大型锻件的热处理.
- 格式:ppt
- 大小:1.19 MB
- 文档页数:15
大型锻件锻后热处理基本要求大型锻件锻后热处理基本要求大型锻件锻后热处理基本要求一.锻后热处理的目的锻后热处理,又称为第一热处理或预备热处理,通常是紧接在锻造过程完成之后进行的,有正火、回火、退火、球化、固溶等几种形式。
其主要目的是:1. 消除锻造应力,降低锻件的表面硬度,提高切削加工性能和防止变形。
2. 对于不再进行调质处理的工件,应使锻件达到技术条件所要求的各种性能指标,如强度、硬度、韧性等。
这类工件大多属于碳钢或低合金钢。
3. 调整与改善大型锻件在锻造过程中所形成的过热与粗大组织,减少其内部化学成分与金相组织的不均匀性,细化晶粒。
4. 提高锻件的超声波探伤性能,消除草状波,使锻件中其它内部缺陷能够清晰地显示出来,以利于准确判别和相应地处理。
5. 对于含氢量高的钢种延长回火时间,以避免产生白点或氢脆开裂的危险。
对于绝大多数大型锻件来说,防止白点是锻后热处理的首要任务,必须完成。
正火主要目的是细化晶粒。
将锻件加热到相变温度以上,形成单一奥氏体组织,经过一段均温时间稳定后,再出炉空冷。
正火时的加热速度为:在700℃以下应缓慢,以减少锻件中的内外温差和瞬时应力,最好在650~700℃之间加一个等温台阶;在700℃以上,尤其在Ac1(相变点)以上,应提高大型锻件的加热速度,争取获得更好一些的晶粒细化效果。
正火的温度范围通常在760~950℃之间,根据成分含量不同的相变点不同而定。
通常,碳与合金含量越低,正火温度越高,反之则越低。
有些特殊钢种可达1000~1150℃范围。
但不锈钢及有色金属的组织转变却是靠固溶处理来实现的。
应力及降低硬度,使锻件易于加工并不产生变形。
回火的温度范围有三种,即高温回火(500~660℃)、中温回火(350~490℃)和低温回火(150~250℃)。
常见的大锻件生产都采用高温回火方式。
回火一般紧跟在正火之后进行,当正火锻件空冷至220~300℃左右时,重新入炉加热、均温、保温,然后随炉冷至锻件表面250~350℃以下出炉即可。
锻件常用的热处理方法退火
锻件常用的热处理方法之一是退火。
退火是指将金属加热到一定温度,保温一段时间后,以适当速度冷却至室温。
退火可以改善锻件的组织性能,减轻内应力,提高机械性能和加工性能。
常见的退火方法有以下几种:
1. 全退火:将锻件加热到高于临界温度,保温一定时间后冷却。
适用于各种锻件。
2. 球化退火:将锻件加热至高于临界温度,保温一段时间后通过较慢的冷却使组织转变为球状。
适用于合金钢、工具钢等。
3. 精细退火:将锻件加热至高于临界温度,保温后通过较快的冷却获得细小的晶粒尺寸。
适用于提高锻件的强度和韧性。
4. 均匀退火:将锻件加热至高于临界温度,保温后通过较慢的冷却使晶粒尺寸得到均匀分布。
适用于大型锻件或晶粒不均匀的锻件。
5. 线加热退火:采用电阻加热或电子束加热,将锻件加热至退火温度,通过较慢的冷却进行退火。
适用于特殊形状或大型锻件。
这些退火方法的选择要根据锻件的具体材料和要求来决定,以达到锻件组织和性
能的优化。
60CrMnMo是一种高强度合金结构钢,常用于制造需要高硬度、高强度和良好韧性的部件,如大型锻件、模具、轴类零件等。
以下是60CrMnMo热处理的一般步骤和注意事项:1. 预热处理:退火:为了改善其切削加工性能,可以进行完全退火处理。
将钢材加热到850-900℃,保温足够的时间(根据工件厚度决定),然后在炉中或空气中缓慢冷却。
2. 淬火:加热:将钢材加热到淬火温度,对于60CrMnMo,通常为830-860℃。
保温:在淬火温度下保持一定时间,以确保整个工件内部均匀加热。
淬冷:使用适当的淬火介质进行冷却,由于60CrMnMo的淬透性不是很好,一般采用油淬或水-油复合淬火。
大截面部件可能需要先用水快速冷却,然后再转移到油中冷却,以减少淬火应力和变形。
3. 回火:回火应在淬火后尽快进行,以消除淬火应力和调整工件的机械性能。
回火温度根据所需的硬度和韧性选择,对于60CrMnMo,一般在500-600℃范围内进行两到三次回火。
每次回火后应充分冷却至室温,然后才能进行下一次回火。
4. 表面处理:根据应用需求,可能需要进行表面硬化处理,如氮化、渗碳或感应硬化等,以进一步提高表面硬度和耐磨性。
注意事项:热处理过程中应严格控制加热和冷却速率,以避免产生过大的热应力和组织变化导致的性能下降。
淬火介质的选择应考虑工件的尺寸、形状和性能要求,以防止裂纹和变形的发生。
回火温度和次数应根据具体的材料特性和使用条件进行调整,以达到最佳的硬度、强度和韧性平衡。
热处理后的工件应进行机械性能测试,如硬度测试、拉伸试验和金相检验等,以确保其满足设计要求。
请注意,以上是一般的热处理指导原则,实际操作应根据具体工件的尺寸、形状、性能要求以及所用设备的条件进行适当调整,并遵循相关的标准和规范。
在进行热处理时,建议由专业的热处理工程师或技术人员进行操作和监控。
大型筒体和封头的热处理厚壁容器材料的各种性能主要靠钢中加入C 和合金元素来保证,一旦成分确定之后,热处理则起决定性作用,特别是对厚截面制件的韧性而言,没有一个合理的热处理制度就难以达到要求的指标。
实践说明,锻件的预备热处理和其后的性能热处理都是达到预期目标的必要手段。
一、预备热处理预备热处理通常是在锻后热处理中完成。
由于冶炼技术的进步,钢中氢含量和杂质元素已得到了有效控制,所以锻后热处理的主要目的是调整和细化晶粒,为性能热处理做组织准备以及接受粗加工后的超声波探伤。
通过对A533B 钢研究后指出,铁素体、贝氏体及马氏体型显微组织的微观解理断裂应力)两者主要由碳化物尺寸和分布来控制,特别是在组织中出现最粗的碳化物时,显得最有害于韧性。
因此,预备热处理还有改善碳化物尺寸和分布的任务。
防止大型锻件中的晶粒粗大和不均匀,除了要在冶炼、铸锭和锻造中采取必要措施外,在热处理中应得到尽量的补偿。
一般是采用多次正火的方法细化晶粒,第一次的奥氏体化温度要高些,有利于合金元素的扩散,,消除微区偏析,并割断原始粗晶与再奥氏体化后晶粒之间的联系,但这时得到的晶粒要粗些。
第二次奥氏体化时则选择晶粒不致发生显著长大的温度。
对25CrNi3MoVA 钢大锻件研究后提出了细化高淬透性钢大锻件奥氏体晶粒的基本原则,首先要在两个临界温度区向内实现快速加热,其次是采用多次中间热处理,包括加热到Ac3+10℃,使阿尔法—7转变完全地进行和形成奥氏体合金化程度最低,以及从Ac3+10℃缓慢冷却,使过热组织于奥氏体在珠光体区内完全分解时(在冷却过程中可采用在珠光体区奥氏体稳定性最小的温度等温保持)被破坏掉。
最后在压低温度下进行淬火,保证锻件完全淬透而得到贝氏体组织。
研究了用中间高温回火对不同形态贝氏体组织的26CrNi3MoVA 钢类粗晶转子二次加热时晶粒细化的影响后指出,将预先650℃回火的粗晶粒钢以50℃/h 的速度加热到860℃时,无论是由于加热到奥氏体化温度时的再结晶过程,还是由于随后等温转变和二次结晶时形成铁素体-渗碳体组织,都可以达到晶粒细化。
不锈钢锻件的热处理不锈钢锻件是一种常见的金属制品,广泛应用于机械、汽车、航空航天等领域。
在制造过程中,热处理是不锈钢锻件必不可少的环节之一。
热处理可以改变不锈钢锻件的组织结构和性能,以满足不同的使用要求。
不锈钢锻件的热处理一般包括退火、淬火和回火等工艺。
退火是最常用的热处理方法之一,其目的是通过加热和冷却过程,使不锈钢锻件达到一定的组织结构和性能。
退火可以消除锻造过程中的应力,提高不锈钢锻件的塑性和韧性,同时降低硬度。
在退火过程中,温度、保温时间和冷却速度等因素需要严格控制,以保证不锈钢锻件的质量。
淬火是通过迅速冷却不锈钢锻件,使其产生硬度和强度的提高。
在淬火过程中,不锈钢锻件的温度要控制在临界区域,以保证组织结构的变化。
淬火后的不锈钢锻件具有较高的硬度和强度,但同时也会产生较高的脆性。
因此,为了提高不锈钢锻件的韧性,需要进行回火处理。
回火是一种通过加热不锈钢锻件,然后进行适当冷却的热处理方法。
回火可以降低不锈钢锻件的硬度和脆性,提高其韧性和塑性。
回火温度和时间的选择是关键,需要根据不锈钢锻件的具体要求进行合理的调整。
过高的回火温度和时间会导致不锈钢锻件的硬度过低,而过低的回火温度和时间则会导致不锈钢锻件的硬度过高。
在不锈钢锻件的热处理中,还需要注意一些其他因素。
首先,不锈钢锻件在加热过程中应避免过快或过慢的加热速度,以免产生不均匀的组织结构。
其次,在冷却过程中应选择适当的冷却介质,以控制冷却速度。
最后,热处理后的不锈钢锻件还需要进行表面处理,以提高其耐腐蚀性能和美观度。
不锈钢锻件的热处理是提高其性能和质量的重要环节。
通过合理的退火、淬火和回火工艺,可以使不锈钢锻件具有较高的硬度、强度、韧性和塑性。
然而,在实际生产中,热处理的工艺参数需要根据不同的不锈钢材料和具体要求进行调整,以确保不锈钢锻件的质量和性能达到预期目标。