思科网络学院教程——OSPF
- 格式:ppt
- 大小:3.60 MB
- 文档页数:52
思科OSPF技术要点实践总结前言:现在很多大的企业网络规划时使用OSPF协议,不仅仅考虑网络设备的兼容,主要是OSPF确实比EIGRP有优势,特别是在网络整合方面,如:公司合并或收购其它公司时。
至于OSPF与EIGRP 的区别,在此不再赘述。
很多人在学习OSPF的过程中编写了很多很好的学习笔记,但基本上都是书上的实验,不具有现实代表性。
这里根据我的经验,总结一下关于OSPF配置方面的技术和工程实践经验。
一、 OSPF技术简介OSPF 是典型的链路状态型路由协议。
它使用COST(开销)作为度量,根据拓扑表通过SPF算法获得以自己为根的到达目标的最优路径。
它使用三张表:邻居表,拓扑表,路由表,通过这3张表,每个路由器都能独立的获得前往每个目标的路径,而不象距离矢量协议那样依靠邻居来发现路由。
确保了路由的真实可靠。
下面是它的一些特点:1.OSPF路由更新过程1)运行OSPF的路由器从它所有启用了OSPF的接口向外发送Hello包。
如果2台路由器共享某条数据链路,并能够使Hello包中所定义的某些参数协商成功,那么这2台路由器就可以成为邻居(Neighbor)。
2)邻接(Adjacency)可以想象成一条由邻居之间形成虚拟的点到点链路,每个路由器都发送链路状态宣告(link state advertisement,LSA)给它的邻居。
LSA描述了所有的路由器的链路或接口信息和链路的状态信息。
3)当路由器收到从邻居发来的LSA,就把这个LSA记录在自己的链路状态数据库里(link state database,LSDB),然后拷贝该LSA,继续发送给别的邻居。
4)通过在整个区域洪泛(flood)LSA,所有的路由器将建立一致的LSDB ,当所有路由器的LSDB的信息同步完成以后,路由器就各自使用SPF(最短路径优先,Shortest Path First)算法计算到达目标地址的最短路径。
5)路由器根据SPF算法的结果构建自己的路由表,邻居之间交换的Hello包叫做keepalive,并且LSA每30分钟重传1次。
Cisco相关命令:Ospf(open shortest path first)开放最短路径优先---属于IGP(内部网关协议)基于ip协议,其协议(端口)号89Ospf协议是一种链路状态路由选择协议,它产生于ip网路,发展成用于单个自治系统来分发路由选择信息。
链路状态路由协议Ospf利用链路状态算法计算到所有已知目的的最短路径。
链路状态指的是一个路由器的接口的状态(包括与上、下ip地址、网络类型等)和路由器和它邻居间的联系,这个链路状态通告被扩散到每个路由器并用来建立一个拓扑数据库,diskjtra算法被运行在每个使用了拓扑数据库的路由器上,这个数据库是靠收到区域内所有路由器发来的LSA而产生的,这算法被放置到处于树根处的路由器上,它根据到达在这个网络的费用计算到达目地的最短路径。
Cost值=10的8次方/带宽(注:以Bit为单位)Ospf 的hello协议Hello协议的目的:1、用于发现邻居邻居建立的四大必须匹配参数1.Hello and dead intervals2.Area ID3.Authentication password4.Stub area flag2、在成为邻居之前,必须对Hello包里的一些参数协商成功3、Hello包在邻居之间扮演着keepalive的角色4、允许邻居之间的双向通信5、它在NBMA(Nonbroadcast Multi-access)和broadcast网络上选举DR和BDR。
6、如果在4倍与这个Hello包发送时间间隔后仍然没有收到来自邻居的新的Hello包,这个邻居将被宣告为无效(dead)命令:通过ip ospf hello-interval 修改hello包的发送时间通过ip ospf dead-interval 修改hello包的失效时间HELLO packet 包含以下信息:1、源路由器的router id2、源路由器的Area id3、源路由器接口的掩码4、源路由器接口的认证类型和认证信息5、源路由器接口的hello包发送的时间间隔6、源路由器接口的无效时间间隔7、优先级8、DR/BDR9、五个标记位(flag bit)10、源路由器的所有邻居的router idOspf路由器在完全邻接之前,所进过的几个状态1、DOWN状态:初始化状态2、Attempt状态:只适于NBMA网络,在NBMA网络中邻居是手工指定的,在该状态下,路由器将使用hellointerval(间隔)取代pollinterval来发送hello包。
思科路由协议配置OSPF多区域多区域的OSPFOSPF的区域类型:骨干区域:是OSPF网络的核心,负责连接所有的非骨干区域,区域之间的通讯必须通过骨干区域才能完成,也就是说在OSPF的多区域网络中必须存在骨干区域。
骨干区域的编号为0,area 0 就是骨干区域。
非骨干区域:区域编号为非0数值的OSPF区域。
OSPF的通讯类型:域内通讯量:区域内部网络之间的互相通讯。
域间通讯量:区域之间网络之间的互相通讯。
外部通讯量:OSPF网络与非OSPF网络之间的通讯。
OSPF路由器的类型:IR 域内路由器ABR 区域边界路由器BR 骨干路由器ASBR 自治系统边界路由器OSPF多区域网络中的LSA类型:LSA1:是由每台OSPF路由器产生,始发本机接口所连接链路的信息。
LSA1只在区域内部进行泛洪,可以实现域内的路由通讯。
LSA2:在多路访问型的网络中出现,由DR产生,发送给DRother的汇总后的LSA更新。
地址使用224.0.0.6,只在区域内部泛洪,实现的也是域内通讯。
LSA3:是由ABR域间路由器始发,泛洪到一个区域其所能到达的其他区域的路由信息。
实现域间路由信息的传递,ABR要宣告给它所连接的所有区域,最终实现域间的通讯。
LSA4:是由ABR始发,宣告到一个区域,宣告ASBR的位置信息。
告诉内部去往OSPF外部出口的路由信息。
LSA5:是由ASBR自治系统边界路由器产生,描述其所能到达的OSPF 外部路由信息,该更新将在整个OSPF自治系统中泛洪。
LSA7:NSSA中特有的外部路由更新。
为了实现对NSSA区域的优化,优化掉第4、5种类型的更新,又不会影响到其所连接的外部路由信息,在NSSA区域内部使用LSA7,来通告其所连接的外部路由信息,当LSA7经过ABR区域边界路由器时,会被转化成LSA5,因为对于其他区域来讲,外部路由就是LSA5。
ospf的路由类型:C 直连路由R rip路由D eigrp的内部路由D EX eigrp的外部路由O ospf的域内路由O IA ospf的域间路由O E2 ospf的2类外部路由O E1 ospf的1类外部路由O*IA OSPF的默认路由O N1 OSPF的NSSA区域的1类外部路由O N2 OSPF的NSSA区域的2类外部路由路由重分发,使rip、eigrp和ospf进行路由信息交换rip到ospfr1(config)#router ospf 10r1(config-router)#redistribute rip metric 20 subnetseigrp到ospfr7(config)#router ospf 10r7(config-router)#redistribute eigrp 10 metric-type 1 metric 30 subnetsospf 到 ripr1(config)#router ripr1(config-router)#redistribute ospf 10 metric 2ospf 到 eigrpr7(config)#router eigrp 10r7(config-router)#redistribute ospf 10 metric 1000 100 255 1 1500r4#show ip ospf database //查看ospf的LSDB末梢区域的配置ABRr2(config)#router ospf 10r2(config-router)#area 1 stubIRr4(config)#router ospf 10r4(config-router)#area 1 stubr5(config)#router ospf 10r5(config-router)#area 1 stub在末梢区域的基础上配置完全末梢区域在ABR上配置r2(config)#router ospf 10r2(config-router)#area 1 stub no-summary配置NSSA区域ABRr3(config)#router ospf 10r3(config-router)#area 2 nssar3(config-router)#area 2 nssa default-information-originater3(config-router)#area 2 nssa no-summary //优化掉LSA3IRr6(config)#router ospf 10r6(config-router)#area 2 nssaASBRr7(config)#router ospf 10r7(config-router)#area 2 nssaOSPF的外部路由r1(config-if)#int s0/0r1(config-if)#ip ospf cost 5 //定义OSPF的接口链路度量值r1(config-if)#int s0/1r1(config-if)#ip ospf cost 30r1(config-if)#router ospf 10r1(config-router)#network 0.0.0.0 0.0.0.0 area 0r2(config)#int s0/0r2(config-if)#ip add 192.168.11.2 255.255.255.0r2(config-if)#no shutdownr2(config-if)#ip ospf 10 area 0 //将该接口宣告到ospf 10 的区域0r2(config-if)#ip ospf cost 5将RIP充分发到OSPF,选择1类外部路由r2(config)#router ospf 10r2(config-router)#redistribute rip metric-type 1 metric 20 subnetsr2(config-router)#exitr3(config)#router ospf 10r3(config-router)#redistribute rip metric-type 1 metric 10 subnets选择2类外部路由r2(config)#router ospf 10r2(config-router)#no redistribute rip metric-type 1 metric 20 subnetsr2(config-router)#redistribute rip metric 20 subnetsr3(config)#router ospf 10r3(config-router)#no redistribute rip metric-type 1 metric 10 subnetsr3(config-router)#redistribute rip metric 10 subnetsr1#clear ip ospf process //重启下OSPF进程在OSPF多区域网络中必须存在骨干区域,区域0,因为所有的域间通讯必须要通过骨干区域。
Cisco路由技术基础知识详解Cisco路由技术基础知识详解路由器<一>最简单的网络可以想象成单线的总线,各个计算机可以通过向总线发送分组以互相通信。
但随着网络中的计算机数目增长,这就很不可行了,会产生许多问题:1、带宽资源耗尽。
2、每台计算机都浪费许多时间处理无关的广播数据。
3、网络变得无法管理,任何错误都可能导致整个网络瘫痪。
4、每台计算机都可以监听到其他计算机的通信。
把网络分段可以解决这些问题,但同时你必须提供一种机制使不同网段的计算机可以互相通信,这通常涉及到在一些ISO网络协议层选择性地在网段间传送数据,我们来看一下网络协议层和路由器的位置。
我们可以看到,路由器位于网络层。
本文假定网络层协议为IPv4,因为这是最流行的协议,其中涉及的概念与其他网络层协议是类似的。
一、路由与桥接路由相对于2层的桥接/交换是高层的概念,不涉及网络的物理细节。
在可路由的网络中,每台主机都有同样的网络层地址格式(如IP地址),而无论它是运行在以太网、令牌环、FDDI还是广域网。
网络层地址通常由两部分构成:网络地址和主机地址。
网桥只能连接数据链路层相同(或类似)的网络,路由器则不同,它可以连接任意两种网络,只要主机使用的是相同的网络层协议。
路由器<二>二、连接网络层与数据链路层网络层下面是数据链路层,为了它们可以互通,需要“粘合”协议。
ARP(地址解析协议)用于把网络层(3层)地址映射到数据链路层(2层)地址,RARP(反向地址解析协议)则反之。
虽然ARP的定义与网络层协议无关,但它通常用于解析IP地址;最常见的数据链路层是以太网。
因此下面的ARP和RARP的例子基于IP和以太网,但要注意这些概念对其他协议也是一样的。
1、地址解析协议网络层地址是由网络管理员定义的抽象映射,它不去关心下层是哪种数据链路层协议。
然而,网络接口只能根据2层地址来互相通信,2层地址通过ARP从3层地址得到。
并不是发送每个数据包都需要进行ARP请求,回应被缓存在本地的ARP表中,这样就减少了网络中的ARP包。
路由器OSPF协议配置命令strong>OSPF协议配置命令4.7.1 default redistribute cost配置引入外部路由时缺省的花费值,no default redistribute cost命令取消配置。
default redistribute cost costno default redistribute cost【参数说明】cost为花费值,范围1~65535之间的整数。
【命令模式】OSPF协议配置模式【使用指南】在OSPF将路由器上其它路由协议发现的路由引入作为自己的自治系统外部路由信息时,还需要一些额外的参数,包括:路由的缺省花费和缺省的标记等。
【举例】配置OSPF引入外部路由时缺省的花费值为10。
Quidway(config-router-ospf)#default redistribute cost 10【相关命令】default redistribute tagdefault redistribute type4.7.2 default redistribute interval配置OSPF引入外部路由的时间间隔,no default redistribute interval命令恢复缺省值。
default redistribute interval timeno default redistribute interval【参数说明】time为引入外部路由的时间间隔,以秒为单位,范围1~65535之间的整数。
【缺省情况】OSPF引入外部路由的时间间隔缺省为1秒。
【命令模式】OSPF协议配置模式【使用指南】由于OSPF总是要不停的引入外部的路由信息并将它们传播到整个自治系统中去,因此,有必要规定协议引入外部路由的时间间隔。
【举例】指定OSPF引入外部路由的时间间隔为2秒。
Quidway(config-router-ospf)#default redistribute interval 2【相关命令】default istribute limit4.7.3 default redistribute limit配置OSPF可引入路由数量的上限,no default redistribute limit命令恢复缺省值。
OSPF实验1:基本的OSPF配置实验拓扑:实验步骤:1.首先在3台路由器上配置物理接口,并且使用ping命令确保物理链路的畅通。
2.在路由器上配置loopback接口:R1(config)#int loopback 0R1(config-if)#ip add 1.1.1.1 255.255.255.0R2(config)#int loopback 0R2(config-if)#ip add 2.2.2.2 255.255.255.0R3(config)#int loopback 0R3(config-if)#ip add 3.3.3.3 255.255.255.0路由器的RID是路由器接口的最高的IP地址,当有环回口存在是,路由器将使用环回口的最高IP 地址作为起RID,从而保证RID的稳定。
3.在3台路由器上分别启动ospf进程,并且宣告直连接口的网络。
R1(config)#router ospf 10R1(config-router)#network 192.168.1.0 0.0.0.255 area 0R1(config-router)#network 1.1.1.0 0.0.0.255 area 0R1(config-router)#network 192.168.3.0.0.0.255 area 0ospf的进程号只有本地意义,既在不同路由器上的进程号可以不相同。
但是为了日后维护的方便,一般启用相同的进程号。
ospf使用反向掩码。
Area 0表示骨干区域,在设计ospf网络时,所有的非骨干区域都需要和骨干区域直连!R2,R3的配置和R1类似,这里省略。
不同的是我们在R2和R3上不宣告各自的环回口。
*Aug 13 17:58:51.411: %OSPF-5-ADJCHG: Process 10, Nbr 2.2.2.2 on Serial1/0 from LOADING to FULL, Loading Done配置结束后,我们可以看到邻居关系已经到达FULL状态。
实验目的:1)理解ospf的区域分层设计2)Ospf的配置3)Router-id的选择过程4)Ospf的dr和dbr选举配置5)Ospf的路由查看,邻居关系查看基本配置:R1:interface FastEthernet0/0ip address 10.1.1.1 255.255.255.0router ospf 1//1是进程号,是区分不同的ospf进程的,本地意义,不同的路由器可以可配置不同的号码network 10.1.1.1 0.0.0.0 area 0//0.0.0.0 表示精确的发布这个接口R2:interface Loopback0ip address 2.2.2.2 255.255.255.0!interface FastEthernet0/0ip address 10.1.1.2 255.255.255.0router ospf 1network 2.2.2.2 0.0.0.0 area 0network 10.1.1.2 0.0.0.0 area 0R3:interface Loopback0ip address 3.3.3.3 255.255.255.0!interface FastEthernet0/0ip address 10.1.1.3 255.255.255.0router ospf 1network 3.3.3.0 0.0.0.255 area 0network 10.1.1.0 0.0.0.255 area 0//0.0.0.255,表示发布的x.x.x.a,a表示任何子网地址,只要在这个子网地址范围内,都将被发布出去,本实验中是没有意义的,主类网段都不一样R4:(abr,area border router)interface Loopback0ip address 4.4.4.4 255.255.255.0!interface FastEthernet0/0ip address 10.1.1.4 255.255.255.0interface Serial1/0ip address 20.1.1.4 255.255.255.0network 4.4.4.4 0.0.0.0 area 0network 10.1.1.4 0.0.0.0 area 0network 20.1.1.4 0.0.0.0 area 1//因为r4是abr(区域边界路由器),不同的接口应该划在不同的区域中R5:interface Loopback0ip address 5.5.5.5 255.255.255.0ip ospf 1 area 1 前面的1是进程号,后面的1是区域号//是ospf另外一种发布接口的方法interface Serial1/0ip address 20.1.1.5 255.255.255.0ip ospf 1 area 1router ospf 1可以在r4上看一下ospf的邻居关系R4上应该有4个邻居关系Show ip ospf neighborrouter-idRouter-id 的作用?1. 标识路由器,用router-id来区分不同的路由器的链路状态数据库2. 类似于人的名字(身份证号码)3. Router-id如果规划好了,对路由器的识别就很容易。