物化课件 01气体的pVT关系
- 格式:ppt
- 大小:4.99 MB
- 文档页数:30
第一章 气体的pVT 性质无论物质是哪一种聚集状态,都有许多宏观性质,如压力p 、体积V 、温度T 、密度ρ、内能U 、熵S 等.在重多的宏观性质中,p 、V 、T 三者是物理意义非常明确、又易于直接测定的基本性质.当物质的量n 一定后,其pVT 性质不可能同时独立取值,而存在如下关系:0),,(=T V p f该函数称为状态方程.若考虑到物质的量n,则可表示为: 0),,,(=T V p n f鉴于液、固体的可压缩性一般甚小,即等温压缩率(系数) T T pVV )(1∂∂-=κ和体膨胀系数p V TVV a )(1∂∂=均较小,故在通常的物理化学计算中,常将其体积随压力和温度的变化忽略.与凝聚态相比,气体具有较大的等温压缩系数T κ和体膨胀系数V a ,其体积随温度和压力的变化较大,故一般只研究气体的pVT 性质.1.1 理想气体状态方程1.理想气体状态方程波义尔定律: 常数=pV (n,T 恒定)盖.吕萨克定律 常数=T V / (n,p 恒定)阿伏加德罗定律 常数=n V / (p,T 恒定)这三个定律都客观地反映了低压下气体服从的pVT 简单关系.将其结合可整理得到状态方程: nRT pV =此即理想气体状态方程.式中,R 是摩尔气体常数.其值经精确测定,为:11314510.8--⋅⋅=K mol J R .因摩尔体积n V V m /=,故理想气体状态方程又可写成:RT pV m = 因M m n =,Vm =ρ,故理想气体状态方程又可写成:RT Mm pV =或RT pM ρ=例: 试由上列三定律导出理想气体状态方程.解: 因任意体系均满足:0),,,(=n T V p f ,可改写成:),,(n T p f V =该式取全微分得:dn nVdT T V dp p V dV T p n p n T ,,,)()()(∂∂+∂∂+∂∂= 由波义尔定律得: 0=+Vdp pdV (T,n 恒定)此即: pV p V n T -=∂∂,)( 同理,由盖.吕萨克定律和阿伏加得罗定律可得: T V T V n p =∂∂,)(和 nV n V T p =∂∂,)( 代入全微分式得:dn nVdT T V dp p V dV ++-=)(此式即: ndn T dT p dp V dV +=+ 或 )ln()ln(nT d pV d =亦即: 0)ln(=nT pV d ,积分可得: 常数=nTpV又据阿伏加德罗定律知,当气体的p,V 一定时,体系的(V/n )为与气体各类无关的常数,故上式中的常数对任何气体都应具有相同的值,如用R 表示,则上式变为: nRT pV =这就是理想气体状态方程.2.理想气体凡在任何温度、压力下均服从方程nRT pV =的气体称理想气体. 按照上述定义,理想气体必须具备下列两个微观特征: (1).气体分子本身不占有体积,是没有大小的质点.因在T 恒定时,常数=m pV ,当0→p 时,必有0→m V (2).分子间无相互作用力.分子可近似被看作是没有体积的质点。