1集合作业理
- 格式:doc
- 大小:108.00 KB
- 文档页数:4
2014高中数学第一章《集合的含义与表示》参考教案北师大版必修1教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性. 了解有限集、无限集、空集概念,教学重点:集合概念、性质;“∈”,“ ”的使用教学难点:集合概念的理解;课型:新授课教学手段:教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。
集合理论创始者是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。
(参看阅教材中读材料P17)。
下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学“物以类聚,人以群分”数学中也有类似的分类。
如:自然数的集合 0,1,2,3,……如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…2、元素与集合的关系a是集合A的元素,就说a属于集合A ,记作 a∈A ,a不是集合A的元素,就说a不属于集合A,记作 a∉A思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?(1)小于10的质数(2)著名数学家(3)中国的直辖市(4)m aths中的字母(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数(9)方程210++=的实数解x x评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
第一章集合与函数的概念1.1 集合第一课时 1.1.1 集合的含义与表示1 教学目标[1]通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法[2]使学生体会元素与集合的“属于”关系[3]能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2 教学重点/难点教学重点:集合的基本概念与表示方法理解元素与集合之间的从属关系教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合掌握集合中元素的特性的应用3 专家建议这是高中数学的第一节课。
虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。
在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。
要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。
在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。
本节课要记的东西多,可让学生自己阅读,然后在老师的引导下思考问题,进一步解决问题。
在本节课的学习过程中,教师一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点4 教学方法启发式讲授法5 教学过程5.1 复习引入【师】我们初中学过的实数自然数都还记得吗?它们之间有什么关系呢?【板演/PPT】5.2 实例引入【师】我们来看下下面这些实例【板演/PPT】⑴ 1~20以内的所有整数;⑵我国从1991~2015的25年内所发射的所有人造卫星;⑶某汽车厂2015年生产的所有汽车;⑷所有的正方形;⑸某中学2015年9月入学的高一学生全体.5.3 新知介绍[1]元素与集合的相关概念【师】我们试着总结下这些事例它们有什么共同点?【生】思考交流【师】我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,能给出集合的含义吗【板书\PPT】一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d…表示[2]元素与集合的关系【师】如果用A表示我们学校全体高一学生组成的集合,用a表示高一学生中的一位同学,b 是高二年级的一位同学,那么a、b与集合A分别有什么关系?由此可见元素与集合之间有什么关系?我们怎样才能简单明了地表示它们的关系呢?【生】讨论交流【板书\PPT】如果a是集合A的元素,就说a属于集合A,记作a∈A如果b不是集合A的元素,就说b属于集合A,记作b?A[3]集合的表示方法【师】我们用什么方法来表示我们的集合呢【生】讨论与理解【师】归纳总结【板书/PPT】列举法:把集合中的元素一个一个地写在一对大括号内表示集合的方法描述法:把集合中元素共有的,也只有该集合中元素才有的属性描述出来,已确定集合的方法【师】同学们请看题【板书\PPT】用适当的方法表示下列集合(1)方程 -4=0的解组成的集合{-2,2}或{x| -4=0}(2)大于3小于9的实数组成的集合{x|3<x<9,x∈R}(3)所有奇数组成的集合{y|y=2n-1,n∈Z}[4]集合元素的性质【师】我们观察一下实例中的数据它们能不能构成组合它们都有什么特征呢?【生】理解与交流【师】总结【板书/PPT】(1)确定性:集合中的元素必须是确定的,任何一个元素都能明确它是或不是某个集合的元素(2)互异性:集合中的元素必须是互不相同的(3)无序性:集合中的元素是无先后顺序的。
第1课时 集合的含义学习目标 1.通过实例理解集合的有关概念.2.初步理解集合中元素的三个特性.3.体会元素与集合的属于关系.4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.知识点一 集合的概念思考 有首歌中唱道:“他大舅他二舅都是他舅”你能从集合的角度解读一下这句话吗? 答案 “某人的舅”是一个集合,某人的大舅、二舅都是这个集合中的元素.梳理 (1)一定范围内某些确定的、不同的对象的全体构成一个集合.常用大写字母拉丁A ,B ,C ,…来表示.(2)集合中的每一个对象称为该集合的元素,简称元. 集合的元素常用小写拉丁字母a ,b ,c ,…表示. 知识点二 元素与集合的关系 思考 1是整数吗?12是整数吗?答案 1是整数;12不是整数.梳理 元素与集合的关系有两种,分别为属于、不属于,数学符号分别为∈、∉. 知识点三 元素的三个特性思考1 某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?答案 某班所有的“帅哥”不能构成集合,因为“帅哥”无明确的标准.高于175厘米的男生能构成一个集合,因为标准确定.元素确定性的含义:集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.思考2构成单词“bee”的字母形成的集合,其中的元素有多少个?答案2个.集合中的元素互不相同,这叫元素的互异性.思考3“中国的直辖市”构成的集合中,元素包括哪些?甲同学说:北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他们的回答都正确吗?由此说明什么?答案两个同学都说出了中国直辖市的所有城市,因此两个同学的回答都是正确的,由此说明集合中的元素是无先后顺序的,这就是元素的无序性.梳理元素的三个特性是指确定性、互异性、无序性.知识点四常用数集及表示符号名称自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R类型一判断给定的对象能否构成集合例1观察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某校2015年在校的所有高个子同学;(4)3的近似值的全体.解(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合.(2)能构成集合.(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合.(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数,如“2”是不是它的近似值,所以不能构成集合.反思与感悟判断给定的对象能不能构成集合,关键在于能否找到一个明确的标准,对于任何一个对象,都能确定它是不是给定集合的元素.跟踪训练1下列各组对象可以组成集合的是________.(填序号)①数学必修1课本中所有的难题;②小于8的所有素数;③直角坐标平面内第一象限的一些点;④所有小的正数.答案 ②解析 ①中“难题”的标准不确定,不能构成集合;②能构成集合;③中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;④中没有明确的标准,所以不能构成集合. 类型二 元素与集合的关系 命题角度1 判定元素与集合的关系 例2 给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N .其中正确的为________.(填序号) 答案 ①②解析 12是实数,①对;2不是有理数,②对; |-3|=3是自然数,③错; |-3|=3为无理数,④错; 0是自然数,⑤错.反思与感悟 要判断元素与集合的关系,首先要弄清集合中有哪些元素(涉及常用数集,如N ,R ,Q ,概念要清晰);其次要看待判定的元素是否具有集合要求的条件. 跟踪训练2 用符号“∈”或“∉”填空. -2________R ; -3________Q ; -1________N ; π________Z . 答案 ∈ ∈ ∉ ∉命题角度2 根据已知的元素与集合的关系推理例3 集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.答案 0,1,2解析 ∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N .当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N .∴A 中元素有0,1,2.反思与感悟 判断元素和集合关系的两种方法 (1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现. (2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.跟踪训练3 已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A,2∈A ,则a 的取值范围是____________. 答案 (-4,-2]解析 ∵1∉A ,∴2×1+a ≤0,a ≤-2. 又∵2∈A ,∴2×2+a >0,a >-4, ∴-4<a ≤-2.类型三 元素的三个特性的应用例4 已知集合A 中有三个元素:a -3,2a -1,a 2+1,集合B 中也有三个元素:0,1,x . (1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值; (3)是否存在实数a ,x ,使A =B . 解 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1.经检验,0与-1都符合要求.∴a=0或-1.(2)当x=0,1,-1时,都有x2∈B,但考虑到集合元素的互异性,x≠0,x≠1,故x=-1.(3)显然a2+1≠0.由集合元素的无序性,只可能a-3=0或2a-1=0.若a-3=0,则a=3,A={a-3,2a-1,a2+1}={0,5,10}≠B.若2a-1=0,则a=12,A={a-3,2a-1,a2+1}={0,-52,54}≠B.故不存在这样的实数a,x,使A=B.反思与感悟(1)元素的无序性主要体现在①给出元素属于某集合,则它可能表示集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.(2)元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等.跟踪训练4已知集合A只含有两个元素a和a2,若1∈A,求实数a的值.解若1∈A,则a=1或a2=1,故a=1或-1.当a=1时,集合A有重复元素,∴a≠1;∴当a=-1时,集合A含有两个元素1,-1,符合题意,∴a=-1.1.下列给出的对象中,能组成集合的是________.(填序号)①一切很大的数;②好心人;③漂亮的小女孩;④方程x2-1=0的实数根.答案④2.下面说法正确的是________.(填序号)①所有在N中的元素都在N*中;②所有不在N*中的数都在Z中;③所有不在Q中的实数都在R中;④方程4x=-8的解既在N中又在Z中.答案③3.由“book”中的字母构成的集合中元素的个数为________.答案 34.设函数y=x2-2x-1图象上的点构成集合A,则点(0,-1)________A.答案∈5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.答案 3解析由2∈A可知,若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A的元素为0,3,2,符合题意.1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),依此特征(或标准)能确定任何一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.课时作业一、填空题1.已知集合A由x<1的数构成,则有________.①3∈A;②1∈A;③0∈A;④-1∉A.答案③解析很明显3,1不满足不等式,而0,-1满足不等式.2.由实数x,-x,|x|,x2,-3x3所组成的集合,最多含________个元素.答案 2解析由于|x|=±x,x2=|x|,-3x3=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.3.下列结论中,不正确的是________.(填序号)①若a∈N,则-a∉N;②若a∈Z,则a2∈Z;③若a∈Q,则|a|∈Q;④若a∈R,则3a∈R.答案①解析①不对.反例:0∈N,-0∈N.4.已知x,y为非零实数,代数式x|x|+y|y|的值所组成的集合是M,则M中的元素为________.答案-2,0,2解析①当x,y为正数时,代数式x|x|+y|y|的值为2;②当x,y为一正一负时,代数式x|x|+y|y|的值为0;③当x,y均为负数时,代数式x|x|+y|y|的值为-2,所以集合M的元素共有3个:-2,0,2.5.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a的值为________.答案2或4解析若a=2∈A,则6-a=4∈A;若a=4∈A,则6-a=2∈A;若a=6∈A,则6-a=0∉A .6.不等式x -a ≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 答案 (3,+∞)解析 因为3∉A ,所以3是不等式x -a <0的解,所以3-a <0,解得a >3. 7.在方程x 2-4x +4=0的解集中,有________个元素. 答案 1解析 易知方程x 2-4x +4=0的解为x 1=x 2=2,由集合元素的互异性知,方程的解集中只有1个元素.8.下列所给关系正确的个数是________.①π∈R ; ②3D ∈/Q ; ③0∈N *; ④|-4|D ∈/N *. 答案 2解析 ∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.9.如果有一集合含有三个元素:1,x ,x 2-x ,则实数x 的取值范围是________. 答案 x ≠0,1,2,1±52解析 由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52.10.已知a ,b ∈R ,集合A 中含有a ,ba ,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a +b =______. 答案 -1解析 ∵A =B,0∈B ,∴0∈A . 又a ≠0,∴ba =0,则b =0.∴B ={a ,a 2,0}. ∵1∈B ,∴a 2=1,a =±1. 由元素的互异性知,a =-1, ∴a +b =-1. 二、解答题11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值. 解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,故a =-1舍去. 当a =-32时,a -2=-72,2a 2+5a =-3,满足题意.∴实数a 的值为-32.12.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值. 解 (1)因为-3∈A , 所以-3=a -3或-3=2a -1. 若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1. 当a =a -3时,有0=-3,不成立;当a =2a -1时,有a =1,此时A 中有两个元素-2,1,符合题意. 综上所述,满足题意的实数a 的值为1.13.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”. 解 (1)2∈A ,则11-2∈A ,即-1∈A ,则11+1∈A ,即12∈A ,则11-12∈A ,即2∈A ,所以A 中其他所有元素为-1,12.(2)如:若3∈A ,则A 中其他所有元素为-12,23.(3)分析以上结果可以得出:A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1. 证明如下:若a ∈A ,a ≠1,则有11-a ∈A 且11-a ≠1,所以又有11-11-a =a -1a ∈A 且a -1a ≠1,进而有11-a -1a=a ∈A . 又因为a ≠11-a (因为若a =11-a ,则a 2-a +1=0,而方程a 2-a +1=0无解),同理11-a ≠a -1a ,a ≠a -1a .又因为a ·11-a ·a -1a =-1,所以A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1.三、探究与拓展14.已知集合A ={a ,b ,c }中任意2个不同元素的和的集合为{1,2,3},则集合A 的任意2个不同元素的差的绝对值的集合是________. 答案 {1,2} 解析 由题意知: ⎩⎪⎨⎪⎧ a +b =1,b +c =2,c +a =3,解得⎩⎪⎨⎪⎧a =1,b =0,c =2,∴集合A ={0,1,2},则集合A 的任意2个不同元素的差的绝对值分别是1,2. 故集合A 的任意2个不同元素的差的绝对值的集合是{1,2}. 15.已知集合A 中的元素x 均满足x =m 2-n 2(m ,n ∈Z ),求证: (1)3∈A ;(2)偶数4k-2(k∈Z)不属于集合A.证明(1)令m=2∈Z,n=1∈Z,得x=m2-n2=4-1=3,所以3∈A.(2)假设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立.①当m,n同奇或同偶时,m+n,m-n均为偶数,所以(m+n)(m-n)为4的倍数与4k-2不是4的倍数矛盾.②当m,n一奇一偶时,m+n,m-n均为奇数,所以(m+n)(m-n)为奇数,与4k-2是偶数矛盾.所以假设不成立.综上,4k-2∉A.。
高中数学课时作业第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义 课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号____ ________ ____ 一、选择题1.下列语句能确定是一个集合的是( )A .著名的科学家B .留长发的女生C .2010年广州亚运会比赛项目D .视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空 -2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章集合与函数概念§1.1集合1.1.1集合的含义与表示第1课时集合的含义知识梳理1.(1)研究对象小写拉丁字母a,b,c,…(2)一些元素组成的总体大写拉丁字母A,B,C,… 2.确定性互异性无序性3.一样 4.a是集合A a不是集合A 5.N N*或N+Z Q R作业设计1.C[选项A、B、D都因无法确定其构成集合的标准而不能构成集合.]2.C[由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”,故选C.]3.D [集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A . 又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A . ∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.。
高三一轮复习课第一课集合的概念与运算一、教材分析集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。
二、教学目标(一)集合的含义与表示1、了解集合的含义、元素与集合的“属于”关系2、能用自然语言、图形语言、集合语言描述不同的具体问题(二)集合间的基本关系1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、在具体情境中,了解全集与空集的含义(三)集合的基本运算1、理解两个集合的的并集与交集的含义,会求两个检点集合的并集与交集。
2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
三、教学重点了解集合的含义,理解集合间包含与相等的含义,理解俩个集合的并集与交集的含义,会用集合语言表达数学对象或数学内容。
四、教学难点集合相关的概念与符号的理解。
教学过程设计:基础知识自查1、集合与元素(1)集合元素的三个特征:______________ _____________ ________________(2)元素与集合的关系是:______________和______________关系,符号是:______________(3)集合的表示方法:________________________________________________________(4)集合的分类:按集合中元素的个数,集合可分为:_____ _____ _____2、集合间的基本关系(1)子集A 是B 的子集,符号:_____或_____(2)真子集:A 是B 的真子集,符号:_____或_____(3)等集:A B ⊆且B A ⊆⇔_____3、集合间的运算及性质(1)并集:符号__________ 图形语言:__________(2)交集: 符号语言__________ 图形语言:__________(3)补集: 符号语言__________ 图形语言:__________4、集合的运算性质并集的性质:(1) A ∪A= ;(2)A ∪∅= ;(3)A ∪B=交集性质: (1) A ∩A= ;例1 是(. 考点2、集合与集合的关系例2、(2010高考浙江卷)设{}4<=x x P ,{}42<=x x Q 则 A Q P ⊆ B P Q ⊆ C ⊆P ∁Q R D ⊆Q ∁P R分析:判断集合间的关系常转化为元素与集合的关系,对描述法表示的集合要抓住元素的属性,可列举出来或借助数轴、韦恩图或函数图像等手段解决。
课时作业(一)1.【多选题】下列说法正确的是( )A .联合国安理会常任理事国组成一个集合B .我校很喜欢足球的同学组成一个集合C .{1,2,3}是由不大于3的自然数组成的集合D .数1,0,5,12,32,64,14组成的集合中有5个元素 答案 AD2.下列表示正确的是( )A .0∈N B.27∈N C .-3∉Z D .π∈Q答案 A解析 0是自然数,即有0∈N ,故A 正确;27是不可约分数,即有27∉N ,故B 错误;-3是负整数,即有-3∈Z ,故C 错误;π是无理数,即有π∉Q ,故D 错误.3.【多选题】集合M 是由大于-2且小于1的实数构成的,则下列关系式正确的是( )A.5∈MB .0∉MC .1∉MD .-π2∈M 答案 CD 解析 5>1,∴5∉M ;-2<0<1,0∈M ;1=1,1∉M ;-2<-π2<1,-π2∈M .综上,A 、B 不正确,C 、D 正确.4.已知集合M ={(2,-2),2,-2},则集合M 中元素的个数是( )A .2B .3C .4D .6答案 B5.若以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为( )A .1B .2C .3D .4答案 C解析 M ={-1,2,3}.6.若2∈{1,x 2+x },则x 的值为( )A .-2B .1C .1或-2D .-1或2答案 C解析 由题意知x 2+x =2,即x 2+x -2=0,解得x =-2或x =1.7.设a ,b ∈R ,集合{1,a }={0,a +b },则b -a =( )A .1B .-1C .2D .-2答案 A解析 ∵{1,a }={0,a +b },∴⎩⎪⎨⎪⎧a =0,a +b =1,∴⎩⎪⎨⎪⎧a =0,b =1.∴b -a =1.故选A. 8.下列说法:①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合N 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的个数是________.答案 2解析 由数集性质知①③错误,②④正确.9.集合{1,2}与集合{2,1}是否表示同一集合?________;集合{(1,2)}与集合{(2,1)}是否表示同一集合?________(填“是”或“不是”).答案 是 不是10.设集合A ={x ,y },B ={0,x 2},若集合A ,B 相等,求实数x ,y 的值.解析 因为A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B 不满足集合中元素的互异性,故舍去.(2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去.综上,x =1,y =0.11.若以集合A 中的四个元素a ,b ,c ,d 为边长构成一个四边形,则这个四边形可能是( )A .梯形B .平行四边形C .菱形D .矩形答案 A解析 集合中元素具有互异性.12.【多选题】已知集合M 中的元素x 满足x =a +2b ,其中a ,b ∈Z ,则下列实数中属于集合M 的是( )A .0B .-1C .32-1 D.23-22答案 ABCD解析 0=0+2×0;-1=-1+2×0;32-1=-1+2×3;23-22=2×(3+22)=6+2×4,都在M 中.13.若{a ,0,1}=⎩⎨⎧⎭⎬⎫c ,1b ,-1,则a =______,b =______,c =________. 答案 -1 1 0解析 ∵-1∈{a ,0,1},∴a =-1.又0∈⎩⎨⎧⎭⎬⎫c ,1b ,-1且1b≠0, ∴c =0,从而可知1b=1,∴b =1. 14.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________.答案 2或415.已知x ∈N ,且6x +1∈Z ,若x 的所有取值构成集合M ,则集合M =________. 答案 {0,1,2,5}解析 因为x ∈N ,且6x +1∈Z ,则x +1=1,2,3,6,即x =0,1,2,5,所以集合M ={0,1,2,5}.16.甲、乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有2道题的答案不同,如果甲最终的得分为54分,那么乙的所有可能的分值组成的集合为________.答案 {48,51,54,57,60}解析 ∵甲的得分为54分,∴甲答错了2道题.又∵甲和乙有两道题的答案不同,则乙答错题的个数可能为4,3,2,1,0,故乙的所有可能的分值组成的集合为{48,51,54,57,60}.1.下列每组对象,能构成集合的是( )①中国最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④援助湖北抗击新冠疫情的医护人员.A .③④B .②③④C .②③D .②④答案 B解析 最美是没有标准的,不具有确定性.2.给出下列各组对象:①我们班中比较高的同学;②无限接近于0的数的全体;③比较小的正整数的全体;④平面上到点O 的距离等于1的点的全体;⑤正三角形的全体;⑥2的近似值的全体.其中能够构成集合的有( )A .1个B .2个C .3个D .4个答案 B解析 ①②③⑥不能构成集合,因为没有明确的判断标准;④⑤可以构成集合,“平面上到点O 的距离等于1的点”和“正三角形”都有明确的判断标准.3.【多选题】若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .πC .-78D.7 答案 BD解析 由题意知a 应为无理数,故a 可以为π,7.4.用符号“∈”和“∉”填空:(1)设集合A 是正整数的集合,则0________A ,2________A ;(2)设集合B 是小于11的所有实数的集合,则23________B ,22________B .答案 (1)∉ ∉ (2)∉ ∈解析 (1)正整数是不包含0的自然数,如1,2,3,…,显然0和2都不属于A .(2)因为23=12>11,所以23不属于B ;因为22=8<11,所以22属于B .5.下列关系中,①-43∈R ;②3∉Q ;③|-20|∉N *; ④|-2|∈Q ;⑤-5∉Z ;⑥0∈N .正确的是________.答案 ①②⑥6.已知集合A ={1,2},集合B 表示方程x 2+ax +b =0的解组成的集合,并且A =B ,则a =________,b =________.答案 -3 2解析 据题意,1,2是方程x 2+ax +b =0的两个根,由根与系数的关系可得⎩⎪⎨⎪⎧-a =1+2,b =1×2,∴⎩⎪⎨⎪⎧a =-3,b =2.7.设x ,y ,z 是非零实数,若a =x |x |+y |y |+z |z |+xyz |xyz |,则以a 的值为元素的集合中元素的个数是________.答案 3解析 当x ,y ,z 都是正数时,a =4;当x ,y ,z 都是负数时,a =-4;当x ,y ,z 中有1个是正数另2个是负数或有2个是正数另1个是负数时,a =0.所以以a 的值为元素的集合中有3个元素.8.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ________A ;ab ________A .(填“∈”或“∉”)答案 ∉ ∈解析 偶数+奇数=奇数;偶数·奇数=偶数.9.已知集合A 是由形如m +3n (其中m ,n ∈Z )的数组成的,判断12-3是不是集合A 中的元素?解析 是.因为12-3=2+3,此时m =2,n =1,满足集合A 中数的构成形式,所以12-3是集合A 中的元素.10.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.证明 (1)若a ∈A ,则11-a∈A . 又因为2∈A ,所以11-2=-1∈A . 因为-1∈A ,所以11-(-1)=12∈A . 因为12∈A ,所以11-12=2∈A . 根据集合中元素的互异性可知,A 中另外两个元素为-1,12,结论得证. (2)若A 为单元素集,则a =11-a, 即a 2-a +1=0,方程无实数解.所以a ≠11-a, 所以集合A 不可能是单元素集.。
《集合的含义与表示》教案(一)教学目标1 •知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义•理解集合相等的含义(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2. 过程与方法(1)通过实例,初步体会元素与集合的属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法•3. 情感、态度与价值观(1)了解集合的含义,体会元素与集合的属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合. 通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识概念形成第一组实例(幻灯片一):(1)“小于10”的自然数0,1 ,2, 3,……, 9.(2)满足3x - >x+3的全体实数.(3)所有直角二角形.(4 )到两定点距离的和等于两定点间的距离的点.(5 )咼一(1)班全体同学.(6)参与中国加入WTO谈判的中方成员.1.集合:一般地,把一些能够确定的不冋的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).2 .集合的兀素(或成员):即构成集合的每个对象(或成员),教师提问:①以上各例(构成集合)有什么特点?请大家讨论.学生讨论交流,得出集合概念的要点,然后教师肯定或补充.②我们能否给出集合一个大体描述?……学生思考后回答,然后教师总结.③上述六个例子中集合的元素各是什么?④请同学们自己举一些集合的例子.通过实例,引导学生经历并体会集合(描述性)概念形成的过程,引导学生进一步明确集合及集合元素的概念,会用自然语言描述集合.概念深化第二组实例(幻灯片二):(1 )参加亚特兰大奥运会的所有中国代表团的成员构成的集合.(2)方程x2 = 1的解的全体构成的集合.(3)平行四边形的全体构成的集合.(4)平面上与一定点0的距离等于r 的点的全体构成的集合.3.兀素与集合的关系:教师要求学生看第二组实例,并提问:①你能指出各个集合的元素吗?②各个集合的兀素与集合之间是什么关系?③例(2)中数0,- 是这个集合的元素吗?学生讨论交流,弄清兀素与集合之间是从属关系,即“属于”或“不属于”关系.引入集合语言描述集合.(1)小于10的所有自然数组成的集合;(2)方程x2 = X的所有实数根组成的集合;(3 )由1〜20以内的所有质数组成的集合•描述法:定义:用集合所含元素的共同特征表示集合的方法称为描述法•具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例2试分别用列举法和描述法表示下列集合:(1)方程x2乞=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合•由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合A可以有不同的列举法•例如:A = {9 , 8, 7, 6, 5, 4, 3, 2, 1 , 0}.(2)设方程x2 = x的所有实数根组成的集合为B,那么B = {0,1}.(3)设由1〜20以内的所有质数组成的集合为C,那么C = {2 , 3, 5, 7, 11, 13, 17, 19}.例2解答:(1)设方程x2 -2 = 0的实数根为x,并且满足条件x -2 =0,因此,用描述法表示为2A = {x€ R| x - = 0}.方程x2- = 0有两个实数根 2 , -2,因此,用列举法表示为A = { 2,—. 2}.(2)设大于10小于20的整数为x,它满足条件x€ Z,且10v x v 20. 因此,用描述法表示为B = {x€ Z | 10v x v 20}.大于10小于20的整数有11, 12, 13, 14, 15, 16, 17, 18, 19,因此,用列举法表示为B = {11 , 12, 13, 14, 15, 16, 17,备选例题例1 (1 )禾9用列举法表法下列集合:①{15的正约数}:②不大于10的非负偶数集(2)用描述法表示下列集合:①正偶数集;②{1,-3, 5,-7,…,439, 41}.【分析】考查集合的两种表示方法的概念及其应用【解析】(1)①{1 , 3, 5, 15}②{0 , 2, 4, 6, 8, 10}(2)①{x | x = 2n, n € N*}②{x | x = ( -) n-• (2n -1), n€ N*且n< 21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集例2用列举法把下列集合表示出来:9(1)A = {x € N € N };9 _x(2) B = {9€ N | x € N };9 -x(3) C :={ y = y = - + 6 , x € N , y € N }; (4) D : 2 ={(x , y) | y =+6 , x € N }; (5) E = p ={x 1= x , p + q = 5 , p € N , q € N *}qA 的元素是自然数 x ,它必须满足条件 -L 也9—x是自然数;集合 B 中的元素是自然数匕,它必须满足条件 x 也是自然数;集合 C 中的元素9—x是自然数y ,它实际上是二次函数 y = — + 6 (x € N )的函数值;集合 D 中的元素是点,这些点 必须在二次函数y = -2+ 6 (x € N )的图象上;集合E 中的元素是x,它必须满足的条件是 x =卫,q 其中 p +q = 5,且 p € N , q € N *.【解析】(1)当x = 0, 6, 8这三个自然数时, —=1, 3, 9也是自然数.9—x(5 )依题意知 p + q = 5 , p € N , q € N * ,则 p =0, P =1, p =2, p =3, p =4, q =5,q =4, q =3,q =2, q =1.Px 要满足条件x =-,q• E = {0,丄,2, 3 , 4}.4 3 2【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3已知-€ A = {a -3 , 2a -1, a 2 + 1},求a 的值及对应的集合 A.-3€ A ,可知是集合的一个元素,则可能 a 43 =3 或2a -1 =-,求出a ,再代入A , 求出集合A.【解析】由占€ A ,可知,a H3 = 或2a - =£,当a£ =,即a = 0时,A = {,-,1}【分析】先看五个集合各自的特点:集合•-A = {0 , 6, 9}(2 )由(1)知,B = {1 , 3, 9}.(3 )由 y = — + 6 , x € N , y € N 知 y < 6.••• x = 0 , 1 , 2 时,y = 6 , 5 , •-C = {2 , 5 , 6}.(4)点{x , y}满足条件 x =0, x =1, x =2, y =6, y =5,y =2.• D = {(0 , 6) (1, 5) (2 ,2符合题意. 2承 + 6 , x € N , y € N ,则有:2) }当2a -1 = H3,即a =-时,A = { -4 , £ , 2}.以此展开讨【评析】元素与集合的关系是确定的,43 € A,则必有一个式子的值为论,便可求得a.。
集合作业
1、如果{}3P x x =≤,那么( )
A.1P ⊆-
B.{}1P ∈-
C.P ∈∅
D.{}1P ⊆-
2、设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是( )
A .1
B .3
C .4
D .8
3、设集合{21,}A x x k k Z ==+∈,{21,}B x x k k Z ==-∈,则集合A B 、间的关系为( )
A.A B =
B.B A ⊂
C.A B ⊂
D.以上都不对
4、设全集为R ,集合A ={x |-1<x <1},B ={x |x ≥0},则∁R (A ∪B )等于( )
A .{x |0≤x <1}
B .{x |x ≥0}
C .{x |x ≤-1}
D .{x |x >-1}
5、已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )
6、已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N =( )
A .{0}
B .{0,1}
C .{1,2}
D .{0,2}
7、集合P ={-1,0,1},Q ={y |y =cos x ,x ∈R },则P ∩Q =( )
A .P
B .Q
C .{-1,1}
D .[0,1]
8、若集合A ={x |(2x +1)(x -3)<0},B ={x ∈N *|x ≤5},则A ∩B 是 ( )
A.{1,2,3}
B.{1,2}
C.{4,5}
D.{1,2,3,4,5}
9、设集合A ={x |1≤x ≤2},B ={x |x ≥a },若A ⊆B ,则a 的范围是( )
A .a <1
B .a ≤1
C .a <2
D .a ≤2
10、已知集合{}121A x a x a =+≤≤-, {}25B x x =-≤≤, 且A B ⊆, 则a 的取值范围是( ).
A.2a <
B.3a <
C.23a ≤≤
D.3a ≤
11、全集U =R ,A ={x||x|≥1},B ={x|x 2-2x-3>0},则(A)∩(B)等于( )
A.{x|x <1或x ≥3}
B.{x|-1≤x≤3}
C.{x|-1<x <1}
D.{x|-1<x≤1}
12、若集合A ={x ||2x -1|<3},B =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ⎪⎪⎪ 2x +13-x <0,则A ∩B 是 ( )
A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -1<x <-12或2<x <3
B.{x |2<x <3}
C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <2
D.⎩⎪⎨⎪⎧⎭
⎪⎬
⎪
⎫x
⎪⎪⎪ -1<x <-12
13、已知A ={x |x +1≥0},B ={y |y 2-2>0},全集I =R ,则A ∩∁I B 为( )
A .{x |x ≥2或x ≤-2}
B .{x |x ≥-1或x ≤2}
C .{x |-1≤x ≤2}
D .{x |-2≤x ≤-1}
14、已知全集U =R ,且A ={x||x-1|>2},B ={x|x 2-6x+8<0},则(A)∩B 等于( )
A.[-1,4)
B.(2,3)
C.(2,3]
D.(-1,4)
15、已知P ={a |a =(1,0)+m (0,1),m ∈R }.Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量集合,
则P ∩Q =( )
A .{(1,1)}
B .{(-1,1)}
C .{(1,0)}
D .{(0,1)}
16、已知集合P ={(x ,y )|y =k },Q ={(x ,y )|y =a x
+1},且P ∩Q =∅,那么k 的取值范围是( )
A .(-∞,1)
B .(-∞,1]
C .(1,+∞)
D .(-∞,+∞)
17、设U 为全集,M 、N 、P 都是其子集,则图中的阴影部分表示的集合为( )
A .M ∩(N ∪P)
B .M ∩(P ∩∁U N )
C .P ∩(∁U M ∩∁U N )
D .(M ∩N )∪(M ∩P )
18、若集合A ={x |(x -1)2<3x +7,x ∈R },则A ∩Z 中有________个元素.
19、设集合A ={5,log 2(a +3)},集合B ={a ,b },若A ∩B ={2},则A ∪B =________
20、已知集合A ={1,3,a },B ={1,a 2-a +1}且B ⊆A ,则a =________.
21、已知集合A ={x ∈R |ax 2+2x +1=0,a ∈R }只有一个元素,则a 的值为________.
22、已知集合A ={a ,b,2},B ={2,b 2,2a },且A ∩B =A ∪B ,则a =________.
23、已知全集U =A ∪B ={x ∈N |0≤x ≤10},A ∩(∁U B )={1,3,5,7},求集合B
24、记关于x 的不等式
x -a x +1
<0的解集为P ,不等式|x -1|≤1的解集为Q (1)求a =3,求P ;
(2)若Q ⊆P ,求正数a 的取值范围.
25、集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.
(1)若B ⊆A ,求实数m 的取值范围;
(2)当x ∈Z 时,求A 的非空真子集的个数;
(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.
26、已知集合A ={x |(x -2)[x -(3a +1)]<0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪
x -2a x -(a 2+1)<0. (1)当a =2时,求A ∩B ;
(2)求使B ⊆A 的实数a 的取值范围.
27、设全集I ={1,2,3,…,9},A 、B 是I 的子集,若A ∩B ={1,2,3},就称集对(A ,B )为“好集”,那么所有好集的个数为( )
A .6!
B .62
C .26
D .36
28、设集合P ={3,4,5},Q ={4,5,6,7},定义P※Q={(a ,b )|a ∈P,b ∈Q},则P※Q 中元素的个数为( )
A .3
B .4
C .7
D .12 29、设A 、B 是两个集合,定义A -B ={x |x ∈A,且x ∉B},若M ={x ||x +1|≤2},N ={x |x =|sin α|,α∈R}, 则M -N =( )
A .[-3,1]
B .[-3,0]
C .[0,1]
D .[-3,0]
30、定义A ⊗B ={z |z =xy +x y
,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1}.则集合(A ⊗B )⊗C 的 所有元素之和为( )
A .3
B .9
C .18
D .27
31、设A是整数集的一个非空子集.对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.
给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有个
32、定义集合运算A⊙B={z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B=________.
33、对于集合M、N,定义M⊖N={x|x∈M且x∉N},M N=(M⊖N)∪(N⊖M),设A={y|4y+9≥0},
B={y|y=-x+1,x>1},求A B.。