热电偶基础知识介绍
- 格式:ppt
- 大小:1.52 MB
- 文档页数:41
热电效应及热电偶的基本原理分析;热电偶的四大基本定律;常用的热电极材料及其性能特点;热电偶的冷端补偿;热电偶的基本测量电路。
了解热电偶的工作原理;了解常用热电极材料的类型、性能特点及其适用场合;掌握热电偶的选用和维护方法。
在工业生产过程中,温度是需要测量和控制的重要参数之一。
在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。
另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。
5.1 热电偶的工作原理与基本结构在工业生产过程中,温度是需要测量和控制的重要参数之一。
在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。
另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。
一、热电偶的工作原理1、工作原理当有两种不同的导体或半导体A和B组成一个回路,其两端相互连接时(如图5.1.1),只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为T0,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。
这种现象称为“热电效应”,两种导体组成的回路称为“热电偶”,这两种导体称为“热电极”,产生的电动势则称为“热电动势”。
图5.1.1 热电偶回路热电动势由两部分电动势组成,一部分是两种导体的接触电动势,另一部分是单一导体的温差电动势。
当A和B两种不同材料的导体接触时,由于两者内部单位体积的自由电子数目不同(即电子密度不同),因此,电子在两个方向上扩散的速率就不一样。
现假设导体A的自由电子密度大于导体B的自由电子密度,则导体A扩散到导体B的电子数要比导体B扩散到导体A的电子数大。
热电偶的基础知识常用热电偶分度号有S、B、K、E、T、J等,这些都是标准化热电偶。
其中K型也即镍铬-镍硅热电偶,它是一种能测量较高温度的廉价热偶。
由于这种合金具有较好的高温抗氧化性,可适用于氧化性或中性介质中。
它可长期测量1000度的高温,短期可测到1200度。
它不能用于还原性介质中,否则,很快腐蚀,在此情况下只能用于500度以下的测量。
它比S型热偶要便宜很多,它的重复性很好,产生的热电势大,因而灵敏度很高,而且它的线性很好。
虽然其测量精度略低,但完全能满足工业测温要求,所以它是工业上最常用的热电偶。
概述:作为工业测温中最广泛使用的温度传感器之一——热电偶,与铂热电阻一起,约占整个温度传感器总量的60%,热电偶通常和显示仪表等配套使用,直接测量各种生产过程中-40~1800℃范围内的液体、蒸气和气体介质以及固体的表面温度。
热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。
热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。
热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:(1)热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数;(2)热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;(3)当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。
热电偶的基本构造:工业测温用的热电偶,其基本构造包括热电偶丝材、绝缘管、保护管和接线盒等。
工作原理及常用热电偶热电偶是一种常用的温度测量仪器,它基于热电效应原理工作。
本文将详细介绍热电偶的工作原理、常用类型和应用领域。
一、工作原理:热电偶利用两种不同材料的导线连接起来,形成一个闭合电路。
当两个连接点存在温度差时,就会产生热电势差,从而产生电流。
这种现象被称为热电效应。
热电效应有两种主要类型:Seebeck效应和Peltier效应。
Seebeck效应是指当两个不同材料的连接点存在温度差时,会产生电势差。
而Peltier效应则是指当电流通过两个不同材料的连接点时,会产生热量。
热电偶的工作原理基于Seebeck效应。
通常,热电偶由两种不同材料的导线(通常是铜和铜镍合金)组成。
其中一端被称为热端,另一端被称为冷端。
当热端的温度高于冷端时,就会产生电势差,从而产生电流。
这个电势差与温度差成正比。
二、常用类型:1. K型热电偶:由铠装热电偶和绝缘热电偶组成。
适用于高温测量,常用于冶金、化工等行业。
2. J型热电偶:由铠装热电偶和绝缘热电偶组成。
适用于中温测量,常用于热处理、食品加工等行业。
3. T型热电偶:由铜和铜镍合金组成。
适用于低温测量,常用于冷冻、空调等行业。
4. E型热电偶:由镍铬合金和铜镍合金组成。
适用于较高温度范围的测量,常用于石油、化工等行业。
三、应用领域:热电偶广泛应用于各个行业的温度测量中。
以下是一些常见的应用领域:1. 工业领域:热电偶被广泛应用于钢铁、冶金、化工、电力等行业的温度测量和控制中。
例如,在钢铁行业,热电偶可以用于监测炉温,以确保生产过程中的温度控制。
2. 食品加工:热电偶可以用于食品加工中的温度监测,以确保食品的安全和质量。
例如,在烘烤过程中,热电偶可以测量烤箱内的温度,以确保食品的烘烤时间和温度符合要求。
3. 医疗领域:热电偶在医疗设备中的应用越来越广泛。
例如,在体温计中,热电偶可以测量人体的温度,以帮助医生判断患者的健康状况。
4. 空调和制冷:热电偶可以用于空调和制冷设备中的温度控制。
热电偶(C)”号长期短期S16001600Γ柏钝30粕然60.5YOO1800K锲硅N镁铭畦镁羟__________ 215 ____________ 110012003.2 ___ 120013001・2550650 E懈桐镁 2 __________ 650750_32 ______________J50然0桐镁桐堞S型热电偶知识S型热电偶(粕铐Io-柏热电偶)粕铐104白热电偶(S型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.02mm,其正极(SP)的名义化学成分为铀铐合金,其中含铐为10%,含钠为90%,负极(SN)为纯粕,故俗称单粕铐热电偶。
该热电偶长期最高使用温度为130(ΓC,短期最高使用温度为1600o C o粕铐Io-粕热电偶优点是准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。
由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,〃ITS-90〃虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。
S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
热电偶补偿导线详解1结构及定义热电偶补偿导线简称补偿导线,通常由补偿导线合金丝、绝缘层、护套、屏蔽层组成。
在一定温度范围内(包括常温)、具有与所匹配的热电偶的热电动势的标称值相同的一对带有绝缘层的导线,用它们连接热电偶与测量装置,以补偿它们与热电偶连接处的温度变化所产生的误差。
热电偶与测量装置之间使用补偿导线,其优点有二:L改善热电偶测温线路的物理性能和机械性能,采用多股线芯或小直径补偿导线可提高线路的挠性,是接线方便,也可调节线路电阻或屏蔽外界干扰;2.降低测量线路成本,当热电偶与测量装置距离很远,使用补偿导线可以节省大量的热电偶材料,特别是使用贵金属热电偶时,经济效益更为明显。
K型热电偶规格参数及使用一、热电偶基础知识热电偶是温度测量中应用最普遍的测温器件,它的特点是测温范围宽,性能稳定,有足够的测量精度,能够满足工业过程温度测量的需要。
结构简单,动态响应好;输出为电信号,可以远传,便于集中检测和自动控制。
热电偶的测温原理基于热电效应。
将两种不同的导体或半导体连成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象即是热电效应,又称赛北克效应。
热电偶的要求:(1)在测温范围内热电偶性能稳定,不随时间和被测对象而变化;(2)在测温范围内物理化学性能稳定,不易氧化和腐蚀,耐辐射;(3)所组成的热电偶要有足够的灵敏度,热电势随温度的变化率要足够大;(4)热电特性接近单值线性或近似线性;(5)电导率高,电阻温度系数小;(6)机械性能好,机械强度高,材质均匀;工艺性好,易加工,复制性好,制造工艺简单,价格便宜。
目前市面上流行的主要有8种常用热电偶以及测高温的钨铼热电偶(0〜2300°C),综合考虑上述热电偶,只有K型热电偶比较适合大规模的工业现场应用。
K型热电偶是由镍铬-镍硅(铝)双金属组成的,其中镍铬为正极,镍硅(铝)为负极。
K型热电偶的测温范围为-270〜1300C之间,适用于氧气气氛中,稳定性属于中等程度。
K型热电偶性能稳定,产生的热电势大,热电特性线性好,复现性好,高温下抗氧化能力强,耐辐射,使用范围宽,应用广泛。
本资料所说的温度极限就是最高的温度值,K型热电偶各种规格尺寸导线的最高温度如下表所示:这个表举出各类热电偶和导线尺寸的推荐温度上限。
这些温度上限应用于有防护的热电偶,即有普通封闭端保护套管的热电偶,不用于具有压制矿物质氧化物绝缘体的套装热电偶。
一般在实际应用中,会有超过推荐温度极限的情况。
同样,在推荐温度极限内应用而没有得到满意寿命的情况也是有的。
但是,总的说来,当导线在列举的温度范围内连续工作时,能保证热电偶有满意的寿命。
K类热电偶适宜在温度高达1260°C的氧化性或惰性气氛中连续使用,因为它们的抗氧化特性要比其它金属热电偶好。
热电偶的基本知识热电偶是工业上最常用的温度检测元件之一。
其优点是:∙测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
∙测量范围广。
常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
∙构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
一、热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图1所示。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
图1 热电偶工作原理图如图1所示,热电偶的一端将A、B两种导体焊在一起,置于温度为t的被测介中称为自由端,放在温度为t0的恒定温度下。
当工作端的被测介质温度发生变化时,热电势随之发生变化,将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得温度值。
热电偶两端的热电势差可以用下式表示:式中:E t-热电偶的热电势;e AB(t)-温度为t时工作端的热电势;e AB(t0)-温度为t0时自由端的热电势当自由端温度t0恒定时,热电势只与工作端的温度有关,即E t=f(t)。
当组成热电偶的热电极的材料均匀时,其热电势的大小与热电极本身的长度和直径大小无关,只与热电极材料的成分及两端的温度有关,因此,用各种不同的导体或半导体材料可做成各种用途的热电偶,以满足不同温度对象测量的需要。
二、热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
热电偶的工作原理及其分类
热电偶是一种温度测量装置,利用热电效应将温度转化为电压信号。
其工作原理基于热电效应的两个基本规律:塔耳伯效应和西贝克效应。
下面是热电偶的工作原理及其分类:
工作原理:
1. 塔耳伯效应:根据塔耳伯效应,两个不同金属在两个不同温度下,其接触点之间会产生电动势。
这个电动势与两个温度之间的温差成正比。
2. 西贝克效应:根据西贝克效应,当热电偶的两个接点之间存在温度差时,热电偶会产生一个电压信号。
这个电压信号与两个接点的温度差成正比。
分类:
1. 根据热电材料的选择,热电偶可分为多种类型,如K型、T 型、J型、N型、S型等。
2. 根据测量范围和应用需求,热电偶可分为标准型和特殊型。
标准型热电偶适用于一般温度测量,而特殊型热电偶用于测量高温或特殊环境下的温度,如高温热电偶、耐腐蚀热电偶等。
3. 根据形状和结构,热电偶可分为直线型、表面型、插入型、保护管型等。
这些形状和结构的选择取决于被测介质的性质以及测量环境的要求。
4. 根据国际标准,热电偶还可根据热电特性、测量准确度和温
度范围进行分类,如IEC584、ASTM E230等。
总的来说,热电偶通过利用热电效应将温度转化为电压信号,从而实现温度的测量。
根据热电材料的选择、测量范围和形状结构等不同特征,可将热电偶分为多个分类。
热电偶的基本知识热电偶是工业上最常用的温度检测元件之一。
其优点是:•测量精度高。
因热电偶直接与被测对象接触,不受中间介质的影响。
•测量范围广。
常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
•构造简单,使用方便。
热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
一、热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图1所示。
当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。
热电偶就是利用这一效应来工作的。
图1 热电偶工作原理图如图1所示,热电偶的一端将A、B两种导体焊在一起,置于温度为t的被测介中称为自由端,放在温度为t0的恒定温度下。
当工作端的被测介质温度发生变化时,热电势随之发生变化,将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得温度值。
热电偶两端的热电势差可以用下式表示:式中:E t-热电偶的热电势;e AB(t)-温度为t时工作端的热电势;e AB(t0)-温度为t0时自由端的热电势当自由端温度t0恒定时,热电势只与工作端的温度有关,即E t=f(t)。
当组成热电偶的热电极的材料均匀时,其热电势的大小与热电极本身的长度和直径大小无关,只与热电极材料的成分及两端的温度有关,因此,用各种不同的导体或半导体材料可做成各种用途的热电偶,以满足不同温度对象测量的需要。
二、热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。
所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。
非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。
镍铬—镍硅(镍铝)热电偶(分度号为K)该种热电偶的正极为含铬10%的镍铬合金(KP),负极为含硅3%的镍硅合金(KN)。
它的负极亲磁,依据此特性,用磁铁可以很方便地鉴别出热电偶的正负极。
它的特点是,使用温度范围宽,高温下性能稳定,热电动势与温度的关系近似线性,价格便宜,因此,它是目前用量最大的一种热电偶。
K型热电偶适于在氧化性及惰性气氛中连续使用。
短期使用温度为1200℃,长期使用温度为1000℃。
经过选择后优质K型热电偶可以作为标准,用以分度工作用镍铬-镍硅等贱金属热电偶。
在这种热电偶的两极添加金属钇及镁等元素,抗氧化性能可进一步提高,最高使用温度可达到1300℃。
为了充分发挥贱金属价格便宜的优点,在同一测温场所中,可多安装几支热电偶,利用其灵敏度高和热电特性近似线性的特点,达到准确测量的目的。
我国已经基本上用镍铬—镍硅热电偶取代了镍铬—镍铝热电偶。
国外仍然使用镍铬—镍铝热电偶。
两种热电偶的化学成分虽然不同,但其热电特性相同,使用同一分度表。
K型热电偶是抗氧化性较强的贱金属热电偶。
不适宜在真空、含碳、含硫气氛及氧化与还原交替的气氛下裸丝使用。
当氧分压较低时,镍铬极中的铬将则优氧化(也称绿蚀),使热电动势发生很大变化。
但金属气体对其影响较小。
因此,多采用金属制热电偶保护管。
K型热电偶有以下缺点:1、热电动势的高温稳定性较N型热电偶及贵金属热电偶差。
在较高温度下,往往因氧化而损坏。
在氧化性气氛中,直径3.2mm的K型热电偶,在1100℃,1200℃下经650h左右,均超过0.75级允许误差;但N型热电偶在相同条件下,经过1000h,其热电动势的最大变化为96.6μV(2.6℃)。
在1250℃下经过1000h后仍未超差。
2、在250~550℃范围内短期热循环稳定性不好,即使在同一温度点上,在升降温过程中其热电动势值也不一样,其差值可达2~5℃。
3、K型热电偶的负极,在150~200℃范围内要发生磁性转变,致使在室温至230℃范围内,分度值往往偏离分度表,尤其在磁场中使用时,常出现与时间无关的热电动势干扰。
热电偶的类型、功能介绍一、(S型热电偶)铂铑10-铂热电偶铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。
该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。
S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。
由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。
S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。
二、(R型热电偶)铂铑13-铂热电偶铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。
偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。
R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。
其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。
由于R型热电偶的综合性能与S型热电偶相当,在我国一直难于推广,除在进口设备上的测温有所应用外,国内测温很少采用。
1967年至1971年间,英国NPL,美国NBS 和加拿大NRC三大研究机构进行了一项合作研究,其结果表明,R型热电偶的稳定性和复现性比S型热电偶均好,我国目前尚未开展这方面的研究。
R型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。