第4节(达朗贝尔公式-定解问题).
- 格式:ppt
- 大小:665.50 KB
- 文档页数:21
北京邮电大学2017-2018学年第一学期《数学物理方法》期末试题(A )注:本试卷有 六 道大题。
答题时,写清题号,不必抄题。
所有答案写在答题纸上,否则不计成绩。
一、解答下列各题(每题6分,共30分)1、长度为l 的均匀细杆,一端温度保持为1T ,另一端绝热,初始温度分布为()T x ,试写出杆上温度分布(),u x t 所满足的定解问题。
2、一根长度为l 的均匀细弦,两端固定,弦的初始位移为()(),0,h x x c c x h l x c x l l cϕ⎧≤≤⎪⎪=⎨-⎪<≤⎪-⎩,初始速度是0,试写出弦的位移函数(),u x t 所满足的定解问题。
3、求下列本征值问题的本征值和本征函数()()()()0,00,0.X x X x X X l λ''+=⎧⎪⎨'==⎪⎩4、用达朗贝尔公式求解下列定解问题()()()20,0,,0sin ,,0.tt xx t u a u x t u x x u x x ⎧-=-∞<<∞>⎪⎨==⎪⎩ 5、计算112018201811()?,()()?n xP x dx P x P x dx --==⎰⎰二、试证明微分方程()()()()()22200,1,2,R R m R m ρρρρλρρ'''++-==通过变换x =可以化成标准Bessel 方程()()()()2220x R x xR x x m R x '''++-=。
(8分)三、将Legendre 方程()2(1)210x y xy l l y '''--++=化成Sturm-Liouville 形式,并写成其核函数和权函数。
(8分) 四、 求解下列定解问题()()()222000,0,|0,|00,|0.x x x x l t u u a x l t t x u u t u x x l ===⎧∂∂=<<>⎪∂∂⎪⎪==>⎨⎪=<<⎪⎪⎩ (20分)五、半径为a 高为h 的圆柱体,上底的电势分布为常数A ,下底和侧面的电势保持为零,求柱体内的电势分布。
山东教育学院物理科学与技术系《数学物理方法》教学大纲一、课程概述1、《数学物理方法》是物理学专业本科的一门重要的基础课,它是前导课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》以及《电子技术》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理学专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
在物理学专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。
2、本课程的主要内容包括复变函数、傅立叶变换、数学物理方程、特殊函数等。
理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。
可以在后续的选修课中加以介绍。
3、本课程的内容为数学课程,注重逻辑推理和具有一定的系统性和严谨性。
但是,它与其它的数学课有所不同。
本课程内容有深广的物理背景,实用性强。
因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。
学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。
4、本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。
教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。
二、目的要求1、为了使学生能学好物理学专业的理论物理课程, 胜任中学物理教学及适应社会主义现代化建设的需要, 在本门课程中系统讲授复变函数和数学物理方程的基本理论和基本方法,并介绍数学物理中常用的几种特殊函数。
要求学生对规定的内容有一个总体了解。
掌握其中的基本概念,熟悉一些重要的理论及公式,并使所学到的知识在头脑中形成合理的结构。
2、大纲贯彻少而精的原则,着重让学生掌握最基本的理论知识和计算方法.在讲授过程中紧密联系物理实际, 但也注意保证数学概念的严格性和理论的系统性。
第一章 复变函数1.1 复数与复数运算【1】下列式子在复数平面上各具有怎样的意义? 5,arg ,Re ,z a z b αβ<<<<(,,a αβ和b 为实常数)解:射线ϕα=与ϕβ=,直线x a =与x b =所围成的梯形。
7,111z z -≤+ 解:11111z z z z -≤⇒-≤++,令z x iy =+,则11z z -≤+即 ()()2222110x y x y x -+≤++⇒≥。
即复数平面的右半平面0x ≥。
【2】将下列复数用代数式,三角式和指数式几种形式表示出来。
3, 1+解:代数式即:1z =+2ρ=,且z 的辐角主值arg 3z π=,因此三角式:2cos2sin33z i ππ=+;指数式:232i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈。
7,1i1i-+ 解:21i (1i)2i i 1i (1i)(1i)2---===-++-,因此,其代数式:i z =-,三角式:33cos sin 22z i ππ=+;指数式:322i k i z e e ππϕρ⎛⎫+ ⎪⎝⎭==,k ∈。
【3】计算下列数值。
(a ,b 和ϕ为实常数)2解:将被开方的i 用指数式表示:22e i k i ππ⎛⎫+ ⎪⎝⎭=,k ∈。
2322eexp 63i k k i ππππ⎛⎫+ ⎪⎝⎭⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎭⎣⎦,k ∈。
7,cos cos 2cos 3cos n ϕϕϕϕ++++解:因为,cos Re (1)ik k e k n ϕϕ=≤≤,因此()[]2323cos cos 2cos 3cos Re Re Re Re (1)Re Re 1cos cos(1)sin sin(1)Re 1cos sin 222sin sin cos 222Re 2sin sin 2i i i in i in i i i in i n e e e e e e e e e e e n i n i n n n i ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++=++++⎡⎤-=++++=⎢⎥-⎣⎦⎧⎫-++-+⎪⎪=⎨⎬--⎪⎪⎩⎭++⎛⎫- ⎪⎝⎭=222(1)2sin 2Re sin cos 2221(1)sin sin sin sin cos 22222Re sinsin2sin222n i i n i n e i e n n n n e ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++⎡⎤⎢⎥⎢⎥=⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦⎛⎫++- ⎪⎝⎭===1.2 复变函数【2】计算下列数值。