介孔二氧化硅纳米粒介导的药物传递系统及其生物安全性的研究进展
- 格式:pdf
- 大小:317.81 KB
- 文档页数:7
刺激响应型介孔二氧化硅基纳米药物递送系统的构建与性能研究摘要:随着纳米技术的发展,纳米药物递送系统作为一种新型的药物递送途径受到了广泛关注。
介孔二氧化硅(mesoporous silica,简称MS)作为一种稳定性良好、无毒副作用的纳米材料,被广泛应用于纳米药物递送系统的构建。
本文采用一种刺激响应型的介孔二氧化硅(responsive mesoporous silica,简称RMS)为载体构建纳米药物递送系统,并采用荧光探针和细胞实验等手段对其进行性能评价。
实验结果表明,所构建的RMS基纳米药物递送系统具有很好的药物包载能力和刺激响应性,并且在低毒副作用方面表现出了很好的应用前景。
关键词:介孔二氧化硅;纳米药物递送系统;刺激响应;药物包载能力;应用前景Abstract:With the development of nanotechnology, nanomedicine delivery system has attracted widespread attention asa new way of drug delivery. Mesoporous silica (MS) asa stable and non-toxic nanomaterial, has been widely used in the construction of nanomedicine delivery system. In this paper, a responsive mesoporous silica(RMS) as a carrier is used to construct a nanomedicine delivery system, and the performance is evaluated by fluorescent probe and cell experiments. The results showed that the RMS-based nanomedicine delivery system had good drug loading capacity and stimulus responsiveness, and exhibited good application prospects in low toxicity.Keywords: Mesoporous silica; nanomedicine delivery system; stimulus response; drug loading capacity; application prospect第一章绪论1.1 研究意义纳米药物递送系统作为一种新型的药物递送途径,具有在靶点处释放药物的优势,能够提高药物的治疗效果,降低药物的副作用,是目前药物研究领域的热点之一。
介孔二氧化硅纳米材料的制备及在药物递送方面的应用研究摘要:一、引言1.介孔二氧化硅纳米材料的基本概念2.介孔二氧化硅纳米材料的研究背景和重要性二、介孔二氧化硅纳米材料的制备方法1.液相沉淀法2.溶胶-凝胶法3.模板法4.表面活性剂诱导法三、介孔二氧化硅纳米材料在药物递送中的应用1.作为药物载体2.改善药物生物利用度3.实现药物缓释和靶向给药4.提高药物稳定性和降低药物毒性四、介孔二氧化硅纳米材料在药物递送方面的优势1.比表面积大、孔隙率高2.稳定的骨架结构3.易于表面修饰4.无生理毒性五、研究进展与展望1.制备方法的创新2.药物递送系统的优化3.临床应用的拓展正文:随着科技的不断发展,新型纳米材料在各个领域的研究日益深入。
其中,介孔二氧化硅纳米材料因其独特的物理和化学性质,在药物递送方面具有广泛的应用前景。
本文将探讨介孔二氧化硅纳米材料的制备方法以及在药物递送领域的应用,旨在为相关研究提供有益的参考。
一、引言1.介孔二氧化硅纳米材料的基本概念介孔二氧化硅纳米材料(Mesoporous Silica Nanoparticles,简称MSN)是一种具有有序介孔结构的无机纳米材料。
其特点在于孔径尺寸在2-50nm范围内,具有较大的比表面积、高的孔隙率以及稳定的骨架结构。
由于这些特性,介孔二氧化硅纳米材料在药物递送领域具有显著的优势。
2.介孔二氧化硅纳米材料的研究背景和重要性近年来,随着药物递送技术的发展,介孔二氧化硅纳米材料作为一种新型药物载体,逐渐成为研究的热点。
与传统药物载体相比,介孔二氧化硅纳米材料具有更好的生物相容性和低毒性,可实现药物的高效递送和靶向给药。
因此,研究介孔二氧化硅纳米材料在药物递送方面的应用具有重要意义。
二、介孔二氧化硅纳米材料的制备方法1.液相沉淀法液相沉淀法是一种常见的介孔二氧化硅纳米材料的制备方法。
该方法通过将硅酸盐前驱体与有机模板一起溶解在有机溶剂中,然后通过调节溶液pH 值,使硅酸盐沉淀并形成介孔结构。
介孔二氧化硅纳米粒作为抗癌药物递送载体研究进展
陈立江;马艳;潘昊
【期刊名称】《辽宁大学学报(自然科学版)》
【年(卷),期】2024(51)1
【摘要】介孔二氧化硅纳米粒在抗癌药物递送系统中被广泛应用,因其具有孔径可调控、表面易被修饰、亲水性较好、生物兼容性良好等优势被制备成纳米药物递送载体.本文将从介孔二氧化硅纳米粒的合成方法、机理、生物降解及其在抗癌药物递送系统中的应用等方面对其进行总结,希望能为其作为纳米药物递送载体的研究提供帮助.
【总页数】8页(P1-7)
【作者】陈立江;马艳;潘昊
【作者单位】辽宁大学药学院
【正文语种】中文
【中图分类】R944
【相关文献】
1.功能化介孔二氧化硅纳米粒子在药物递送系统中的研究进展
2.介孔二氧化硅纳米粒作为药物载体研究进展
3.介孔二氧化硅纳米粒子药物递送系统研究进展
4.介孔二氧化硅作为基因递送载体的研究进展
5.介孔二氧化硅和中空介孔二氧化硅载体用于提高难溶性药物溶出度的比较
因版权原因,仅展示原文概要,查看原文内容请购买。
基于介孔二氧化硅复合纳米粒子的制备、性能及药物控释研究一、本文概述随着纳米科技的迅速发展,纳米材料在生物医药、环境科学、能源技术等众多领域的应用前景日益广阔。
其中,介孔二氧化硅复合纳米粒子(mesoporous silica nanoparticles, MSNs)作为一种具有独特结构和性质的新型纳米材料,已引起广泛关注。
本文旨在深入探讨基于介孔二氧化硅复合纳米粒子的制备技术、物理化学性能,以及其在药物控释领域的应用潜力。
本文首先概述了介孔二氧化硅复合纳米粒子的基本结构、性质及其制备方法,包括溶胶-凝胶法、模板法、微乳液法等。
随后,详细分析了这些粒子的表面修饰、功能化以及其与药物分子的相互作用机制。
在此基础上,本文进一步探讨了介孔二氧化硅复合纳米粒子在药物控释系统中的应用,包括药物的包载、释放动力学、细胞摄取和生物相容性等方面的研究。
本文还综述了介孔二氧化硅复合纳米粒子在药物控释领域的研究进展,分析了其在实际应用中面临的挑战和未来的发展方向。
通过本文的论述,旨在为相关领域的研究人员提供有价值的参考信息,推动介孔二氧化硅复合纳米粒子在药物控释领域的深入研究与应用。
二、介孔二氧化硅复合纳米粒子的制备介孔二氧化硅复合纳米粒子的制备是本研究工作的核心环节。
制备过程主要包括原料选择、溶剂配置、合成反应以及后续处理等步骤。
我们选择了高纯度的硅源和表面活性剂作为制备介孔二氧化硅复合纳米粒子的主要原料。
硅源的选择对于粒子的尺寸、形貌以及介孔结构具有重要影响,我们经过多次试验筛选,最终确定了最佳的硅源。
表面活性剂则用于形成介孔结构,其种类和浓度对介孔的有序性和孔径大小具有决定性影响。
在溶剂配置阶段,我们将硅源和表面活性剂按照一定比例溶解在特定的溶剂中,形成均匀的溶液。
溶剂的选择需要考虑其对硅源和表面活性剂的溶解性、反应活性以及后续处理的方便性。
接下来是合成反应阶段。
在特定的温度和搅拌速度下,我们向溶液中加入催化剂,引发硅源的水解和缩聚反应。
介孔二氧化硅在药物控释中的应用研究
近些年来,介孔二氧化硅在药物控释领域备受瞩目。
介孔二氧化硅是一种具有高度孔隙结构和可调控的孔径大小的材料,因此可以被用于药物控释系统中。
在这篇文章中,我们将讨论介孔二氧化硅在药物控释中的应用研究,包括其在口服、注射和局部治疗中的应用。
1. 口服药物控释
口服药物控释是将药物包裹在介孔二氧化硅内,使药物在肠道中缓慢释放的一种方法。
介孔二氧化硅孔径大小可调,因此可以控制药物的释放速度。
这种方法可以改善药物活性和生物利用度,并减少毒副作用。
例如,在治疗癌症方面,通过口服药物控释技术,可以让化疗药物在体内缓慢释放,减少对正常细胞的伤害。
2. 注射药物控释
注射药物控释是将药物包裹在介孔二氧化硅内,注入体内,在体内缓慢释放的一种方法。
介孔二氧化硅孔径大小可调节,因此可以控制药物的释放速度。
注射药物控释技术在治疗疾病时具有很大的潜力。
例如,在治疗关节炎方面,通过注射药物控释技术,可以让药物在关节内缓慢释放,减少对其他部位的影响。
3. 局部治疗
除了口服和注射药物控释,介孔二氧化硅还可以用于局部治疗。
局部治疗是将药物包裹在介孔二氧化硅中,直接应用于患病部位的一种方法。
例如,在治疗伤口愈合方面,通过将药物包裹在介孔二氧化硅中,可以让药物缓慢释放于伤口,促进愈合。
4. 结束语
总之,介孔二氧化硅在药物控释中具有巨大的潜力。
利用其孔径大小可控的优势,可以控制药物的释放速度和控制毒副作用。
希望这篇文章可以为探索新的药物控释技术提供一些思路和启示。
介孔二氧化硅纳米粒子在医学应用中的研究综述近年来,介孔二氧化硅纳米粒子作为一种重要的纳米材料,在医学领域中得到了广泛的关注和研究。
介孔二氧化硅纳米粒子具有高比表面积、可调控的孔径大小、较好的生物相容性和药物吸附性能,因此被广泛用于药物传输、生物成像和治疗等方面。
本文将综述介孔二氧化硅纳米粒子在医学应用中的研究进展。
首先,介孔二氧化硅纳米粒子在药物传输方面具有很大的潜力。
其高比表面积和可调控的孔径大小使得药物可以高效地吸附在纳米粒子上,从而提高药物的溶解度和稳定性。
此外,介孔二氧化硅纳米粒子还可以通过控制孔径大小和表面修饰来实现药物的缓释和靶向输送,从而提高药物的疗效和减少副作用。
其次,介孔二氧化硅纳米粒子在生物成像方面也具有广泛的应用。
其较大的比表面积和可调控的孔径大小使得纳米粒子可以有效地吸附荧光染料和核酸探针等成像剂,从而实现生物标记和分子成像。
此外,介孔二氧化硅纳米粒子还可以通过表面修饰和功能化来实现靶向成像,例如将靶向配体修饰在纳米粒子表面,以实现对肿瘤和炎症等病变组织的高效成像。
最后,介孔二氧化硅纳米粒子在治疗方面也具有潜在的应用价值。
其较大的比表面积和可调控的孔径大小使得纳米粒子可以吸附和释放生物活性物质,例如药物、DNA和RNA等。
此外,通过表面修饰和功能化,介孔二氧化硅纳米粒子还可以实现对肿瘤和炎症等病变组织的靶向治疗,从而提高治疗效果和减少副作用。
总之,介孔二氧化硅纳米粒子作为一种重要的纳米材料,在医学应用中具有广泛的潜力。
它们可以用于药物传输、生物成像和治疗等方面,并通过表面修饰和功能化来实现药物的缓释和靶向输送。
然而,目前介孔二氧化硅纳米粒子在生物安全性和毒性方面的研究还不充分,因此在进一步应用前仍需要深入的研究和评估。
介孔二氧化硅纳米材料的制备及在药物递送方面的应用探究1. 引言随着人们对治疗药物副作用和提高治疗效果的要求越来越高,纳米载药技术被广泛应用于药物递送领域。
其中,介孔二氧化硅纳米材料因其奇特的孔道结构和高度可控的孔径大小受到了探究者的关注。
2. 介孔二氧化硅纳米材料的制备方法2.1 模板法2.2 溶胶凝胶法2.3 气相沉积法3. 介孔二氧化硅纳米材料在药物递送方面的应用探究进展3.1 肿瘤治疗3.1.1 化学药物载药3.1.2 生物大分子药物载药3.2 抗菌治疗3.3 组织工程3.4 缓释药物递送系统3.5 合成药物递送系统4. 介孔二氧化硅纳米材料在药物递送中的优缺点4.1 优点4.2 缺点5. 结论介孔二氧化硅纳米材料作为一种具有良好生物相容性和可控释放性能的载药材料,其制备方法日益完善,对于药物递送领域具有重要的应用潜力。
然而,其在临床应用中仍面临一些挑战,包括制备成本高、长期稳定性等问题。
因此,将来的探究还需要进一步优化制备方法,并解决潜在的安全问题,以提高介孔二氧化硅纳米材料在药物递送方面的应用前景。
关键词:介孔二氧化硅纳米材料,制备方法,药物递送,应用探究,优缺点。
Abstract: With the development of nanotechnology, mesoporous silica nanoparticles (MSN) have attracted extensive research interest as a drug carrier material due to their excellent biocompatibility and controllable release properties. This article reviews the preparation methods of mesoporous silica nanoparticles and their research progress in drug delivery.1. IntroductionWith the increasing demand for reducing drug side effects and improving treatment efficacy, nanocarriers have been widely used in drug delivery. Among them, mesoporous silica nanoparticles have received attention from researchers due to their unique pore structure and highly controllable pore size.2. Preparation methods of mesoporous silica nanoparticles2.1 Template method2.2 Sol-gel method2.3 Vapor deposition method3. Research progress of mesoporous silica nanoparticles in drug delivery3.1 Tumor therapy3.1.1 Chemical drug loading3.1.2 Biopolymer drug loading3.2 Antibacterial therapy3.3 Tissue engineering3.4 Sustained drug delivery systems3.5 Synthetic drug delivery systems4. Advantages and disadvantages of mesoporous silica nanoparticles in drug delivery4.1 Advantages4.2 Disadvantages5. ConclusionMesoporous silica nanoparticles, as a drug carrier material with good biocompatibility and controllable release properties, have great application potential in the field of drug delivery. However, challenges still exist in their clinical application, including high preparation cost and long-term stability. Therefore, future research needs to further optimize the preparation methods and address potential safety issues to improve the application prospects of mesoporous silica nanoparticles in drug delivery.Keywords: mesoporous silica nanoparticles, preparation methods, drug delivery, application research, advantages and disadvantages综上所述,介孔硅纳米颗粒在药物传递领域具有许多优点,如高载药能力、可控释放性和可调整的生物相容性。
不同粒径介孔二氧化硅纳米粒载药系统研究进展作者:张玩涛张雪来源:《科学与财富》2020年第12期摘要:由于某些药物进入机体后出现在胃肠道中不易吸收、易分解、作用时间短、靶向作用难、耐药性、毒副作用高、导致生物利用度低,因此通过把药物载入介孔SiO2纳米粒体系解决药物进入机体后所存在的问题。
本文对不同粒径介孔SiO2纳米粒载入药物的优势及前景等方面进行综合概述。
关键词:介孔二氧化硅、MCM-41、MCM-48、SBA-15药物是有效治疗疾病的一种手段。
随着医药行业的发展,药物的使用出现了如耐药性、靶向性不佳、生物利用度低、毒副作用大等问题。
为了解决这些问题对药物进行了改造、修饰、改变给药途径等方法。
常采用载体体系提高药物生物利用度,介孔SiO2较其他载体具有稳定的刚性结构、独特的介孔架构、还有颗粒大小可调、可调孔径大小的优势。
介孔二氧化硅纳米粒根据孔道结构的差异分为 MCM-41、MCM-48、 MCM-50、HMS(中空二氧化硅)、MSU 和 SBA-15 等。
本文以三种常用的介孔二氧化硅MCM-41、MCM-48、SBA-15为例来综述介孔SiO2纳米粒载药概况。
1.MCM-41其尺寸在 20~500 nm,孔徑在 2~10 nm 范围内可调控。
同时,二氧化硅同多种磷脂具有高度的亲和力,因此很容易吸附在细胞表面进而内在化。
由于抗肿瘤的药物大多均有毒性,有的药物水溶性差,药物的控制释放是减少药物用量、增强药物疗效并降低药物生物毒性的可靠方法,通过药物载体系统可以避免药物活性的提前丧失,有利于药物的贮藏和运输由于介孔二氧化硅的良好缓释特性,其经常被用于此类药物的载体。
介孔二氧化硅纳米粒子能够穿过细胞间隙,并被人体的细胞通过最小的毛细血管和血脑屏障(BBB)吸收。
客体分子不仅可以从孔中缓慢释放,而且可以通过孔的打开来控制,从而提高药物的耐久性。
六方相的MCM-41[1]常采用水热合成法,将模板剂十六烷基三甲基溴化铵(CTAB)在NH3·H2O调节下与正硅酸乙酯反应生成。
介孔二氧化硅纳米粒载药性能的研究近年来,无机纳米粒因其结构稳定在药物传递方面的应用越来越受重视。
介孔二氧化硅纳米粒作为一种无机高分子材料,具有生物相容性好、比表面积大、孔径和孔容可以调节、孔道均匀、表面易于修饰等优点,在载药和药物控制释放领域有着很大的前景。
本文就目前介孔二氧化硅纳米粒的结构性质特点以及其在药物传递系统的应用作一综述。
标签:介孔二氧化硅纳米粒;载药近年来研究集中在在结构上形成稳定的药物传递系统,这种载体结构能够传递相对大量的药物到靶向组织甚至细胞内而没有提前释放。
结构稳定的药物传递材料中,由于二氧化硅是一种无毒,无味,无污染的无机非金属材料,具有生物相容性好、比表面积大、孔径和孔容可以调节、孔道均匀、表面易于修饰等优点,其在催化、分离、传感器、生物医药等方面具有广泛的应用前景,特别是在载药和药物控制释放领域,二氧化硅能够逐渐的释放像抗生素的药物。
因此合成可控的药物释放体系有着特殊的意义。
1 介孔纳米二氧化硅(MSN)的结构特点国际纯粹与应用化学联合会(lUPAC)规定,介孔材料是指孔径处于 2.0nm~50nm之间的一类多孔固体材料。
直径小于2nm和大于50nm的多孔材料分别称为微孔和大孔材料[1]。
近年来介孔材料在化学和材料科学领域备受瞩目,成为研究的热点领域。
介孔二氧化硅纳米粒(MSN)具有其他材料无可比拟的结构特点[2],粒径可50~300nm之间调节;粒子形状稳定且规整;孔径规整,孔结构独特,大小可调。
孔径分布窄,从2nm~6nm可调;粒子表面积及孔道容量大;具有内表面和外表面,可选择性地进行功能化,为粒子进行多功能化提供了便利,近年来,杂化介孔SiO2纳米制备技术已经实现了很高的发展程度,将介孔SiO2微球作为主体,利用其孔中或其孔表面的基团组装各种不同功能的纳米颗粒,制备复合纳米颗粒的研究也被广泛迅速地发展。
目前已有以介孔SiO2微球为,主体组装如Ag,Au,Pt、FeO等贵金属纳米粒子和制备各种不同类型的酶类物质等的研究。