高一数学两个变量的线性相关
- 格式:pdf
- 大小:1.09 MB
- 文档页数:9
人教版高一数学必修三第二章统计目录2.1.1 简单随机抽样(新授课)2.1.2 系统抽样(新授课)2.1.3 分层抽样(新授课)2.2.1用样本的频率分布估计总体分布(2课时)(新授课) 2.2.2用样本的数字特征估计总体的数字特征(2课时)(新授课) 2.3.1变量之间的相关关系(新授课)2.3.2两个变量的线性相关(第一课时)(新授课)2.3.2两个变量的线性相关(第二课时)(新授课)2.3.2生活中线性相关实例(第三课时)(新授课)第二章统计单元检测题(一)第二章统计单元检测题(一)参考答案第二章统计单元检测题(二)第二章统计单元检测题(二)参考答案第二章统计单元检测题(三)第二章统计单元检测题(三)参考答案第二章统计一、课程目标:本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
本章通过实际问题,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。
二、学习目标:1、随机抽样(1)能从现实生活或其他学科中提出具有一定价值的统计问题。
(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性。
(3)在参与解决统计问题的过程中,学会用简单随机抽样从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
(4)通过试验、查阅资料、设计调查问卷等方法收集数据。
2、用样本估计总体(1)通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布彪、花频率分布直方图、频率折线图、茎叶土,体会它们各自的特点。
(2)通过实例理解样本数据标准差的意义和作用,学会计算数据样本差。
(3)能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,并做出合理的解释。
(4)进一步体会用样本估计总体的思想。
(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。
(6)形成对数据处理过程进行初步评价的意识。
变量间的相关关系讲义变量间的相关关系讲义一、基础知识梳理知识点1:变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。
注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系。
点睛:两个变量相关关系与函数关系的区别和联系相同点:两者均是两个变量之间的关系,不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。
知识点2.散点图.1.在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。
2.从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合。
3.对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到由上角的区域内。
如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散步在从左上角到右下角的区域。
高一数学常用公式及结论必修1: 一、集合1、集合三要素:确定性,互异性,无序性 3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ5.集合A 有n 个元素,则子集有2n 个;真子集有2n –1个;非空子集有2n –1个;非空真子集有2n –2个;6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数1、复合函数的单调性: 同增异减2、二次函数y = ax 2 +bx + c (0a ≠)的性质(1)、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a bx 2-=, (2).二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 三、指数与指数函数 1、幂的运算法则:(1)a m • a n = a m + n , (2)n m n m a a a -=÷, (3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n nb a b a =⎪⎭⎫⎝⎛ (6)a 0 = 1 ( a ≠0) (7)n n a a 1=-(8)m nmna a= (9)mnmn aa1=-(10)3、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)4.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 四、对数与对数函数 1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1 (4)log a a b = b (5)a log a N = N(6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N(8)log a N b = b log a N (9)换底公式:log a N =aNb b log log (10)推论 log log m n a a nb b m=. (11)log a N =a N log 1 (12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (e = 2.71828…)2、对数函数y = log a x (a > 0且a ≠1)的图像与性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)五、幂函数y = x a 的图象:(1) 根据 a 的取值画出函数在第一象限的简图 .例如: y = x 2 21x x y == 11-==x xy 六.图象平移:左加右减,上加下减必修3:(1)、平均值:nx x x x n+++= 21(2)、8、两个变量的线性相关(1)、概念:(1)回归直线方程:y a b x ∧∧∧=+必修4 一、三角函数与三角恒等变换2、同角三角函数公式 sin 2α+ cos 2α= 1 ααcos tan =3、二倍角的三角函数公式sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2αααα2tan 1tan 22tan -= 4、降幂公式 22cos 1cos 2αα+= 22cos 1sin 2αα-=5、两角和差的三角函数公式sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β()βαβαβαtan tan 1tan tan tan ±=±6、两角和差正切公式的变形:tan α±tan β= tan (α±β) (1干tan αtan β) ααtan 1tan 1-+=ααtan 45tan 1tan 45tan ︒-+︒= tan (4π+α) ααtan 1tan 1+-=ααtan 45tan 1tan 45tan ︒+-︒= tan (4π-α)7、两角和差正弦公式的变形(合一变形)()ϕααα++=+sin cos sin 22b a b a (其中ab =ϕtan )8、三角函数的诱导公式 “奇变偶不变,符号看象限。
高一数学必修三导学稿使用时间:2014-5 编号:编制人:张永柱田娟备课组长:责任领导:班级:小组:姓名:小组评价:教师评价:§7相关性学习目标:1.通过收集有关数据,分析两个变量之间的关系,正确判断两个变量之间的关系是函数关系还是其他关系,从直观上认识两个变量之间的相关关系与函数关系的区别,知道两个变量的相关关系是一种不确定关系。
2.会画出散点图,并会利用散点图来判断两个变量之间的关系。
3.从实际问题分析两个变量具有相关关系时,拟合直线的几种认识。
一.预习导引:1.两个变量之间的关系,常见的有两类:一类是具有确定的函数关系,如⑴()⑵(),另一类是两个变量存在一定的关系,但却不具备函数关系所要求的确定性,它们之间的关系是带有一定的随机性的,如⑶()像这一类关系,我们称为相关关系。
2.什么是散点图?什么是曲线拟合?3.什么是线性相关?什么是非线性相关?什么是不相关?p的表中的数据4.案例分析:课本48(1)根据表中的数据,制成散点图,你能从散点图中发现身高与右手的一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似的表现这种关系。
(3)如果一个学生的身高是188cm,你能估计他的一拃大概有多长吗?二.探究交流:1.下列说法中是相关关系的是()A.光照时间和果树的单位的面积产量。
B.正方形的边长和它的周长。
C.球的半径和它的表面积。
D.在公路上行驶的汽车,行驶时间与路程。
2(1) 画出散点图(2) 由散点图判断变量x 与y 之间的关系。
归纳:相关关系的判断方法:三.随堂训练:1.下列两个变量之间的关系不是函数关系的是( )A .正方体的棱长与体积。
B .单产为常数时,土地面积与产量。
C .日照时间与水稻的亩产量。
D .电压一定时,电流与电阻。
2.对变量,x y 有观测数据(,i i x y ) (i =1,2,…,10),得散点图1;对变量,u v 有观测数据(,i i u v )(i =1,2,,10),得散点图2,由这个散点图可以判断。