ=0x =所以点P 在定直线P 在定直线上成立. x =选②,设点,双曲线的焦点,112200(,),(,),(,)A x y B x y P x y ΓF 依题意,过点A 的切线方程为,过点B 的切线方程为, 11x x y y λ-=22x x y y λ-=而两切线交于点,于是,且,00(,)P x y 1010x x y y λ-=2020x x y y λ-=因此是方程的两组实数解,即点在直线1122(,),(,)x y x y 00x x y y λ-=1122(,),(,)A x y B x y 00x x y yλ-=上,则直线AB 的方程为,又直线AB 过点,解得, 00x x y y λ-=F 0λ=0x =当时,点,直线AB 垂直于x 轴,显然有,00y =P PF AB ⊥当时,直线AB 的斜率PF 的斜率00y ≠00AB x k y ==PF k ==则有,即, 1AB PF k k ⋅=-PF AB ⊥所以成立.PFAB ⊥选③,设点,双曲线的焦点,112200(,),(,),(,)A x y B x y P x y ΓF 依题意,过点A 的切线方程为,过点B 的切线方程为, 11x x y y λ-=22x x y y λ-=而两切线交于点,于是,且,00(,)P x y 1010x x y y λ-=2020x x y y λ-=因此是方程的两组实数解,即点在直线1122(,),(,)x y x y 00x x y y λ-=1122(,),(,)A xy B x y 00x x y yλ-=上,则直线AB 的方程为,又直线AB 过点,解得, 00x x y y λ-=F 0λ=0x =当时,点,直线AB 垂直于x 轴,直线00y =P :AB x =由得, 22x x yλ⎧⎪⎨-=⎪⎩||y =A B直线PA 的斜率PB 的斜率PA k ==PB k ==有,显然不垂直于, 2PA PB k k ⋅=-PA PB 所以不成立.PA PB ⊥(2)当时,双曲线,,由(1)知,,直线AB 的方程为:2λ=22:2x y Γ-=()2,0F 0(1,)P y ,02x y y -=由消去x 整理得:,显然, 02222x y y x y -=⎧⎨-=⎩2200(1)420y y y y -++=20201Δ8(1)0y y ⎧≠⎨=+>⎩,弦AB 的中点Q 的纵坐标为, 0121222042,11y y y y y y y -+==--01220221y y y y -+=-,||AB =,而,12||||2y y FQ +=||FP =3AB FP FQ =,解得=200)3||y y +=0y =0y =所以点P 的坐标是,. (1,(1,【点睛】结论点睛:直线l :y =kx +b 上两点间的距离; 1122(,),(,)A x y B x y 12||||AB x x =-直线l :x =my +t 上两点间的距离.1122(,),(,)A x y B x y 12||||AB y y =-。
中药丸剂生产自动化,智能化关键技术研究与应用下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!中药丸剂生产自动化与智能化关键技术的探索与实践随着科技的发展,中药丸剂的生产方式正在经历从传统手工到现代化自动化的转变。
人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。
福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)本试题卷共23题,分为第I卷和第II卷,共计150分,考试时间120分钟。
第I卷一、选择题(共12小题,每小题5分,共60分)1.已知集合A={x(x-6)(x+1)0},则A∩B=(C)。
2.若复数z=a1为纯虚数,则实数a=(B)。
3.已知a=(12),b=(-1,1),c=2a-b,则|c|=(B)。
4.3cos15°-4sin215°cos15°=(D)。
5.已知双曲线C的两个焦点F1F2都在x轴上,对称中心为原点,离心率为3,若点M在C 上,且MF1MF2M到原点的距离为3,则C的方程为(C)。
6.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于(B)。
7.右面的程序框图的算法思路源于我国古代著名的《孙子剩余定理》。
图中的Mod(N,m)=n表示正整数N除以正整数m后的余数为n,例如Mod(10,3)=1.执行该程序框图,则输出的i等于(C)。
8.将函数y=2sinx+cosx的图象向右平移1个周期后,所得图象对应的函数为(D)。
二、填空题(共3小题,每小题10分,共30分)9.已知函数y=ln(1-x),则y''=(B)。
10.已知函数f(x)=x+sinx,则f'(π)的值为(C)。
11.已知函数f(x)=x+sinx,则f(x)在[0,π]上的最小值为(A)。
三、解答题(共8小题,每小题10分,共80分)12.解方程log2(x+1)+log2(x-1)=1.13.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的单调递减区间。
14.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的极值和极值点。
15.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的图象在点(1,1)处的切线方程。
泉州市2017-2018学年度上学期高中教学质量跟踪监测高二文科教学(必修5+选修1-1)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列抛物线中,准线方程为的是()A. B. C. D.【答案】B【解析】因为抛物线的准线为,所以准线方程为的是,选B.2. 若是实数,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】,反之推不到,所以是的充分不必要条件,选A.3. 若等差数列中,则()A. B. C. D. 或【答案】B【解析】,选B.4. 下列关于命题的说法正确的是()A. 若是真命题,则也是真命题B. 若是真命题,则也是真命题C. “若则”的否命题是“则”D. “”的否定是“”【答案】B【解析】若是真命题,则真命题;若是真命题,则也是真命题;“若则”的否命题是“则”;“”的否定是“”;所以选B.5. 若双曲线的中心在原点,离心率,左焦点是,则的渐近线的距离是()A. B. C. D.【答案】C【解析】的渐近线的距离是b,因为,所以选C.6. 设满足约束条件则的取值范围是()A. B. C. D.【答案】D【解析】作可行域,则直线过点A(3,3)时取最大值9,过点B时取最小值,即值域为,选D.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.7. 在中,内角所对的边分别为,若成等差数列,且满足,则的形状为()A. 等腰直角三角形B. 直角非等腰三角形C. 等边三角形D. 等腰钝角三角形【答案】C【解析】因为,所以因为成等差数列,所以,选C.点睛:判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用这个结论.8. 若函数的导函数的图像如图所示,则下列说法正确的是()A. 是的一个极值点B. 和都是的极值点C. 和都是的极值点D. ,,都不是的极值点【答案】A【解析】只有附近导函数符号变化,由极值定义得是的一个极值点,选A.9. 若命题“”为真命题,则的取值范围是()A. B. C. D.【答案】C【解析】由题意得,选C.10. 过椭圆内一点引一条恰好被点平分的弦,则这条弦所在直线的方程是()A. B. C. D.【答案】A【解析】由作差得,选A.点睛:弦中点问题解法一般为设而不求,关键是求出弦AB所在直线方程的斜率k,方法一利用点差法,列出有关弦AB的中点及弦斜率之间关系求解;方法二是直接设出斜率k,利用根与系数的关系及中点坐标公式求得直线方程.11. 《张丘建算经》中载有如下叙述:“今有马行转迟,次日减半,疾七日,行七百里,问末日行几何.”其大意为:“现有一匹马行走速度越来越慢,每天行走的距离是前一天的一半,连续行走天,共走了里,问最后一天行走的距离是多少?”依据上述记载,计算第天行走距离大约是(结果采用四舍五入,保留整数).()A. 里B. 里C. 里D. 里【答案】C【解析】已知等比数列公比为,前7项和为700,求第7项,,选C.12. 若定义在的函数的导数满足,且,则下列结论一定成立的是()A. B.C. D.【答案】C【解析】令,当时,所以可取,,即舍去A,B;,C成立;,即,D错误,综上选C.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若,则的最小值为__________.【答案】【解析】 ,当且仅当时取等号,即最小值为8.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 若数列的前项和则__________.【答案】【解析】15. 双曲线的左、右焦点分别为,以为直径的圆与双曲线右支的一个交点为,若,则双曲线的离心率为__________.【答案】【解析】由题意得点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等......................【答案】【解析】小时后台风“天秤”中心位于地,则三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知抛物线的顶点在坐标原点,焦点在轴上,且过点.(I)求的标准方程;(Ⅱ)若为坐标原点,是的焦点,过点且倾斜角为的直线交于,两点,求的面积.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(1)将点坐标代入抛物线方程求参数p,即得标准方程;(2)根据点斜式写直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式求底边边长,根据点到直线距离公式求高,最后代入三角形面积公式得面积.试题解析:(I)依题意可设抛物线的方程是因为抛物线过点,所以,解得,所以抛物线的方程(Ⅱ)法一:由(I)得,焦点,依题意知直线的方程是,联立方程化简,得设则,利用弦长公式得.点到直线的距离,所以的面积为.法二:由(I)得,焦点,依题意知直线的方程是,联立方程化简,得设则,采用割补法,则的面积为法三:由(I)得,焦点,依题意知直线的方程是,联立方程化简,得设由韦达定理,得.利用抛物线定义,得点到直线的距离,所以的面积为.18. 已知等差数列的前项和是,等差数列的各项均为正数,且.(I)求和的通项公式;(Ⅱ)求数列的前项和.【答案】(Ⅰ),;(Ⅱ)【解析】试题分析:(1)根据等差数列求和公式得首项,再代入通项公式求的通项公式;根据通项公式列关于首项与公差的方程组,解得首项与公差,再代入通项公式求的通项公式;(2)先求和,再化简,再根据裂项相消法求数列的前项和.试题解析:(I)由解得所以因为所以因为是各项均为正数的等比数列,所以所以(Ⅱ)所以所以19. 如图,在梯形中,,对角线,,.(I)求的长;(Ⅱ)若,求梯形的面积.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(1)根据正弦定理求的长;(2)先根据余弦定理求,再利用余弦定理求,最后求梯形的高,代入梯形面积公式即可.试题解析:(I)因为,所以所以由得:解得:(Ⅱ)法一:由余弦定理,得即解得:或(舍去).在中,由余弦定理,得即:解得,又梯形的高所以法二:同法一求得,又故故20. 已知函数(I)当时,求的单调区间;(Ⅱ)若函数在上单调递增,试求出的取值范围.【答案】(Ⅰ)单调递增区间是,单调递减区间是和.(Ⅱ).【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导函数符号变化规律,最后根据导函数符号确定单调区间,(2)由题意得在区间恒成立,再变量分离得,最后根据二次函数性质求最值,得的取值范围.试题解析:(I)当时,函数令即解得令解得或所以当时,函数的单调递增区间是,单调递减区间是和.(Ⅱ)法一:函数在上单调递增,等价于在区间恒成立,等价于在区间恒成立.等价于令因为所以函数在区间上单调递增,故所以的取值范围是法二:函数在上单调递增,等价于在区间恒成立,令则命题等价于在区间恒成立.当时,由解得当时因为函数图像的对称轴此时只有满足,解得.综上所述的取值范围是21. 椭圆的左、右焦点分别是,且点在上,抛物线与椭圆交于四点(I)求的方程;(Ⅱ)试探究坐标平面上是否存在定点,满足?(若存在,求出的坐标;若不存在,需说明理由.)【答案】(Ⅰ);(Ⅱ)答案见解析.【解析】试题分析:(1)根据椭圆定义求,再根据c求b,即得的方程;(2)根据椭圆和抛物线对称性得转化为研究的垂直平分线和轴的交点是否为定点.联立抛物线方程与椭圆方程,利用韦达定理以及中点公式得,再根据直线斜率公式得AB斜率,表示垂直平分线方程,求得其和轴的交点为,即得结论.试题解析:(I)依题意有:所以所以椭圆的方程为:(Ⅱ)法一:由于椭圆和抛物线都关于轴对称,故它们的交点也关于轴对称,不妨设,则若存在点满足条件,则点在轴上,设,联立则,由于所以又所以则即故坐标平面上存在定点,满足法二:由于椭圆和抛物线都关于轴对称,故它们的交点也关于轴对称,不妨设,则的中心依题意,只要探究的垂直平分线和轴的交点是否为定点.联立则,所以,直线:令得:为定值,故坐标平面上存在定点,满足.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.22. 已知函数(Ⅰ)若,求在处的切线方程;(Ⅱ)证明:对任意正数,函数和的图像总有两个公共点.【答案】(Ⅰ);(Ⅱ)证明见解析.【解析】试题分析:(1)先根据导数几何意义得切线的斜率,再根据点斜式得切线方程;(2)函数和的图像总有两个公共点,等价于总有两个实数根.变量分离得,再根据导数研究函数单调性,结合图像确定有两个交点的条件,即得证.试题解析:(I)时,则在处的切线的斜率又时,即切点,所以在处的切线方程为:,即(Ⅱ)法一:记则(已知).因为有意义,所以所以在单调递减,在单调递增,故记因为所以在单调递增,在单调递减,故故恒成立,即又时,时,,故在和各有一个零点,即和的图像在和各有且只有一个公共点.法二:函数和的图像总有两个公共点,等价于总有两个实数根.显示不是该方程的根.当时,记则再记因为所以在单调递增,在单调递减所以即从而在和均单调递增,又时,时,时,,又时,时,时,,的草图如图:故对任意的正数,直线与的图像总有两个公共点,即方程总有两个根,即函数和的图像总有两个公共点,命题得证.。