初三反比例函数知识点
- 格式:doc
- 大小:13.88 KB
- 文档页数:5
反比例函数一、基础知识1.定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
x ky =还可以写成kxy =1-,xy=k(k 为常数,o k ≠)2.反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
3.反比例函数的图像即是中心对称图形(对称中心是原点),也是轴对称图形(对称轴是x y =或x y -=)。
4.反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
5.反比例函数性质如下表:6. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k ) 7.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系。
8. 反比例函数的应用反比例函数常考题型一、反比例函数的概念例1下面函数中,哪些是反比例函数? (1)3x y -=(2)x y 8-=(3)54-=x y (4)15-=x y (5).81=xy (6) (7)(8)xy =21 (9)(10)(11) (12)y =x +4 (13) 5x y =x y 2-=25+=x y x y 23-=31+=xy 21y x =变式1:若y 与-2x 成反比例函数关系,x 与成正比例,则y 与z 的关系 ( ) A .成正比例函数 B .成反比例函数 C .成一次函数 D .不能确定 变式2:若梯形的下底长为,上底长为下底长的,高为,面积为60,则与的函数关系是____________.变式3:当m 取什么值时,函数是反比例函数?变式4: 函数y= 3x 的自变量x 的取值范围是___________;当x <0时,y 随x 的增大而().二、反比例函数的图像与性质例1:如图所示正比例函数0(>=k kx y )与反比例函数xy 1=的图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若ABC ∆的面积为S ,则()A .1=SB .2=SC .3=SD .S 的值不确定变式1:反比例函数xky =的图像上有一点),(n m P ,其坐标是关于t 的一元二次方程032=+-k t t 的两根,且P 到原点的距离为13,则该反比例函数的解析式为______.变式2:如图,A 、C 是函数xy 1=的图象上的任意两点,过A 作x 轴的垂线,垂足为B ;过C 作y 轴的垂线,垂足为D.记AOB Rt ∆的面积为1S ,COD Rt ∆的面积为2S ,则1S 与2S 的关系是( ). (A )1S >2S (B)1S <2S (C )1S =2S (D )1S 与2S 的大小关系不能确定.(武汉市中考题)变式3:(1)一次函数1+-=x y 与反比例函数xy 3=在同一坐标系中的图像大致是如图中的( )3zx 13y y x 23)2(m xm y --=(2)一次函数12--=k kx y 与反比例函数xky =在同一直角坐标系内的图像的大致位置是图中的( )三、反比例函数应用例1、某地上年度电价为0.8元,年用电量为1亿度。
初三数学反比例函数知识点归纳
反比例函数是指函数的变量之间的关系满足倒数的关系。
1. 反比例函数的定义:如果函数y=k/x,其中k是一个非零常数,x≠0,则y与x的关系是反比例关系,称为反比例函数。
2. 反比例函数的图像:反比例函数的图像呈现出一种特殊的形状,即一个双曲线。
曲线在第一象限和第三象限分别向无穷大和无穷小逼近,且过原点。
3. 反比例函数的性质:
- 当x逐渐增大(或减小)时,y逐渐减小(或增大)。
- 当x=0时,函数无定义。
- 当y=k/x中的k为正数时,函数在第一象限、第三象限为正值;当k为负数时,函数在第二象限、第四象限为负值。
- 反比例函数的图像关于y轴和x轴对称。
4. 反比例函数的图像特征:
- 具有一个渐进线,即曲线在接近y轴和x轴时,趋于无穷大或无穷小。
- 曲线在x轴和y轴上有渐进截距。
- 曲线在y轴上有一个渐近良好的对称轴。
5. 反比例函数的应用:
- 反比例函数常用于描述两个变量的关系,如速度与时间、产量与工人、密度与体积等。
- 反比例函数也可以用来解决实际问题中的问题,如求出满足特定条件的变量值。
总结起来,反比例函数是数学中一种特殊的函数形式,其定义和性质都与倒数有关,反比例函数的图像呈现出一种特殊的形
状,具有特定的渐进线和渐近截距,常用于描述两个变量的关系和解决实际问题。
初三反比例函数知识点反比例函数是数学中的一种特殊函数,也称为倒数函数。
初三学习反比例函数是为了帮助学生更好地理解函数关系及其图像,在解决实际问题中的应用也非常广泛。
本文将从反比例函数的定义、性质、图像及实际应用等方面进行详细介绍。
一、反比例函数的定义和性质反比例函数是指一个函数与其自变量的乘积为常数的函数。
通常用符号y=k/x表示,其中k为常数。
1. 定义:反比例函数可以定义为y=k/x,其中k为常数,x≠0。
2. 性质:反比例函数的一个重要性质是其定义域和值域都不包括0。
因为当x=0时,函数值无意义,除数不能为0。
此外,反比例函数的图像一般是一个双曲线,具有一个垂直渐近线x=0和一个水平渐近线y=0。
二、反比例函数的图像反比例函数的图像是一个双曲线,在以原点为中心的坐标平面上对称分布。
其图像的特点如下:1. x轴和y轴:反比例函数的图像与x轴和y轴有关,当x趋近于无穷大或无穷小,y趋近于0;当y趋近于无穷大或无穷小,x趋近于0。
2. 渐近线:反比例函数有两条渐近线,水平渐近线和垂直渐近线。
水平渐近线表示y=0,x轴就是一个水平渐近线;垂直渐近线表示x=0,y轴就是一个垂直渐近线。
3. 对称性:反比例函数图像具有关于原点的对称性,即当(x, y)在图像上时,则(-x, -y)也在图像上。
三、反比例函数的实际应用反比例函数在实际生活中具有广泛的应用,特别是与数量关系有关的问题中常会涉及到反比例函数的应用。
1. 比例尺:反比例函数可以用来解决比例尺相关的问题。
比如,当地图缩小为原来的1/1000时,比例尺变为原来的1000倍。
2. 工作时间与工作效率:工作时间和工作效率之间通常存在反比例关系。
如果一项工作需要的时间越长,那么单位时间内的工作效率就会越低。
比如,甲乙两个人共同完成一项任务,甲需要10小时完成,乙需要5小时完成,乙的工作效率就是甲的两倍。
3. 电阻和电流关系:在电路中,电阻和电流之间往往存在反比例关系。
初中数学知识归纳反比例函数反比例函数是初中数学中的重要内容,它指的是两个变量之间存在着反比关系的函数。
在学习反比例函数时,我们需要了解其定义、性质以及常见的应用。
本文将对初中数学中关于反比例函数的知识进行归纳总结,以帮助同学们更好地理解和掌握这一内容。
一、反比例函数的定义反比例函数又称为倒数函数,它的定义可以表示为:若两个变量x 和y满足x×y=k(k≠0),则称y是x的反比例函数。
根据反比例函数的定义可以看出,变量x和y之间的乘积是一个常数k。
当x增大时,y就会减小,反之亦然。
这种函数关系在数学中非常常见,例如时间与速度之间的关系、商品价格与需求量之间的关系等。
二、反比例函数的性质反比例函数具有一些特殊的性质,下面我们来一一介绍。
1. 定义域和值域:反比例函数的定义域为除去0以外的所有实数,即x≠0。
对于y=f(x)=k/x,其值域为除去0以外的所有实数,即y≠0。
2. 图像特点:通过观察反比例函数的图像,我们可以发现它具有以下特点:- 当x趋近于正无穷大或负无穷大时,函数值趋近于0。
- 函数的图像关于y轴对称。
3. 零点:反比例函数的零点即为使得函数值为0的解。
由于反比例函数除去x=0时,函数值始终不为零,所以它没有零点。
4. 单调性:反比例函数的单调性与x的取值有关。
当x>0时,函数单调递减;当x<0时,函数单调递增。
三、反比例函数的应用反比例函数在实际生活中具有广泛的应用,下面我们来介绍几个常见的应用。
1. 速度与时间的关系:当物体匀速运动时,速度和时间之间存在反比关系。
设物体的速度为v,时间为t,则速度和时间的关系可以表示为v×t=k(k为常数)。
这也是为什么我们常说“速度与时间成反比”。
2. 距离与时间的关系:在匀速直线运动中,距离和时间之间也存在反比关系。
设物体在t 时间内的位移为s,则位移和时间的关系可以表示为s×t=k(k为常数)。
3. 分数的倒数:在数学中,分数的倒数即为倒数。
九年级反比例函数经典复习资料知识梳理知识点1.反比例函数的概念一般地,如果两个变量X、y之间的关系可以表示成“上或y二k* (k为常X 数,kHO)的形式,那么称y是x的反比例函数。
反比例函数的概念需注意以下儿点:(1)k是常数,且k不为零;(2)£中分母x的指数为1,如y = 4不是反x •比例函数。
(3)自变量x的取值范围是XH O—切实数.(4)自变量y的取值范围是y = 0一切实数。
知识点2.反比例函数的图象及性质反比例函数y =上的图象是双曲线,它有两个分支,这两个分支分别位于第一、X三象限或第二、■四象限。
它们关于原点对称、反比例函数的图象与X轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范圉是XH O,因此不能把两个分支连接起来。
(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。
反比例函数的性质y = -(k^O)的变形形式为xy=k (常数)所以:X(1)其图象的位置是:当k>0时,x、y同号,图象在第一、三象限;当kvO时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y =上的图象上,则点(-m,-n)也在此图象上,X故反比例函数的图象关于原点对称。
(3)当k>0时,在每个象限内,y随x的增大而减小;当kvO时,在每个象限内,y随x的增大而增大;知识点3.反比例函数解析式的确定。
重点:掌握反比例函数解析式的确定难点:山条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式y =-中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只X 需给出一组X、y的对应值或图象上点的坐标,代入y =上中即可求出k的值,从而确定反比例函数的关系式。
初三反比例函数知识点初三数学中,反比例函数是一个非常重要的知识点。
它是函数的一种特殊形式,与正比例函数相对应。
反比例函数在数学和实际生活中都有着重要的应用。
本文将详细介绍反比例函数的定义、性质、图像和应用。
1. 反比例函数的定义反比例函数是指形如f(x) = k/x的函数,其中k是常数,x不等于0。
在反比例函数中,当x增大时,f(x)的值减小;当x减小时,f(x)的值增大。
可以看出,反比例函数是一个曲线,它的图像可以用一个双曲线表示。
2. 反比例函数的性质反比例函数有一些重要的性质值得我们关注。
2.1. 定义域和值域:反比例函数的定义域是除了0的所有实数,值域是除了0的所有实数。
2.2. 对称轴:反比例函数的对称轴是y轴。
2.3. 渐近线:反比例函数有两条渐近线,即x轴和y轴。
2.4. 单调性:反比例函数在定义域上是单调递减的。
2.5. 零点:当输入变量x等于0时,反比例函数的值为无穷大。
3. 反比例函数的图像反比例函数的图像是一个双曲线。
双曲线有两个分支,分别趋近于渐近线,与坐标轴的相交点是它的零点。
当x趋近于正无穷大或负无穷大时,函数值趋近于0。
4. 反比例函数的应用反比例函数在实际生活中有很多重要的应用。
4.1. 比例定理:反比例函数可以用来描述许多与比例有关的问题。
比如,在购买商品时,如果商品的价格和数量成反比,那么我们可以使用反比例函数来计算购买不同数量商品时的总花费。
4.2. 速度和时间的关系:在汽车行驶过程中,速度和时间成反比例关系。
当速度增大时,时间减小;当速度减小时,时间增大。
反比例函数可以帮助我们计算汽车行驶的时间。
4.3. 电路中的电阻和电流关系:在电路中,电阻和电流成反比例关系。
当电阻增大时,电流减小;当电阻减小时,电流增大。
反比例函数可以帮助我们计算电路中的电流。
4.4. 功率和电压关系:在电路中,功率和电压成反比例关系。
当电压增大时,功率减小;当电压减小时,功率增大。
反比例函数一、基础知识1.定义:一般地,形如(为常数,)的函数称为反比例函数。
还可以写成xk y =k o k ≠x ky =kxy =1-2.反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分y k k 母中含有自变量,且指数为1.x ⑵比例系数0≠k ⑶自变量的取值为一切非零实数。
x ⑷函数的取值是一切非零实数。
y 3.反比例函数的图像⑴图像的画法:描点法①列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所xky =k 0≠k 0≠x 0≠y 以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是或)。
x y =x y -=⑷反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引x k y =0≠k k xky =0≠k 轴轴的垂线,所得矩形面积为。
x y k 4.反比例函数性质如下表:的取值k 图像所在象限函数的增减性ok >一、三象限在每个象限内,值随的增大而减小y xo k <二、四象限在每个象限内,值随的增大而增大y x 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)k 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
xky =7. 反比例函数的应用题型总结:一.反比例函数的图象与性质【例1】对与反比例函数,下列说法不正确的是( )xy 2=A .点()在它的图像上 1,2--B .它的图像在第一、三象限C .当时,0>x 的增大而增大随x yD .当时,0<x 的增大而减小随x y 【例2】已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过( ()0ky k x=≠)A 、(2,1)B 、(2,-1)C 、(2,4)D 、(-1,-2)【例3】在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系x k y 1=xk y 2=1k 2k 一定是( )A. +=0B. ·<0C. ·>0D.=1k 2k 1k 2k 1k 2k 1k 2k 【例4 】已知,且反比例函数的图象在每个象限内,随的增大而增大,如果点3=b xby +=1y x 在双曲线上,求a 是多少?()3,a xb y +=1【例5】两个反比例函数y=k x 和y=1x 在第一象限内的图像如图3所示, 点P 在y=kx的图像上,PC⊥x 轴于点C ,交y=1x 的图像于点A ,PD⊥y 轴于点D ,交y=1x的图像于点B , 当点P 在y=kx的图像上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上, 少填或错填不给分).二.反比例函数的判定l t y ABC【例1】若与成反比例,与成正比例,则是的( )y x x z y z A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定【例2】如果矩形的面积为6cm 2,那么它的长cm 与宽cm 之间的函数图象大致为( )y x 三.反比例函数的解析式特征(的指数,值与图像分布关系):x k 【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?222-+=k k kxy 【例2】如果函数22(1)my m x -=-为反比例函数,则m 的值是 ( )A 、1-B 、0C 、21 D 、1四.比较反比例函数图象上点的横纵坐标大小关系:【例1】在反比例函数的图像上有三点,,,,,。
九年级数学反比例函数知识点数学属于形式科学,而不是自然科学。
不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
下面是整理的九年级数学反比例函数知识点,仅供参考希望能够帮助到大家。
九年级数学反比例函数知识点(1)反比例函数:如果(k是常数,k≠0),那么y叫做x的反比例函数。
(2)反比例函数的图象:反比例函数的图象是双曲线。
(3)反比例函数的性质①当k0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小。
②当k0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大。
③反比例函数图象关于直线y=±x对称,关于原点对称。
(4)k的两种求法①若点(x0,y0)在双曲线上,则k=x0y0。
②k的几何意义:若双曲线上任一点A(x,y),AB⊥x轴于B,则S⊥AOB。
(5)正比例函数和反比例函数的交点问题若正比例函数y=k1x(k1≠0),反比例函数,则当k1k20时,两函数图象无交点;当k1k20时,两函数图象有两个交点,由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称。
初中数学有理数知识点1、正整数、负整数和零统称整数;正分数和负分数统称分数;整数和分数统称有理数。
2、规定了原点、正方向和单位长度的直线叫做数轴。
在数轴上的数,左边的比右边的大,从左到右分别为负数、零、正数。
3、正负号不同,值相同的数叫相反数,零的相反数是零。
4、数轴上表示的数a到原点的距离叫做数a的绝对值,记作|a|。
正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值零。
5、两个负数比较,绝对值大的反而小。
6、有理数加减法法则:①同号两数相加,取相同符号,绝对值相加。
②绝对值不同的异号两数相加,取绝对值大的数的符号,并用较大数绝对值减去较小数绝对值。
③互为相反数的两个数相加得零。
④一个数与零相加,仍得这个数。
7、有理数加法运算律:①交换律:a+b=b+a②结合律:(a+b)+c=a+(b+c)8、有理数减法法则:减去一个数等于加上这个数的相反数。
初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。
2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。
3. 对称性:反比例函数的图象关于原点对称。
三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。
2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。
3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。
四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。
五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。
2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。
六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。
2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。
七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。
八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。
2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。
九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。
初三反比例函数知识点
初三反比例函数知识点一
一、反比例函数的表达式
X是自变量,Y是X的函数
y=k/x=k1/x
xy=k
y=kx^(-1)(即:y等于x的负一次方,此处X必须为一次方)
y=k\x(k为常数且k0,x0)若y=k/nx此时比例系数为:k/n
二、函数式中自变量取值的范围
①k0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数
y=k/x=k1/x
xy=k
y=kx^(-1)
y=k\x(k为常数(k0),x不等于0)
三、反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),
反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K0)。
四、反比例函数中k的几何意义是什么?有哪些应用?
过反比例函数y=k/x(k0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PMPN=|y||x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
五、反比例函数性质有哪些?
1.当k0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。
定义域为x0;值域为y0。
3.因为在y=k/x(k0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么AB两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4km(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.
10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|
11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。
12.|k|越大,反比例函数的图象离坐标轴的距离越远。
13.反比例函数图象是中心对称图形,对称中心是原点
初三反比例函数知识点二
反比例函数的概念
一般地,如果两个变量x、y之间的关系可以表示成y=k/x或y=kx-1(k为常数,k0)的形式,那么称y是x的反比例函数。
反比例函数的概念需注意以下几点:
(1)k是常数,且k不为零;
(2)k/x中分母x的指数为1,如y=kx-2不是反比例函数。
(3)自变量x的取值范围是x0一切实数.
(4)自变量y的取值范围是y0一切实数。
初三反比例函数知识点三
形如函数y=k/x(k为常数且k0)叫做反比例函数,其中k叫做比例系数,x 是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数表达式
x是自变量,y是x的函数
y=k/x=k1/x
xy=k
y=kx^(-1) (即:y等于x的负一次方,此处x必须为一次方)
y=k/x(k为常数且k0,x0)
若y=k/nx此时比例系数为:k/n
自变量的取值范围①在一般的情况下 , 自变量 x 的取值范围可以是不等于0的任意实数;②函数 y 的取值范围也是任意非零实数。
解析式y=k/x 其中x是自变量,y是x的函数,其定义域是不等于0的一切实数,即 {x|x0,xR}。
下面是一些常见的形式:
y=k/x=k1/x
xy=k
y=kx^(-1)
y=k\x(k为常数(k0),x不等于0)
反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),
知识拓展:反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y0)。