数值计算方法黄云清答案
- 格式:docx
- 大小:10.60 KB
- 文档页数:5
习题九答案1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ,,343αβγ===的方向导数。
解:(1,1,2)(1,1,2)(1,1,2)cos cos cos u u u uy l x z αβγ∂∂∂∂=++∂∂∂∂22(1,1,2)(1,1,2)(1,1,2)πππcos cos cos 5.(2)()(3)343xy xz y yz z xy =++=---2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。
解:{4,3,12},13.AB AB ==AB 的方向余弦为4312cos ,cos ,cos 131313αβγ=== (5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)2105u yz x u xz y u xyz∂==∂∂==∂∂==∂ 故4312982105.13131313u l ∂=⨯+⨯+⨯=∂ 3. 求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点处沿曲线22221x y a b +=在这点的内法线方向的方向导数。
解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为2222220,x y b x y y a b a y''+==-所以在点处切线斜率为2.b y a a '==-法线斜率为cos a bϕ=.于是tan sin ϕϕ==∵2222,,z z x y x a y b∂∂=-=-∂∂∴2222z la b ⎛∂=--=∂⎝ 4.研究下列函数的极值: (1)z =x 3+y 3-3(x 2+y 2); (2)z =e 2x (x +y 2+2y ); (3)z =(6x -x 2)(4y -y 2); (4)z =(x 2+y 2)22()ex y -+;(5)z =xy (a -x -y ),a ≠0.解:(1)解方程组22360360x yz x x z y y ⎧=-=⎪⎨=-=⎪⎩ 得驻点为(0,0),(0,2),(2,0),(2,2).z xx =6x -6, z xy =0, z yy =6y -6在点(0,0)处,A =-6,B =0,C =-6,B 2-AC =-36<0,且A <0,所以函数有极大值z (0,0)=0. 在点(0,2)处,A =-6,B =0,C =6,B 2-AC =36>0,所以(0,2)点不是极值点. 在点(2,0)处,A =6,B =0,C =-6,B 2-AC =36>0,所以(2,0)点不是极值点.在点(2,2)处,A =6,B =0,C =6,B 2-AC =-36<0,且A >0,所以函数有极小值z (2,2)=-8.(2)解方程组222e (2241)02e (1)0x x xy z x y y z y ⎧=+++=⎪⎨=+=⎪⎩ 得驻点为1,12⎛⎫-⎪⎝⎭. 22224e (21)4e (1)2e x xx x xy xyy z x y y z y z =+++=+=在点1,12⎛⎫-⎪⎝⎭处,A =2e,B =0,C =2e,B 2-AC =-4e 2<0,又A >0,所以函数有极小值e 1,122z ⎛⎫=-- ⎪⎝⎭.(3) 解方程组22(62)(4)0(6)(42)0x y z x y y z x x y ⎧=--=⎪⎨=--=⎪⎩ 得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).Z xx =-2(4y -y 2), Z xy =4(3-x )(2-y ) Z yy =-2(6x -x 2)在点(3,2)处,A =-8,B =0,C =-18,B 2-AC =-8×18<0,且A <0,所以函数有极大值z (3,2)=36.在点(0,0)处,A =0,B =24,C =0,B 2-AC >0,所以(0,0)点不是极值点. 在点(0,4)处,A =0,B =-24,C =0,B 2-AC >0,所以(0,4)不是极值点.在点(6,0)处,A =0,B =-24,C =0,B 2-AC >0,所以(6,0)不是极值点. 在点(6,4)处,A =0,B =24,C =0,B 2-AC >0,所以(6,4)不是极值点.(4)解方程组2222()22()222e(1)02e(1)0x y x y x x y y x y -+-+⎧--=⎪⎨--=⎪⎩得驻点P 0(0,0),及P (x 0,y 0),其中x 02+y 02=1,在点P 0处有z =0,而当(x ,y )≠(0,0)时,恒有z >0, 故函数z 在点P 0处取得极小值z =0.再讨论函数z =u e -u由d e (1)d u z u u-=-,令d 0d zu =得u =1, 当u >1时,d 0d z u <;当u <1时,d 0d zu>,由此可知,在满足x 02+y 02=1的点(x 0,y 0)的邻域内,不论是x 2+y 2>1或x 2+y 2<1,均有2222()1()e e xy z x y -+-=+≤.故函数z 在点(x 0,y 0)取得极大值z =e -1(5)解方程组(2)0(2)0x yz y a x y z x a y x =--=⎧⎨=--=⎪⎩得驻点为 12(0,0),,33a a P P ⎛⎫⎪⎝⎭z xx =-2y , z xy =a -2x -2y , z yy =-2x .故z 的黑塞矩阵为 222222ya x y H a x y x ---⎡⎤=⎢⎥---⎣⎦于是 122033(),().0233aa a H P H P a aa ⎡⎤--⎢⎥⎡⎤==⎢⎥⎢⎥⎣⎦⎢⎥--⎢⎥⎣⎦ 易知H (P 1)不定,故P 1不是z 的极值点,H (P 2)当a <0时正定,故此时P 2是z 的极小值点,且3,2733aa a z ⎛⎫= ⎪⎝⎭,H (P 2)当a >0时负定,故此时P 2是z 的极大值点,且3,2733aa a z ⎛⎫= ⎪⎝⎭.5. 设2x 2+2y 2+z 2+8xz -z +8=0,确定函数z =z (x ,y ),研究其极值。
精心整理《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,式为。
答案:-1,)3)(1(2)3)(2(21)(2-----=x x x x x L 4、近似值5、设)(x f ();答案1n x =+6、对)(x f =]4,3,2,1(0);78n 次后的误差限为(12+-n ab ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。
14、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 代矩阵的谱半径)(M ρ=121。
15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l (1l )1(716)(2-+=x x x x N 。
16、(高斯型)求积公式为最高,具有(12+n )次代21]内的根精确到三位小数,需对分(10)次。
22、已知≤≤≤≤3110(x x S 是三次样条函数,则a =(3 ),b 23、(),(10l x l Lagrange 插值基函数,则∑==nk kx l)((1),=k 0(j),当时=++=)()3(204x l x xk k k k (324++x x )。
数值计算⽅法习题答案(第⼆版)(绪论)数值分析(p11页)4 试证:对任给初值x 0,0)a >的⽜顿迭代公式112(),0,1,2,......k a k k x x x k +=+= 恒成⽴下列关系式:2112(1)(,0,1,2,....(2)1,2,......k k k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k k x a x x x x +-??-=+==? ??(2)取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+-= +=+2121216 证明:若k x 有n 位有效数字,则n k x -?≤-110218,⽽()k k k k k x x x x x 288821821-=-???? ??+=-+ nn k k x x 2122110215.22104185.28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。
8 解:此题的相对误差限通常有两种解法.①根据本章中所给出的定理:(设x 的近似数*x 可表⽰为m n a a a x 10......021*?±=,如果*x 具有l 位有效数字,则其相对误差限为()11 **1021--?≤-l a x x x ,其中1a 为*x 中第⼀个⾮零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=??≤--x e x ②第⼆种⽅法直接根据相对误差限的定义式求解对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种⽅法均可得出相对误差限,但第⼀种是对于所有具有n 位有效数字的近似数都成⽴的正确结论,故他对误差限的估计偏⼤,但计算略简单些;⽽第⼆种⽅法给出较好的误差限估计,但计算稍复杂。
《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
一、 名词解释1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。
2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。
如果近似值*x 的误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。
3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。
4。
向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足 (1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。
5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似的方法。
6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值*x 的相对误差,记为*()r e x ,即**()()r e x e x x=7。
矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A .若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A ,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B称||||A 为矩阵A 的范数.8. 算子范数:设A 为n 阶方阵,||||•是n R 中的向量范数,则0||||||||||||maxx Ax A x ≠=是一种矩阵范数,称其为由向量范数||||•诱导出的矩阵范数,也称算子范数.9。
习题一1.设x >0相对误差为2%4x 的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得 (1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x x δδδ≈===4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈ 解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ= =0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121x y x x -=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A)y =,(B)y =(3)已知1x <<,(A )22sin x y x=,(B )1cos 2xy x -=;(4)(A)9y =(B)y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
故在设计算法时应尽量避免上述情况发生。
(1)(A )中两个相近数相减,而(B )中避免了这种情况。
故(B )算得准确些。
(2)(B )中两个相近数相减,而(A )中避免了这种情况。
故(A )算得准确些。
(3)(A )中2sin x 使得误差增大,而(B )中避免了这种情况发生。
故(B )算得准确些。
(4)(A )中两个相近数相减,而(B )中避免了这种情况。
1. 设⎰+=105dx x x I nn , (1) 由递推公式n I I n n 151+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823,程序为:I=0.182;for n=1:20I=(-5)*I+1/n;endI输出结果为:20I = -3.0666e+010(2) 粗糙估计20I ,用n I I n n 515111+-=--,计算0I ; 因为 0095.056 0079.010********≈<<≈⎰⎰dx x I dx x 所以取0087.0)0095.00079.0(2120=+=I 程序为:I=0.0087;for n=1:20I=(-1/5)*I+1/(5*n);endI0I = 0.0083(3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。
首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。
并记nn n I I E '-=,则有01)5(5E E E n n n -==-=- 。
因为=20E 20020)5(I E >>-,所此递推式不可靠。
而在第二种递推式中n n E E E )51(5110-==-= ,误差在缩小,所以此递推式是可靠的。
出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制,即算法是否数值稳定。
2. 求方程0210=-+x e x 的近似根,要求41105-+⨯<-k k x x ,并比较计算量。
(1) 在[0,1]上用二分法;程序:a=0;b=1.0;while abs(b-a)>5*1e-4if exp(c)+10*c-2>0b=c;else a=c;endendc结果:c =0.0903(2) 取初值00=x ,并用迭代1021x k e x -=+; 程序:x=0;a=1;while abs(x-a)>5*1e-4a=x;x=(2-exp(x))/10;endx结果:x =0.0905(3) 加速迭代的结果;程序:x=0;a=0;b=1;while abs(b-a)>5*1e-4a=x;y=exp(x)+10*x-2;z=exp(y)+10*y-2;x=x-(y-x)^2/(z-2*y+x);b=x;endx结果:x =0.0995(4) 取初值00=x ,并用牛顿迭代法;程序:x=0;a=0;b=1;while abs(b-a)>5*1e-4x=x-(exp(x)+10*x-2)/(exp(x)+10);b=x;endx结果:x =0.0905(5) 分析绝对误差。
习题一解答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,223.1428571430.3142857143107==⨯,m=1。
一、 名词解释1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。
2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。
如果近似值*x 的误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。
3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。
4. 向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足(1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。
5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似的方法。
6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值*x 的相对误差,记为*()r e x ,即**()()r e x e x x=7. 矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A 。
若||||A 满足(1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B 称||||A 为矩阵A 的范数。
C语言编程习题第二章习题2-25.用二分法编程求6x4 -40x2+9=0 的所有实根。
#include <stdio.h>#include <math.h>#define N 10000double A,B,C;double f(double x){return (A*x*x*x*x+B*x*x+C);}void BM(double a,double b,double eps1,double eps2){int k;double x,xe;double valuea = f(a);double valueb = f(b);if (valuea > 0 && valueb > 0 || valuea <0 && valueb < 0) return;printf("Finding root in the range: [%.3lf, %.3lf]\n", a, b);for(k=1;k<=N;k++) {x=(a+b)/2;xe=(b-a)/2;if(fabs(xe)<eps2 || fabs(f(x))<eps1) {printf("The x value is:%g\n",x);printf("f(x)=%g\n\n",f(x));return;}if(f(a)*f(x)<0) b=x;else a=x;}printf("No convergence!\n");}int main(){double a,b,eps1,eps2,step,start;printf("Please input A,B,C:\n");scanf("%lf %lf %lf",&A,&B,&C);printf("Please input a,b, step, eps1,eps2:\n");scanf("%lf %lf %lf %lf %lf",&a,&b,&step,&eps1,&eps2);for (start=a; (start+step) <= b; start += step) { double left = start;double right = start + step;BM(left, right, eps1, eps2);}return 0;}运行:Please input A,B,C:6 -40 9Please input a,b, step, eps1,eps2:-10 10 1 1e-5 1e-5Finding root in the range: [-3.000, -2.000]The x value is:-2.53643f(x)=-0.00124902Finding root in the range: [-1.000, 0.000]The x value is:-0.482857f(x)=0.00012967Finding root in the range: [0.000, 1.000]The x value is:0.482857f(x)=0.00012967Finding root in the range: [2.000, 3.000]The x value is:2.53643f(x)=-0.00124902有时若把判别语句if(fabs(xe)<eps2 || fabs(f(x))<eps1)改为if(fabs(xe)<eps2 && fabs(f(x))<eps1)会提高精度,对同一题运行结果:Finding root in the range: [-3.000, -2.000]The x value is:-2.53644f(x)=-4.26496e-007Finding root in the range: [-1.000, 0.000]The x value is:-0.482861f(x)=-7.3797e-006Finding root in the range: [0.000, 1.000]The x value is:0.482861f(x)=-7.3797e-006Finding root in the range: [2.000, 3.000]The x value is:2.53644f(x)=-4.26496e-007习题2-35. 请用埃特金方法编程求出x=tgx在4.5(弧度)附近的根。
引论试题(11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式112(),0,1,2,......k ak k x x x k +=+= 恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk k x k x x k x k +-=-=≥=证明:(1)(2211222k k k k k k k kx a x ax x x x x +-⎫⎛-+-=+==⎪ ⎝⎭(2) 取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若k x 有n 位有效数字,则n k x -⨯≤-110218, 而()kk k k k x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+ nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥ 1k x +∴必有2n 位有效数字。
8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为m n a a a x 10......021*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值计算方法(山东联盟)知到章节测试答案智慧树2023年最新中国石油大学(华东)第一章测试1.数值计算方法研究的误差有()参考答案:截断误差;;舍入误差.2.参考答案:只有模型误差、观测误差与舍入误差;3.参考答案:4位4.对于下列表达式,用浮点数运算,精度较高是参考答案:5.参考答案:第二章测试1.参考答案:0.56252.参考答案:;3.关于Steffensen(斯蒂芬森)迭代方法,下列命题中正确的是:参考答案:Steffensen迭代法使得某些发散的迭代格式变为收敛。
;Steffensen迭代法使得某些收敛的迭代格式加速收敛。
4.关于Newton迭代法,下列命题中正确的是:参考答案:;Newton迭代格式可能收敛也可能发散。
5.参考答案:6第三章测试1.算法的计算量与近似成正比。
2.列主元Gauss消去法与Gauss顺序消元法相比,优点是:参考答案:提高了稳定性,减少了误差的影响。
3.参考答案:平方根法与Gauss列主元消去法相比,提高了稳定性,但增加了计算量。
;只要是对称正定矩阵,就可用平方根法求解。
4.参考答案:;5.;第四章测试1.给定n+1个互异的插值节点,求插值多项式。
下列命题中正确的是:参考答案:若要求插值多项式的次数等于n,则用不同方法求出的插值多项式是相等的。
;若要求插值多项式的次数小于n,则插值多项式可能不唯一。
2.关于插值多项式对被插值函数的逼近效果,正确的命题是:参考答案:插值点靠近所有插值节点时,插值余项的绝对值较小。
3.关于差商,下列命题中正确的命题是:参考答案:;4.关于多项式插值的Runge现象,下列命题中正确的命题是:参考答案:采用分段低次多项式插值可以避免Runge现象。
;用三次样条函数插值可以避免Runge现象。
5.关于三次样条函数,下列命题中正确的命题是:参考答案:三次样条函数是连续函数。
;三次样条函数具有连续导数。
;三次样条函数具有连续的2阶导数。
第五章测试1.用正交多项式求一个函数的最佳平方逼近多项式的主要优点是节省计算量。
第一章 引论(习题)2. 证明 : 记 x x f =)( ,则)()(***x x x x x xx x f E r +-=-=)(21**x E x x x x x xr ≈-⋅+=.3. 证明: 令: )()()(b a fl b a fl b a **-*=δ可估计: 1|)(|-≥*c b a fl β (c 为b a *阶码), 故: 121||--≤c t c ββδt-=121β 于是: )1()()(δ+*=*b a b a fl .4. 解 (1) )21()1(22x x x ++. (2))11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-.6. 解 a 的相对误差:由于 31021|)(|-⋅≤-=a x x E . x a x x E r -=)(, 221018110921)(--⋅=⨯≤x E r . (1Th ) )(a f 对于)(x f 的误差和相对误差. |11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r .9. 解 递推关系: 1101.100-+-=n n n y y y (1) 取初值 10=y , 01.01=y 计算可得: 11001.10022-⨯=-y 10001.1-=410-= 6310-=y , 8410-=y , 10510-=y , …(2) 取初值 50101-+=y , 2110-=y , 记: n n n y y -=ε,序列 {}n ε ,满足递推关系,且 5010--=ε , 01=ε1101.100-+-=n n n εεε, 于是: 5210-=ε,531001.100-⨯=ε, 55241010)01.100(---⨯=ε,55351002.20010)01.100(--⨯-⨯=ε, 可见随着 n ε 的主项 5210)01.100(--⨯n 的增长,说明该递推关系式是不稳定的.第二章 多项式插值 (习 题)1. 方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅=)1)((31)2)()(1()1)(()(123210---=-----=x x x x x x x l , ))(1(2)1)()(1()(21221211--=--+=x x x x x x l , x x x x x x l )1()()1()1!()(2382121232--=-⋅⋅-+=, )()1(12)()1()(2121213-+=⋅⋅-+=x x x x x x x l . 可得: )21()(23-=x x x L方法二. 令:)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法)2. 证明(1) 由于 j i j i x l ,)(δ= 故: =)(x L n ∑=ni i k i x l x0)( ,当 j x x = 时 有: k j j n x x L =)( , n j ,,1,0 =)(x L n 也即为 kx 的插值多项式,由唯一性,有:∑==ni k i ki x x l x)( , n k ,,1,0 =证明(2):利用Newton 插值多项式)(],[)()(0100x x x x f x f x N n -+=)()(],,[100---++n n x x x x x x f )()()()()()(00101x l x x x x x x x x x f n n =----=差商表:f(x) 一阶 二阶 … n 阶差商0x 1 1x 0101x x -)()(11020x x x x --n x 0 0)()(1010n x x x x --代入)(*式有:)()()()()(1)(020*******n n n x x x x x x x x x x x x x x x N -----++--+=- . )(0x l 为n 次代数多项式,由插值多项式的唯一性:有 )()(0x N x l n ≡.4. 解 作)(x f 以b a a ,,ε+为节点的Lagrange 插值多项式,有: )()()(22x R x L x f +=, 其中:)()()()()()()()()()(2εεεεε+-+--+-----=a fb a b x a x a f b a b x a x x L)()()()()(b f a b a b a x a x εε------+,)()()(!3)()(2b x a x a x f x R ----'''=εζ , b a <<ζ 令: 0→ε 有 )()(6)()()(22b x a x f x R x R --'''=→ζ, 又:)()()()([)()(2a f a b ax a f a b a x x b x L εεεεε----+----= )]()()()()(a f a b a x a f a b a x -------+εεεε )()()()()(b f a b a b a x a x εε------+)()()2()(2a f ab a b x x b --+-→)()()()(a f a b a x x b '---+ )()()()(22x P b f a b a x =--+ 故当 0→ε 时,成立公式: )()()(x R x P x f +=.5. 解:因为34)(3'-=x x f ,2''12)(x x f =)(x f 为凹函数.又从数值表可见:当]5.0,1.0[∈x 时,)(x f 单调下降.有反函数)(1y fx -=)(y f的Newton 插值多项式:)17440.0)(10810.0)(40160.0)(70010.0(01225.0)10810.0)(40160.0)(70010.0(01531.0)40160.0)(70010.0(0096436.0)70010.0(33500.01.0)(4+---+------+--=y y y y y y y y y y y N.337.0)0(4*≈=N x7. 解 1)(37++=x x x f .有:=]2,,2,2[71f !7)()7(ξf =1, !8)(]2,,2,2[)8(810ηf f = 0=.9. 证明:(1) =⋅-⋅=⋅∆++i i i i i i g f g f g f 11)(i i i i i i i i g f g f g f g f ⋅-⋅+⋅-⋅++++1111i i i i f g g f ∆+∆=+1.(3) n x n n)1()1(-=∆!)()(nh x h x x h n ++此题可利用数学归纳法:设 k n = 成立,证明 1+=k n 成立.又 1=n 时是成立的.10. 证明: 记: 2]2/)1([)(+=n n n f ,33321)(n n g +++=有: 3)1()()1()(+=-+=∆n n f n f n f 故: ∑-=∆=10)()(n k k f n g ∑-=-+=1)]()1([n k k f k f2]2/)1([)0()(+=-=n n f n f .13. 解 作重节点差商的Newton 插值公式)1(]1,1[)1()(+--+-=x f f x P 22)1(]1,0,1,1[)1(]0,1,1[+--++--+x x f x f )1()1(]1,1,0,1,1[2-+--+x x x f 重节点差商表:i x i f 一阶 二阶 三阶 四阶10-=x 110-=x 1 201=x 1 0 -212=x 1 0 0 112=x 1 2 2 1 0得 22)1()1(2)1(21)(+++-++=x x x x x P 13+-=x x .17. 证: 取 ,00=x 211=x , 12=x , 21=h00=f , 11=f , 12=f 记: )(i i x s M ''= , 2,1,0=i有 hx x M h x x M x S 01101)(-+-=''x M x M 102)21(2+-= )21(2)1(2)(212-+-=''x M x M x S 又三弯矩方程为:( 2],,[210-=x x x f )244210-=++M M M , )24(41201M M M ++-=.分段积分:⎰⎰+''=''∆1021221)]([)]([dx x s dx x s ⎰''12221)]([dx x s ⎰+-+=21201)]21([4dx x M x M ⎰-+-121221)]21()1([4dx x M x M⎰⎰-+-+-+-=121121221201)]21()1([4)]1()21([4dxx M x M dx x M x M由于 ⎰=-1212241)21(dx x ,⎰=-1212241)1(dx x ,⎰=--121481)1()21(dx x x ,于是:⎰++++=''∆1022212110202]2[61))((M M M M M M M dx x S 又: )24(41201M M M ++-=记 =),(20M M I ⎰∆''12))((dx x S=)()24(41[6120202220M M M M M M +++-+ ])24(81220M M +++由00=∂∂M I, 02=∂∂M I . 得:⎩⎨⎧=+-=-07072020M M M M 即当: 020==M M 时, ),(20M M I 达最小故:⎰=⋅⋅≥''∆102212)24(8161))((dx x S ,由最小模原理: ⎰≥''1212)]([dx x f .20. 解 利用三弯矩方法 )(i i x s M ''= , 2,1,0=i 10=x , 22=x , 32=x⎪⎩⎪⎨⎧-=+=++=+542364622121010M M M M M M M解得: 70-=M , 201=M , 372-=M]2,1[∈x 72431729)(231-+-=x x x x s ]3,2[∈x 105229367219)(232+-+-=x x x x s .第三章 最佳逼近及其实现 (习 题)2. 解 (1) ⎰'⋅'=badx x g x f g f )()(),( 不是 ),(b a c '中的内积,事实上容易验证:),(),(f g g f = , ),(),(g f g f λλ= ),(),(),(w g w f w g f +=+但是 0),(=f f 当且仅当 0)(≡x f . 条件不满足,因为: ⎰='⋅'=badx x f x f f f 0)()(),(推出0)(≡'x f ,0)(≠=const x f . 因而 ),(g f 不是 ),(b a C '中的内积.(2) ),(g f 是 =],[10b a C {}],[)(,0)(:)(b a C x f a f x f '∈'=空间的内积,这是因为: 0),(=f f 推出 0)(='x f , C x f =)(,又],[10b a C f ∈ ,故 0)(=x f .4. 解:由于 0)(],,[2≠''∈x f b a c f ,则)(x f ''于],[b a 上保号,由定理5的推论2可知:)()(1x P x f -的交错点组恰有三个交错点,且 a x =1,b x =3,即: ⎪⎪⎩⎪⎪⎨⎧=-'='-=+-==+-==+-=0)()(,)()()(,)()()(,)()()(122210223103311011αρααρααρααx f x e x x f x e x x f x e x x f x e 故: a b a f b f x f --='=)()()(21α,2)()(2)()(220x a a b a f b f x f a f +⋅---+=α 记 c x =2 ,即证得(1).(2) 若 x x f cos )(= ,]2,0[],[π=b a此时由 ab a f b fc f --=')()()( 得:π2sin =c , )2sin(πarc c =,πα21-=πππα2)4(2120-+=2)/2sin(2ππarc ⋅+)4(212-+=πππππ)2sin(arc +. 误差估计:)()(10b f b f E -+=-=ααρ)4(212-+=πππ1)2sin(-+ππarc5. 解:选取α ,使得:=)(αI ||max 211x x x α-≤≤ ,达到极小,即要求 x x *)(*αϕ= ,于]1,0[上一致逼近于2x ,如图 应选 *α ,使得:x x x *)(2αϕ-=,于 ]1,0[ 上有两个轮流为正负偏差点,其中之一为1,另一个假设为 ζ 于是: )()1(ζϕα-=, 0)(='ζϕ , ( ζ为)(x ϕ的极值点) 得: αζζα+-=-2102=-αζ 解得:ζα2= ,0122=-+ζζ, 212,1±-=ζ取12-=ζ , 222-=α. 又: α 是唯一的.6. 证明:由最佳一致逼近的特征定理,)(*x P n 为)(x f 的最佳一致逼近多项式,则存在2+n 个点b x x x a n ≤<<<≤+110使得: )()()(*k n k k x P x f x e -==*)1(n kP f --σ.又由于 ],[)(b a C x f ∈ ,于 ),(1+i i x x 中有一个点 i η ,1+<<i i i x x η , 使得: 0)()()(*=-=i n i i P f e ηηη, n i ,,1,0 =即: )(*x P n 为)(x f 满足插值条件: )()(*i i n f P ηη= , n i ,,1,0 = 的插值多项式.7. 解:求C*,使得:C x f C I bx a R C -=≤≤∈)(max min *)(记 C x f x e -=)()(, 依最佳一致逼近的特征定理:应取 )](min )(max [21*],[],[x f x f C b a b a +=*)()(C x f x e -=于 ],[b a 才有两个轮流正负的偏差点,(即 )(x f 于],[b a 上的最大值点和最小值点)1x ,2x )(max )(],[1x f x f b a = , )(min )(],[2x f x f b a =此时: *)(m a x )1()(],[C x f x e b a ii --=σ即 *C 为)(x f 的零次最佳逼近多项式.8. 解: 436)(23+++=x x x x f 2)(34)3(62031T T T T +++=014T T ++01232112112323T T T T +++= 因为)(413x T 与零偏差最小,故: 012221121123)(T T T x P ++=421132++=x x . 为)(x f 的最佳一致逼近多项式.9. 证明:我们仅证明)(x f 是偶函数时,)(x P n 亦是偶函数.由于)(x P n 为)(x f的最佳一致逼近多项式,有:)()()(max ],[f E x P x f n n a a =--和: [,max ()()()]n n a af x P x E f ----=即: )()()(m a x ],[f E x P x f n n a a =---)(x P n -亦是)(x f 的最佳一致逼近多项式,由最佳一致逼近多项式的惟一性,有: )()(x P x P n n =-即: )(x P n 为偶函数.11. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。
《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
数值计算方法黄云清答案
【篇一:2011用书】
class=txt>说明:从2009年起,教育部提倡各招生单位不指定参考
书目。
我校部分学院不再提供相关考试科目的参考书目。
考生可根
据报考专业和考试科目自行选择相关参考书作为参考。
高等数学参考书目
011数学与统计学院参考书目
013
物理科学与技术学院参考书目
016信息科学与工程学院参考书目
020生命科学学院参考书目
021资源环境学院参考书目
022草地农业科技学院硕士研究生参考书目
【篇二:实用数值方法教学大纲】
t>大纲说明
课程代码:
总学时:32(讲课24学时,实验8学时)总学分:2学分课程类别:专业选修课适用专业:
预修要求:高等数学、线性代数、c语言
课程的性质、目的、任务:数值计算方法是一门与计算机使用密切
结合的实用性很强的数学课程,也是科学计算的基础。
通过本课程
的学习,要求学生了解数值计算的基本概念、基本方法及其原理,
培养应用计算机从事科学与工程计算的能力。
本课程主要介绍数值
计算的基本方法以及其在工程中的应用,以高等数学、线性代数、
高级语言程序设计为预修课,通过对数值分析内容的讲解,提高学
生用数学的思想去指导编程的能力。
教学基本方式:本课程以课堂讲授为主,辅以计算机编写数值计算
程序进行巩固。
大纲的使用说明:本校四年制本科工程类相关专业使用本大纲,讲
授内容可以根据学时做适当增删。
大纲正文
第一章数值计算引论算法的稳定性与收敛性。
重点:误差的基本概念。
难点:算法的稳定性与收敛性。
教学内容:
第一节:数值计算方法第二节:误差的来源第三节:近似数的误差表法第四节:数值运算误差分析第五节:数值稳定性和减小运算误差
学时:2学时(讲课2学时)
基本要求:了解数值计算方法的内容和意义,误差产生的原因和误差的传播,误差的基本概念,
第二章非线性方程的数值解法学时:6学时(讲课4学时,实验2学时)
基本要求:了解迭代法和弦截法的求解过程,掌握算法背后的理论思想,会用学习的方法求解非线性方程的根。
重点:求解非线性方程的牛顿迭代法及弦截法的计算过程。
难点:牛顿迭代法与弦割法的收敛性。
教学内容:
第一节:实始近似值的搜索第二节:迭代法第三节:牛顿迭代法第四节:弦截法第五节:多项式方程求根
第三章线性代数方程组的数值解法
学时:6学时(讲课4学时,实验2学时)
基本要求:学习求解线性代数方程组的直接法和迭代法,掌握几种常用的迭代法。
重点:高斯消去法的基本思想、三角分解法的实现过程、迭代法的基本原理。
难点:迭代法的收敛性。
教学内容:第一节:高斯消去法第二节:矩阵三角分解法第三节:平方根法第四节:向量和矩阵的范数第五节:方程组的性态和误差分析第六节:迭代法第七节:迭代法收敛性
第四章插值法
学时:4学时(讲课4学时)
基本要求:掌握多项式插值的基本概念及其计算方法,学会用样条差值解决实际问题。
重点:各种插值法的构造原理、分段插值法、样条插值。
难点:分段和三次样条插值。
教学内容:
第一节:拉格朗日插值第二节:逐次线性插值第三节:牛顿插值第四节:等距节点插值第五节:反插值第六节:埃尔米特插值第七节:分段插值法第八节:三次样条插值
第五章曲线拟合的最小二乘法二乘拟合。
重点:最小二乘法的构造原理、用正交多项式进行最小二乘拟合。
学时:2学时(讲课2学时)
基本要求:掌握最小二乘法的原理,会求超定方程组的最小二乘解
以及用正交多项式进行最小
难点:最小二乘法的误差估计。
教学内容:第一节:最小二乘法
第二节:正交多项式及其小二乘拟合
第六章数值积分和数值微分
学时:6学时(讲课4学时,实验2学时)
基本要求:掌握插值型求积公式及数值微分的基本思想、学会用不
同求积公式计算积分。
重点:牛顿-柯特斯公式、龙贝格积分法、高
斯型求积公式、数值微分计算公式。
难点:求积公式的收敛性与数
值稳定性、数值微分的截断误差。
教学内容:
第一节:数值积分概述第二节:牛顿-柯特斯公式第三节:复化求
积法
第四节:变步长求积和龙贝格算法第五节:高斯型求积公式第六节:数值微分
第七章常微分方程初值问题的数值解法
学时:6学时(讲课4学时,实验2学时)
基本要求:了解常微分方程初值问题数值解法的基本概念,掌握一
阶常微分方程初值问题的一些常用的数值计算方法,熟悉构造常微
分方程解法的计算公式的泰勒展开构造法的基本思想。
重点:欧拉法、龙格-库塔法。
难点:截断误差、收敛性与稳定性问题。
教学内容:第一节:欧拉
法第二节:龙格-库塔法第三节:线性多步法第四节:收敛性与稳
定性第五节:方程组与高阶微分方程
本课程对学生自学的要求:
本课程要求学生有相应的高等数学及线性代数的基础,因此学生课
前要认真预习相关的数学知识,记下疑点;课中积极参与,跟上进度;课后及时消化,独立完成作业。
同学们应自主归纳各章基本内容,做好小结工作。
考核方式与评分说明:
采取闭卷的方式与平时学习相结合,期末考试占总成绩的70%,平
时占30%(包括实验教学内容);试卷的形式主要有选择填空题、
简答题、计算题和分析题这几种形式。
推荐教材:
马东升、董宁编著,《数值计算方法第3版》,机械工业出版社,2015
参考书目:
撰写人:曹倩倩审定人:参与讨论人员:
《实用数值方法》实验教学大纲
课程代码:开课学期:开课专业:
总学时/实验学时:32/8 总学分/实验学分:2/0.5 综合实验室(实验
中心)名称:二级实验室名称:
一、课程简介
本课程主要介绍常用的数值计算方法,阐明了数值计算方法的基本
理论和实现,讨论了一些数值计算方法的收敛性和稳定性,以及数
值计算方法在计算机上实现时的一些问题。
内容包括数值计算引论,非线性方程的数值解法,线性代数方程组的数值解法,插值法,曲
线拟合的最小二乘法,数值积分和数值微分,常微分方程初值问题
的数值解法。
二、实验的地位、作用和目的
数值计算方法是以介绍计算机上常用算法及其基本理论为宗旨的课程,已成为工科学生知识结构中重要的一环;在理论知识具备的情
况下需要通过计算机编程来进行巩固;它可以培养学生独立思考和
算法设计的能力;培养学生理论联系实际的作风、严谨的科学态度
与解决实际问题的能力。
三、实验方式与基本要求
实验方式:上机编写数值计算程序。
基本要求:通过上机,初步掌握编写数值计算程序的基本步骤并能
对算法进行简单的误
差分析。
要求学生实验前认真预习,积极思考,实验后认真总结提高,并按要求上交实验结果及相关材料。
四、报告与考核
五、设备及器材材料配置
六、实验指导书及主要参考书 1.《实用数值方法实验指导书》
2.《数值计算方法第3版》,马东升、董宁编著 3.《数值分析--
使用c语言第4版》,简聪海编著
设备:计算机及相关软件。
每次实验完成后提交一份实验报告,根据计算程序的准确性、效率
高低以及实验报告的书写是否真实可靠进行考核。
【篇三:11262f26f85b4de1】
class=txt>说明:从2009年起,教育部提倡各招生单位不指定参考书目。
我校部分学院不再提供相关考试科目的参考书目。
考生可根据报考专业和考试科目自行选择相关参考书作为参考。
高等数学参考书目
011数学与统计学院参考书目
016信息科学与工程学院参考书目
020生命科学学院参考书目
021资源环境学院参考书目
022草地农业科技学院硕士研究生参考书目
023西部环境与气候变化研究院
024地质科学与矿产资源学院参考书目。