第五章插层复合材料.
- 格式:ppt
- 大小:2.83 MB
- 文档页数:68
高分子纳米复合材料知到章节测试答案智慧树2023年最新齐鲁工业大学第一章测试1.关于纳米材料的表述,错误的是()参考答案:新型管状病毒处于纳米尺度的范围内2.复合材料的英文名称()参考答案:Composite3.纳米材料能够实现高分子纳米复合材料既增强又增韧的原因是?()参考答案:高分子基体中的无机纳米粒子作为高分子链的交联点,增加了填料与基体间的相互作用,从而提高复合材料的强度;随着纳米粒子粒径的减小,粒子的比表面积增大,纳米微粒与基体接触面积增大,有利于改善纳米材料与基体材料的应力传递,使材料受冲击时产生更多的微裂纹,从而吸收更多的冲击能;如果纳米微粒用量过多或填料粒径变大,复合材料应力集中较为明显,微裂纹易发展成宏观开裂,反而造成复合材料性能下降;无机纳米粒子具有微裂纹阻断效应,通过能量的吸收与辐射,使基体树脂裂纹扩展受阻和钝化,最终终止裂纹,不至于发展成为破坏性开裂;纳米材料的粒径对增强增韧性能有直接的贡献;无机纳米粒子进入高分子基体缺陷内,改变了基体的应力集中现象,引发粒子周围基体屈服变形(包括脱粘、空化、银纹化、剪切带作用),吸收一定的变形功实现增韧4.实现杀菌功能可以选用()纳米Ag5.要实现具有磁性的纳米材料应该选择()参考答案:纳米Fe3O46.提高高分子纳米复合材料性能的途径有()参考答案:提高与基体作用力;选择具有特定功能的纳米材料;让纳米材料分散均匀;纳米材料粒径要小7.以下是nanomaterial的为:()参考答案:MMT;CNT;rGO;石墨;GO;氧化石墨烯8.关于高分子纳米复合材料,说法正确的是()参考答案:Rainforced phase is nanomaterial;Continuous phase is polymermatrix;It can be made by in-situ polymerization method9.高分子纳米复合材料独特的性能有:()既增强又增韧;阻隔性;阻燃性;新功能高分子材料性能;超疏水性10.关于团聚,说法正确的是()参考答案:指的是纳米材料的聚集;产生团聚的主要原因是其表面效应;对纳米材料进行适当的改性,可以降低团聚11.关于聚集态结构,说法正确的是()参考答案:指的是纳米材料在使用前后所处的状态参数;二级结构包含分散状态;两种结构都包含纳米材料的粒径;二级结构包含分散程度12.关于原位聚合,说法正确的是()参考答案:原位填充聚合就是原位聚合的一种;单体中含有纳米材料再实施的聚合13.传统的聚合物基复合材料与高分子纳米复合材料都可以既增强又增韧()参考答案:错第二章测试1.防止纳米SiO2的团聚所使用的化学试剂是()硅烷偶联剂2.rGO的是哪种纳米材料的英文简写()参考答案:还原氧化石墨烯3.纳米材料的基本性质包括?()参考答案:表面效应;宏观量子隧道效应;量子尺寸效应;小尺寸效应4.哪种结构的纳米材料可以实现负载的功能,比如载药()参考答案:中空结构纳米材料5.纳米材料易于团聚的原因主要是纳米材料的哪种性质造成的()参考答案:表面效应6.纳米材料的三种分类方式包括()参考答案:按照属性分类;按照结构分类;按照维度分类7.纳米材料的特殊性质包括?()参考答案:超疏水性质;润滑性质;光学性质;储氢性质;热学性质8.SiO2@TiO2表示以()为核,()为壳。
插层法制备聚合物基纳米复合材料董歌材研1203班 2012200337 纳米材料技术是80年代末刚刚兴起的一种新技术,其基本内涵是在0.1-100nm空间尺度内操纵原子或分子或对材料进行加工,从而制备具有特定功能的产品。
1990年7月第一届国际纳米科学技术(NST,Nano Seience and Teehnology)会议在美国巴尔基摩召开,从而正式把纳米材料科学作为材料科学的一个新的分支公布于世[1]。
1992年1月第一本纳米材料科技期刊Nanostructural Materials出版。
1994年10月第二届国际NST会议在德国召开,从此纳米材料科学成为材料科学、凝聚态物理化学等领域研究的热点。
纳米科学技术所研究的尺寸空间介于宏观和微观之间,它的诞生使人们对材料的认识延伸到过去未被重视的纳米尺度,标志着材料科学进入一个新的层次。
通过在这一尺度上对材料进行操作,可以使材料性能产生质的飞跃,因此纳米材料技术为材料的发展提供了一个崭新的空间,也为新技术革命增加了一项重要内容[2]。
1纳米粒子的特点及其制备1.1纳米材料的特点一般称尺寸在1-100nm范围内的颗粒为纳米粒子,它是一种介于固体和分子之间的亚稳态物质。
当颗粒尺寸进入纳米量级时,其本身及由它所构成的纳米材料由于所谓的纳米效应,表现出许多与常规尺寸的材料完全不同的特殊性质。
纳米效应主要表现在以下几个方面:(1)表面和界面效应:纳米粒子尺寸小,比表面积大,位于表面的原子占相当大的比例,而且随着粒径减小,比表面积急剧增大,位于表面的原子所占的比例也迅速增加,比如,当粒子半径为5nm时,比表面积为180m2/g,表面原子所占比例为50%,当粒径减小到2nm时,比表面积增至225m2/g,表面原子所占比例达到80%。
由于表面原子邻近缺少与之配位的原子,处于不稳定状态,很容易与其它原子结合,因此纳米粒子有很强的表面活性。
表面原子的不稳定性使纳米粒子表现出很多特殊的性质,像纳米陶瓷粉的熔点、烧结温度和晶化温度均比常规粉体低得多,比如常规氧化铝的烧结温度为1700-1800℃,而纳米氧化铝可在1200-1400℃的温度下烧结,致密度高达99%,形成的陶瓷在低温下表现出良好的延展性;大块的纯金熔点为1063℃,当制成2nm的微粒后熔点仅为300℃;催化剂制成纳米微粒会大大提高催化效果,比如有机化学的加氢或脱氢反应,用粒径为30nm的镍作催化剂时反应速度比用常规尺度的镍催化时的速度高15倍。
一种导电聚合物插层的五氧化二钒纳米线复合材料及其制备方法和应用嘿,咱今儿就来唠唠这神奇的“一种导电聚合物插层的五氧化二钒纳米线复合材料及其制备方法和应用”。
你说这导电聚合物插层的五氧化二钒纳米线复合材料,听着就感觉很高科技吧?就好像是把两种超厉害的东西揉到了一块儿,产生了奇妙的化学反应!这就好比是把辣椒和肉一起炒,那味道,啧啧,绝了!先说说这制备方法,那可真是一门大学问啊!就好像是大厨做菜,得讲究个火候、调料的搭配,一个不小心可能就搞砸了。
得小心翼翼地处理各种材料,让它们恰到好处地融合在一起,可不是件容易的事儿呢!这过程中需要精确的控制和精湛的技术,稍有偏差可能就前功尽弃啦。
然后再看看它的应用,哇塞,那可真是广泛得很呐!就像一把万能钥匙,能打开好多扇门。
在电子领域,它能发挥大作用,让各种电子设备变得更厉害;在能源领域呢,也能一展身手,为能源的利用和存储出份力。
你想想,要是没有它,那得少了多少便利和创新啊!这复合材料就像是一个小超人,在各个领域飞来飞去,拯救世界呢!它能让我们的生活变得更加美好,更加智能。
比如说,以后我们的手机可能会变得更薄、更轻、性能更好,这可都有它的功劳呢!而且啊,随着科技的不断进步,对这种复合材料的研究肯定也会越来越深入,它能发挥的作用肯定也会越来越大。
说不定哪天,它就能给我们带来意想不到的惊喜呢!咱可别小看了这小小的复合材料,它背后蕴含的可是科学家们无数的心血和智慧。
他们就像一群魔法师,用他们的魔法棒把这些材料变成了神奇的宝贝。
所以啊,我们得好好珍惜这些科技成果,让它们为我们的生活带来更多的便利和进步。
你说是不是呢?这导电聚合物插层的五氧化二钒纳米线复合材料,真的是太酷啦!它的未来,肯定是一片光明啊!。
《复合材料》知识清单一、什么是复合材料在现代材料科学的领域中,复合材料是一种极其重要的存在。
简单来说,复合材料就是由两种或两种以上不同性质的材料,通过物理或化学的方法组合在一起,形成的一种新的材料。
它与单一材料的显著区别在于,其性能并非各组成材料性能的简单加和,而是通过协同作用,产生了比单一材料更优异的综合性能。
复合材料的组成部分通常包括基体和增强体。
基体就像是一个承载和传递载荷的基础框架,而增强体则赋予材料更高的强度、刚度等特殊性能。
二、复合材料的分类1、按基体材料分类金属基复合材料:以金属为基体,如铝基、钛基等,具有良好的高温性能和导电导热性。
陶瓷基复合材料:基体为陶瓷,具备耐高温、耐磨等特性。
聚合物基复合材料:常见的有树脂基复合材料,重量轻、耐腐蚀。
2、按增强体的形态分类纤维增强复合材料:其中的纤维可以是玻璃纤维、碳纤维等,具有高强度和高模量。
颗粒增强复合材料:如碳化硅颗粒增强铝基复合材料,能提高硬度和耐磨性。
层状复合材料:由不同材料的层片交替堆叠而成。
三、复合材料的性能特点1、高强度和高刚度由于增强体的存在,复合材料往往具有比传统单一材料更高的强度和刚度。
2、良好的耐疲劳性能能够承受多次循环载荷而不易发生疲劳破坏。
3、优异的耐腐蚀性能可以在恶劣的化学环境中保持稳定。
4、可设计性强通过选择不同的基体和增强体,以及调整它们的比例和分布,可以定制出满足特定需求的性能。
四、复合材料的制备方法1、手糊成型这是一种较为简单的方法,工人将基体材料和增强材料手工铺叠在模具上,然后固化成型。
但这种方法生产效率较低,且质量较难控制。
2、喷射成型将基体材料和短切纤维同时喷射到模具上,然后固化。
3、模压成型将预浸料放入模具中,加热加压使其成型。
4、缠绕成型主要用于制造圆柱体或管状构件,将纤维或带材连续缠绕在芯模上。
5、拉挤成型适用于制造等截面的长条状构件,将纤维通过树脂浸润后,经过模具拉挤固化成型。
五、复合材料的应用领域1、航空航天领域在飞机结构中,如机翼、机身等部位大量使用复合材料,以减轻重量、提高性能。