2018中考数学专题复习――探索规律
- 格式:doc
- 大小:1.20 MB
- 文档页数:18
规律探索一、选择题1. 如图,将一张等边三角形纸片沿中位线剪成4 个小三角形,称为第一次操作;然后,将其中的一 个三角形按同样方式再剪成 4 个小三角形,共得到7 个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成 4 个小三角形, 共得到 10 个小三角形, 称为第三次操作; , 根据以上操作, 若要得到 100 个小三角形,则需要操作的次数是( )A .25B .33C .34D . 50 【考点】 规律型:图形的变化类.【分析】 由第一次操作后三角形共有 4 个、第二次操作后三角形共有( 4+3)个、第三次操作后三角 形共有( 4+3+3)个,可得第n 次操作后三角形共有4+3( n ﹣ 1)=3n+1 个,根据题意得 3n+1=100, 求得 n 的值即可.【解答】 解:∵第一次操作后,三角形共有 4 个; 第二次操作后,三角形共有 4+3=7 个; 第三次操作后,三角形共有 4+3+3=10 个;,∴第 n 次操作后,三角形共有 4+3( n ﹣ 1) =3n+1 个; 当 3n+1=100 时,解得: n=33, 故选: B .2. 观察图中正方形四个顶点所标的数字规律,可知,数 2016 应标在( )A .第 C .第504 个正方形的左下角 505 个正方形的左上角B.第D.第504 个正方形的右下角505 个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数 2016 在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵ 2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0 在右下角,然后按逆时针由小变大,∴第 504 个正方形中最大的数是2015,∴数 2016 在第 505 个正方形的右下角,故选 D.3 .( 2016. 山东省临沂市, 3 分)用大小相等的小正方形按一定规律拼成下列图形,则第 n 个图形中小正方形的个数是()22A. 2n+1 B . n ﹣ 1 C . n +2n D . 5n ﹣ 2【分析】由第 1 个图形中小正方形的个数是 2 2﹣ 1、第 2 个图形中小正方形的个数是 3 2﹣ 1 、第 3 个图形中小正方形的个数是 4 2﹣ 1,可知第 n 个图形中小正方形的个数是( n+1 )2﹣ 1 ,化简可得答案.【解答】解:∵第 1 个图形中,小正方形的个数是: 22﹣ 1=3 ;第2 个图形中,小正方形的个数是: 3 2﹣ 1=8 ;第3 个图形中,小正方形的个数是: 4 2﹣ 1=15 ;,∴第 n 个图形中,小正方形的个数是:( n+1 )2﹣ 1=n 2+2n+1 ﹣ 1=n 2 +2n ;故选: C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n 个图形中共有三角形的个数为4n﹣ 3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的 4 倍少 3 个三角形,即可得出结果.【解答】解:第①是 1 个三角形, 1=4×1﹣ 3;第②是 5 个三角形, 5=4×2﹣ 3;第③是 9 个三角形, 9=4×3﹣ 3;∴第 n 个图形中共有三角形的个数是4n﹣3;故答案为: 4n﹣ 3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l : y=-43 x,点 A1 坐标为(- 3,0) . 过点 A1 作 x 轴的垂线交直线l 于点 B1,以原点 O为圆心, OB1 长为半径画弧交x 轴负半轴于点A2,再过点A2 作 x 轴的垂线交直线l 于点 B2,以原点 O为圆心, OB2 长为半径画弧交x 轴负半轴于点A3,, ,按此做法进行下去,点A2016 的坐标为.【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】 由直线 l : y=- 4 x 的解析式求出 A1B1 的长,再根据勾股定理,求出 OB1 的长,从而得出 A23的坐标;再把 A 的横坐标代入 y= - 4 x 的解析式求出 A B 的长,再根据勾股定理,求出 OB 的长,从3 2 2 2 2 而得出 A3 的坐标; , ,由此得出一般规律.【解答】 解:∵点 A 1 坐标为(- 3,0),知 O A1=3,把 x=- 3 代入直线 y=- 4 x 中,得y=4 ,即A1B1=4. 3根据勾股定理,OB= 2 1 22 21 1 = 3 4 =5, 1 OA A B∴ A 坐标为(- 5, 0), O A=5;2 24 x 中,得 y=20 ,即 A B = 2把 x=- 5 代入直线 y=- 3 3 3 .2 22 2 2 2 2 根据勾股定理, OB2= A 2 B = ( 20 ) = 253 = 51,2 2 5 OA3 3 2 2∴A3 坐标为(-51 , 0),O A3= 51 ; 3 32把 x=- 51 代入直线 y=- 4x 中,得 y= 100 ,即 A3B3= 100.3 3 9 92 2 25 2 100 23 ( ) ( ) 125 5根据勾股定理, OB = OA A B = = ,3 9 9 = 233 3 3 3 3∴ A4 坐标为(-52, 0), OA4= 52;3 3,,n 1n 1同理可得 An 坐标为(-52, 0), OAn=52 ;n n3 32015∴ A2016 坐标为(-52014, 0)32015故答案为:( - 52014 , 0)3【点评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征 . 解题时,要注意数形结合思想的运用,总结规律是解题的关键 . 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
中考数学复习专题——规律探索一.选择题1. (2018·湖北随州·3 分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3, 6,10…)和“正方形数”(如 1,4,9,1,在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为( )A .33B .301C .386D .5712.(2018•山东烟台市•3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )3.(2018•山东济宁市•3 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是( )A .B . B.C .D .4. (2018 湖南张家界 3.00 分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则 2+22+23+24+25+…+21018 的末位数字是( )A .8B .6C .4D .0二、填空题 1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P3A2A3,…都是等2.(2018•江苏淮安•3 分)如图,在平面直角坐标系中,直线l为正比例函数y=x 的图象,点A1的坐标为(1,,过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l 于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是(92)n﹣1 .3.(2018•山东东营市•3分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,那么点A2018的纵坐标是20173()2.4.(2018•临安•3 分.)已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+ba=102×ba符合前面式子的规律,则a+b= .5. (2018•广西桂林•3分)将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然记为6. (2018•广西南宁•3 分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可 得 30+31+32+…+32018 的结果的个位数字是 .7. (2018·黑龙江龙东地区·3 分)如图,已知等边△A BC 的边长是 2,以 B C 边上的高 AB 1 为边作等边三角 形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1 的 B 1C 1边上的高 AB 2 为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△A B 2C 2 的B 2C 2边上的高 A B 3 为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2 的面积为 S 1,△B 2C 1B 3 的面积为 S 2,△B 3C 2B 4 的面积为 S 3,如此下去,则 S n = .8.(2018·黑龙江齐齐哈尔·3 分)在平面直角坐标系中,点 A (3,1)在射线 O M 上,点 B (3,3)在 射线 ON 上,以 AB 为直角边作 Rt △A BA 1,以 BA 1 为直角边作第二个 Rt △BA 1B 1,以A 1B 1 为直角边作第三个 Rt△A 1B 1A 2,…,依次规律,得到 R t △B 2017A 2018B 2018,则点 B 2018 的纵坐标为 . 9.(2018•广东•3 分)如图,已B 1 作 B 1A 2∥OA 1 交双曲线于点 A 2,过 A 2 作 A 2B 2∥A 1B 1 交 x 轴于点 B 2,得到第二个等边△B 1A 2B 2;过 B 2 作 B 2A 3∥B 1A 2 交双曲线于点 A 3,过 A 3 作 A 3B 3∥A 2B 2 交 x 轴于点 B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点 B 6 的坐标 为 ( ) .nn201810. (2018•广西北海•3 分)观察下列等式: 30 = 1, 31 = 3, 32 = 9 , 33 = 27 , 34 = 81, 35= 243,…,根据其中规律可得 01220183+3+3+...3+的结果的个位数字是 。
河北中考复习之规律探索1、观察图4给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为 A .3n -2 B .3n -1C .4n +1D .4n -32、观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式:(2)通过猜想,写出与第n 个图形相对应的等式.3、古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A .13=3+10 B .25=9+16 C .36=15+21 D .49=18+314、将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( ) A .6 B .5 C .3 D .2 5、如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”. 如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.……① ② ③ ⑤④ 4×0+1=4×1-3; 4×1+1=4×2-3; 4×2+1=4×3-3;___________________; ___________________; …… 图4 第2个 s =5 第1个 s=1第3个 s =9 …… 第4个 s =136、如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n= .7、观察下列各式及其验证过程:验证322322+=:()()3221221221222223232222233+=-+-=-+-==验证833833+=:()()8331331331333338383322233=-+-=-+-== (1)按照上述两个等式及其验证过程的基本思路,猜想1544的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为任意自然数,且n ≥2)表示的等式,并给出证明。
中考规律探索1以下为全部整理类型.规律探索共两套试题.供参考学习使用一.选择题1.观察下列等式:31=3.32=9.33=27.34=81.35=243.36=729.37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A.0 B.1 C.3 D.72.把所有正奇数从小到大排列.并按如下规律分组:(1).(3.5.7).(9.11.13.15.17).(19.21.23.25.27.29.31).….现用等式A M=(i.j)表示正奇数M是第i组第j个数(从左往右数).如A7=(2.3).则A2013=()A.(45.77) B.(45.39) C.(32.46) D.(32.23)3.下表中的数字是按一定规律填写的.表中a的值应是.1235813a…2358132134…4.下列图形都是由同样大小的矩形按一定的规律组成.其中第(1)个图形的面积为2cm2.第(2)个图形的面积为8 cm2.第(3)个图形的面积为18 cm2.…….第(10)个图形的面积为()A.196 cm2B.200 cm2C.216 cm2D. 256 cm25.如图.动点P从(0.3)出发.沿所示的方向运动.每当碰到矩形的边时反弹.反弹时反射角等于入射角.当点P第2013次碰到矩形的边时.点P 的坐标为()A、(1.4)B、(5.0)C、(6.4)D、(8.3)6.如图.下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是A. M=mn B. M=n(m+1) C.M=mn+1 D.M=m(n+1)7.我们知道.一元二次方程12-=x 没有实数根.即不存在一个实数的平方等于-1.若我们规定一个新数“”.使其满足12-=i (即方程12-=x 有一个根为).并且进一步规定: 一切实数可以与新数进行四则运算.且原有的运算律和运算法则仍然成立.于是有,1i i =12-=i .,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n.我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么.20132012432i i i i i i +⋅⋅⋅++++的值为A .0B .1C .-1D .8.下列图形都是由同样大小的棋子按一定的规律组成.其中第①个图形有1颗棋子.第②个图形一共有6颗棋子.第③个图形一共有16颗棋子.….则第⑥个图形中棋子的颗数为()图①图②图③··(第8题图)A .51B .70C .76D .81二.填空题1.观察下列图形中点的个数.若按其规律再画下去.可以得到第n 个图形中所有的个数为 (用含n 的代数式表示).2.如图.在直角坐标系中.已知点A (﹣3.0)、B (0.4).对△OAB 连续作旋转变换.依次得到△1、△2、△3、△4….则△2013的直角顶点的坐标为.3.如图.正方形ABCD 的边长为1.顺次连接正方形ABCD 四边的中点得到第一个正方形A 1B 1C 1D 1.由顺次连接正方形A 1B 1C 1D 1四边的中点得到第二个正方形A 2B 2C 2D 2….以此类推.则第六个正方形A 6B 6C 6D 6周长是 .4.直线上有2013个点.我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后.直线上共有个点.5.如图.古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1.5.12.22…为五边形数.则第6个五边形数是 .6 .如图.是用火柴棒拼成的图形.则第n个图形需 根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;….则1+3+5+…+2013的值是 .8.如图12.一段抛物线:y=-x(x-3)(0≤x≤3).记为C1.它与x轴交于点O.A1;将C1绕点A1旋转180°得C2.交x 轴于点A2;将C2绕点A2旋转180°得C3.交x 轴于点A3;……如此进行下去.直至得C13.若P(37.m)在第13段抛物线C13上.则m =_________.9.直线上有2013个点.我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后.直线上共有个点. 10.观察下列各式的计算过程:5×5=0×1×100+25.15×15=1×2×100+25.25×25=2×3×100+25.35×35=3×4×100+25.…… ……请猜测.第n个算式(n为正整数)应表示为____________________________.11.将连续的正整数按以下规律排列.则位于第7行、第7列的数x是__ __.12、如下图.每一幅图中均含有若干个正方形.第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去.则第(6)幅图中含有个正方形;••••••①②③13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆. 第2个图形有10个小圆. 第3个图形有16个小圆. 第4个图形有24个小圆. …….依次规律.第6个图形有 个小圆.14.已知一组数2.4.8.16.32.….按此规律.则第n个数是 .15、我们知道.经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1.1)时.a=__________;当顶点坐标为(m.m).m≠0时.a与m之间的关系式是__________;(2)继续探究.如果b≠0.且过原点的抛物线顶点在直线y=kx(k≠0)上.请用含k的代数式表示b;(3)现有一组过原点的抛物线.顶点A1.A2.….A n在直线y=x上.横坐标依次为1.2.….n(为正整数.且n≤12).分别过每个顶点作x轴的垂线.垂足记为B1.B2.….B n.以线段A n B n为边向右作正方形A n B n C n D n.若这组抛物线中有一条经过D n.求所有满足条件的正方形边长.16.如图.所有正三角形的一边平行于x轴.一顶点在y轴上.从内到外.它们的边长依次为2.4.6.8.….顶点依次用1A、2A、3A、4A、…表示.其中12A A与x轴、底边12A A与45A A、45A A与78A A、…均相距一个单位.则顶点3A的坐标是 .22A的坐标是.第16题图17.如图.已知直线l :y=33x .过点A (0.1)作y 轴的垂线交直线l 于点B .过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1.过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去.则点A 2013的坐标为 .18、如图.在平面直角坐标系中.一动点从原点O 出发.按向上.向右.向下.向右的方向不断地移动.每移动一个单位.得到点A 1(0.1).A 2(1.1).A 3(1.0).A 4(2.0).…那么点A 4n +1(n 为自然数)的坐标为 (用n 表示)19.当白色小正方形个数n 等于1.2.3…时.由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示.n 是正整数)20. (2013•衢州4分)如图.在菱形ABCD 中.边长为10.∠A=60°.顺次连结菱形ABCD 各边中点.可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点.可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点.可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .21.一组按规律排列的式子:a2.43a .65a ,87a,….则第n 个式子是________22.观察下面的单项式:a.﹣2a 2.4a 3.﹣8a 4.…根据你发现的规律.第8个式子是 .23.如图.已知直线l:y=x.过点M(2.0)作x轴的垂线交直线l于点N.过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1.过点N1作直线l的垂线交x轴于点M2.…;按此作法继续下去.则点M10的坐标为 .24.为庆祝“六•一”儿童节.某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律.摆第(n)图.需用火柴棒的根数为 .答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、(n+1)2 2、(8052,0) 3、0.5 4、16097 5、51 6、2n+1 7、1014049 8、 2 9、16097 10、[10(n-1)+5]2=100n(n-1)+25 11、85 12、91 13、46 14、2n 15、(1)-1;a =-1m(或am +1=0);(2)解:∵a ≠0∴y =ax 2+bx =a (x +2b a)2-24b a ∴顶点坐标为(-2ba .-24b a )∵顶点在直线y =kx 上∴k (-2ba )=-24b a ∵b ≠0∴b =2k(3)解:∵顶点A n 在直线y =x 上∴可设A n 的坐标为(n .n ).点D n 所在的抛物线顶点坐标为(t .t )由(1)(2)可得.点D n 所在的抛物线解析式为y =-1tx 2+2x∵四边形A n B n C n D n 是正方形∴点D n 的坐标为(2n .n )∴-1t(2n )2+2×2n =n∴4n =3t∵t 、n 是正整数.且t ≤12.n ≤12∴n =3.6或9∴满足条件的正方形边长为3.6或916、(1).(-8.-8). 17、()()201340260,40,2或(注:以上两答案任选一个都对)18、(2n.1) 19、n 2+4n 20、20;21、221na n -(n 为正整数)22、-128a 8 23、(884736,0) 24、6n+2规律探索21、 我们平常用的数是十进制数.如2639=2×103+6×102+3×101+9×100.表示十进制的数要用10个数码(又叫数字):0.1.2.3.4.5.6.7.8.9。
规律探索一、选择题1.(2018·重庆(A)·4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【考点】图形的变化规律【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
2(2018·台湾·分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.3(2018·广东广州·3分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C.D.【答案】A【考点】探索图形规律【解析】【解答】解:依题可得:A2(1,1),A4(2,0),A8(4,0),A12(6,0)……∴A4n(2n,0),∴A2016=A4×504(1008,0),∴A2018(1009,1),∴A2A2018=1009-1=1008,∴S= ×1×1008=504().故答案为:A.【分析】根据图中规律可得A4n(2n,0),即A2016=A4×504(1008,0),从而得A2018(1009,1),再根据坐标性质可得A2A2018=1008,由三角形面积公式即可得出答案.4 (2018四川省绵阳市)将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29… … … … … …根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633【答案】A【考点】探索数与式的规律【解析】【解答】解:依题可得:第25行的第一个数为:1+2+4+6+8+……+2×24=1+2× =601,∴第25行的第第20个数为:601+2×19=639.故答案为:A.【分析】根据规律可得第25行的第一个数为,再由规律得第25行的第第20个数.5.(2018年湖北省宜昌市3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题1(2018年四川省内江市)如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1= ﹣.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,推出=××=,S1=,S2=,可得S1+S2+S3+…+S n﹣1=(S△AOB﹣n).【解答】解:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴=××=,S 1=,S 2=,∴S 1+S 2+S 3+…+S n ﹣1=(S △AOB ﹣n )=×(﹣n ×)=﹣.故答案为﹣.【点评】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.2(2018•广西桂林•3分)将从1开始的连续自然数按右图规律排列:规定位于第m 行,第n 列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)【解析】分析:由表格数据排列可知,4个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用2018除以4,商确定所在的行数,余数确定所在行的序数,然后解答即可.详解:2018÷4=504⋯⋯2. ∴2018在第505行,第2列, ∴自然数2018记为(505,2). 故答案为:(505,2).点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.3(2018•河北•6分)如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .4(2018·广东·3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 (2,0) .【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B 2、B 3、B 4的坐标,得出规律,进而求出点B 6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.5(2018·浙江临安·3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= 109 .【考点】等式的变化规律【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.6(2018·浙江衢州·4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【考点】坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.7(2018·四川自贡·4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055 个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.8(2018•湖北荆门•3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018= 63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.9(2018•甘肃白银,定西,武威•3分)如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【答案】1【解析】【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】当x=625时,当x=125时,=25,当x=25时,=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,…(2018−3)÷2=1007…1,即输出的结果是1,故答案为:1.【点评】考查代数式的求值,找出其中的规律是解题的关键.10. (2018•山东滨州•5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.11.(2018·山东泰安·3分)观察“田”字中各数之间的关系:则c的值为270或28+14 .【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8 数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.12.(2018·山东威海·3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a, a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.13.(2018·山东潍坊·3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.14. (2018•山东枣庄•4分)将从1开始的连续自然数按以下规律排列:则2018在第45 行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.15. (2018•山东淄博•4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018 .【考点】37:规律型:数字的变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.16(2018•四川成都•3分)已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,________.【答案】【考点】探索数与式的规律【解析】【解答】解:∵,∴S2=- -1=∵,∴S3=1÷()=∵,∴S4=-()-1=∴S5=-a-1、S6=a、S7= 、S8= …∴2018÷4=54 (2)∴S2018=故答案为:【分析】根据已知求出S2= ,S3= ,S4= 、S5=-a-1、S6=a、S7= 、S8= …可得出规律,按此规律可求出答案。
中考数学专题复习——探索规律一、选择题1.(2018年浙江省衢州市)32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( ) A 、41 B 、39 C 、31 D 、292.(2018湖南益阳)有一种石棉瓦(如图4),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n 为正整数)块石棉瓦覆盖的宽度为 A. 60n 厘米 B. 50n 厘米 C. (50n+10)厘米 D. (60n-10)厘米3.(2018江苏宿迁)用边长为1的正方形覆盖33 的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是( )A.2 B.4 C.5 D.64.(2018 四川 泸州)两个完全相同的长方体的长、宽、高分别是5cm ,4cm ,3cm ,把它们按不同方式叠放在一起分别组成新的长方体,在这些新长方体中表面积最大的是( )A .2158cm B .2176cm C .2164cm D .2188cm5.(2018 湖南 益阳)如图1,骰子是一个质量均匀的小正方体,它的六个面上分别刻有1~6 个点.,小明仔细观察骰子,发现任意相对两面的点数和都相等. 这枚骰子向上的一面的点数是5,它的对面的点数是( )A. 1B. 2C. 3D. 66.(2018 河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90o,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )323 5339 11341315 17 197A .上B .下C .左D .右7.(2018山东德州)将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.( )将纸片展开,得到的图形是8.(2018山东德州)只用下列图形不能镶嵌的是( ) A .三角形B .四边形C .正五边形D .正六边形9.(2018黑龙江黑河)为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种10.(2018 山东 聊城)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( ) A .54个 B .90个 C .102个 D .114个 11.(2018 台湾)有一长条型链子,其外型由边长为1公分的正六边形排列而成。
图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻。
若链子上有35个黑色六边形,则此链子共有几个白色六边形?( )(A) 140 (B) 142 (C) 210 (D) 212 。
12.(2018 台湾) 小嘉全班在操场上围坐成一圈。
若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人。
求小嘉班上共有多少人?( )(A) 36 (B) 37 (C) 38 (D) 39图1 图2图3…A .B .C .D .13.(2018湖北孝感)一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒移动一个单位,那么第35秒时质点所在位置的坐标是( ) A.(4,0) B.(5,0) C.(0,5) D.(5,5)14.(2018贵州贵阳)根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )A .3nB .3(1)n n +C .6nD .6(1)n n +15.(2018湖北鄂州)因为1sin 302=o,1sin 2102=-o,所以sin 210sin(18030)sin 30=+=-o o o o ;因为2sin 45=o ,2sin 225=-o,所以sin 225sin(18045)sin 45=+=-o o o o ,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-o ,由此可知:sin 240=o ( )A .12-B .2-C .3-D .3-二、填空题1.(2018年陕西省)搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.2.(2018年江苏省连云港市)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,L ,依此类推,则由正n 边形“扩展”而来的多边形的边数为 .(图2)……(1)(2) (3)图1 图2 图3① ② ③ ④……3. (2018年四川省宜宾市)如图,将一列数按图中的规律排列下去,那么问号处应填的数字为4.(08山东日照)将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=(用含n的代数式表示).5、(2018淅江金华)如图,第(1)个多边形由正三角形"扩展"而来,边数记为α3, .第(2)个多边形由正方形"扩展"而来,边数记为a4,…,依此类推,由正 n边形"扩展"而来的多边形的边数记为a n(n≥3).则a5的值是 ;当的结果是600197时,n的值为。
6.(2018山东烟台)表2是从表1中截取的一部分,则_____.a=7.(2018山东威海)如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x轴的直线l2的一个交点;……按照这样的规律进行下去,点A n的坐标为.所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n ①①②③④⑥⑨○19○?naaaa1111543++++Λ8.(2018年山东省临沂市)如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =________。
9.(2018年山东省潍坊市)下面每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n (n ≥2)个圆点时,图案的圆点数为S n 按此规律推算S n 关于n 的关系式为:__________________.10.(2018浙江杭州)如图,一个42⨯的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个53⨯的矩形用不同的方式分割后,小正方形的个数可以是 .11.(2018年辽宁省十二市)如图6,观察下列图案,它们都是由边长为1cm 的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有 个.图612.(2018年浙江省绍兴市)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,或或?图案1图案2图案3 图案4……B 1B 2A 1A OB(第7题)xyOA 1A 2A 3 l 2 l 1l 3 1 4 2 3记各阴影部分面积从左到右依次为1S ,2S ,3S ,…,n S ,则124:S S 的值等于 .13.(2018年沈阳市)观察下列图形的构成规律,根据此规律,第8个图形中有 个圆.14.2018年乐山市)如图(9),在直角坐标系中,一直线l 经过点(3,1)M 与x 轴,y 轴分别交于A 、B 两点,且MA =MB ,则△ABO 的内切圆1o e 的半径1r = ;若2o e 与1o e 、l 、y 轴分别相切,3o e 与2o e 、l 、y 轴分别相切,…,按此规律,则20080e 的半径2008r =15.(2018北京)一组按规律排列的式子:2b a -,53b a ,83b a-,114b a ,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数).16.(2018湖北咸宁)观察右表,依据表格数据排列的规律,数2 008在表格中出现的次数共有 次.17.(2018湖北鄂州)下列给出的一串数:2,5,10,17,26,?,50.仔细观察后回答:缺少的数?是 .18.(2018 湖北 十堰)观察下面两行数:第1个 ……第2个 第3个 第4个(n +1)个图1 2 3 4 …2 4 6 8 …3 6 9 12 …4 8 12 16 … … … … … 0y AB MO OO根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果) .19.(2018山东济南)数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、so ,研究15、12、10这三个数的倒数发现:121101151121-=-.我们称15、12.10这三个数为一组调和数.现有一组调和数:x 、5、3(x>5).则x 的值是_____________.20.(2018江苏宿迁)对于任意的两个实数对),(b a 和),(d c ,规定:当d b c a ==,时,有),(b a =),(d c ;运算“⊗”为:),(),(),(bd ac d c b a =⊗;运算“⊕”为:),(),(),(d b c a d c b a ++=⊕.设p 、q 都是实数,若)4,2(),()2,1(-=⊗q p ,则_______),()2,1(=⊕q p .21.(2018 湖北 恩施)将杨辉三角中的每一个数都换成分数 , 得到一个如图4所示的分数三角形,称莱布尼茨三角形.若 用有序实数对(m,n)表示第m行,从左到右第n个数, 如(4,3)表示分数121.那么(9,2)表示的分数 是 .22.(2018泰州市)让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5 ,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3;…………依此类推,则a 2018=_______________.23.根据图中数字的规律,在最后一个图形中填空.24.(2018山西省)如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n 层有 白色正六边形。