统计学第七章、第八章课后题答案
- 格式:doc
- 大小:308.00 KB
- 文档页数:22
统计学(第五版)课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss-ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学第五版课后练答案(7-8章)(总11页)-本页仅作为预览文档封面,使用时请删除本页-第七章 参数估计(1)x σ==(2)2x z α∆= 1.96=某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x σ==(2)在95%的置信水平下,求估计误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=×=(3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:22x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(,)22x z x z αα⎛-+ ⎝=104560±=(,) 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭或2,s x N n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝= (1)构建μ的90%的置信区间。
2z α=0.05z =,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(,)(2)构建μ的95%的置信区间。
2z α=0.025z =,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(,) (3)构建μ的99%的置信区间。
2z α=0.005z =,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(,)(1)2x z α±=25 1.96±=(,) (2)2x z α±=119.6 2.326±=(,)(3)2x z α±=3.419 1.645±=(,)(1)2x z α±=8900 1.96±=(,)(2)2x z α±=8900 1.96±=(,)(3)2x z α±=8900 1.645±=(,) (4)2x z α±=8900 2.58±=(,)某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36解:(1)样本均值x =,样本标准差s=1α-=,t=2z α=0.05z =,2x z α±=3.32 1.645±=(,)1α-=,t=2z α=0.025z =,2x zα±3.32 1.96±=(,)1α-=,t=2z α=0.005z =,2x z α±3.32 2.76±(,)x t α±=10 2.365±某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是: 10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
目录第一章P10 (1)第二章P34 (2)第三章P66 (3)第四章P94 (8)第七章P176 (11)第八章P212 (15)第10 章P258 (17)第11 章P291 (21)第13 章P348 (26)第14 章P376 (30)第一章P10一、思考题1.1什么是统计学?1.2解释描述统计和推断统计。
1.3统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.4解释分类数据、顺序数据和数值型数据的含义。
1.5举例说明总体、样本、参数、统计量、变量这几个概念。
1.6变量可分为哪几类?1.7举例说明离散型变量和连续型变量。
1.8请举出统计应用的几个例子。
1.9请举出应用统计的几个领域。
1.1 指出下面变量的类型:(1)年龄(2)性别(3)汽车产量(4)员工对企业某项改革措施的态度(赞成、中立、反对)(5)购买商品时的支付方式(现金、信用卡、支票)(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2 某研究部门准备抽取 2000 个职工家庭推断该城市所有职工家庭的年人均收入。
要求:(1)描述总体和样本。
(2)指出参数和统计量。
(1)总体是该市所有职工家庭的集合;样本是抽中的 2000 个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的 2000 个职工家庭的年人均收入。
1.3 一家研究机构从 IT 从业者中随机抽取 1000 人作为样本进行调查,其中 60%的人回答他们的月收入在5000 元以上,50%的人回答他们的消费支付方式是用信用卡。
回答下列问题:(1)这一研究的总体是什么?(2)月收入是分类变量、顺序变量还是数值型变量?(3)消费支付方式是分类变量、顺序变量还是数值型变量?(4)这一研究涉及截面数据还是时间序列数据?(1)总体是所有 IT 从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4 一项调查表明,消费者每月在网上购物的平均花费是 200 元,他们选择在网上购物的主要原因是“价格便宜”。
第二章、练习题及解答2.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688 要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图。
灯泡的使用寿命频数分布表3.某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 97 88 123 115 119 138 112 146 113 126 要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。
(2)制作茎叶图,并与直方图进行比较。
解:(1)频数分布表(2)茎叶图第三章、练习题及解答1. 已知下表资料:试根据频数和频率资料,分别计算工人平均日产量。
解:根据频数计算工人平均日产量:687034.35200xf x f===∑∑(件) 根据频率计算工人平均日产量:34.35fx xf==∑∑(件)结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。
统计学第七章、第八章课后题答案统计学复习笔记第七章参数估计一、思考题1.解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4.解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量( 是随机的) 覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有 95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以 0.95 的概率覆盖总体参数。
5.简述样本量与置信水平、总体方差、估计误差的关系。
1.估计总体均值时样本量 n 为( z222) 22E z 2n22其中:E 2n2.样本量 n 与置信水平 1- α、总体方差、估计误差 E 之间的关系为与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;与总体方差成正比,总体的差异越大,所要求的样本量也越大;与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
第七章 参数估计(1)x σ==(2)2x z α∆==1.96=某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x σ=== (2)在95%的置信水平下,求估计误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=z α 因此,x x t σ∆=⋅x z ασ=⋅0.025x z σ=⋅=×=(3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(,)2x z x z αα⎛-+ ⎝=104560±(,) 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭:或2,s x N n μ⎛⎫⎪⎝⎭:置信区间为:22x z x z αα⎛-+ ⎝, (1)构建μ的90%的置信区间。
2z α=0.05z =,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(,) (2)构建μ的95%的置信区间。
2z α=0.025z =,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(,) (3)构建μ的99%的置信区间。
2z α=0.005z =,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(,)(1)2x z α±=25 1.96±(,) (2)2x z α±=119.6 2.326±=(,) (3)2x z α±=3.419 1.645±(,) (1)2x z α±=8900 1.96±=(,)(2)2x z α±=8900 1.96±=(,) (3)2x z α±=8900 1.645±=(,)(4)2x z α±=8900 2.58±=(,) 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调查解:(1)样本均值x =,样本标准差s=1α-=,t=z α=0.05z =,xz α±=3.32 1.645±(,) 1α-=,t=z α=0.025z =,x z α±=3.32 1.96±(,)1α-=,t=z α=0.005z =,x zα±=3.32 2.76±(,)2x t α±=10 2.365±=,某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
6.1 调理一个装瓶机使其对每个瓶子的灌装量均值为盎司,经过察看这台装瓶机对每个瓶子的灌装量听从标准差 1.0 盎司的正态散布。
随机抽取由这台机器灌装的9 个瓶子形成一个样本,并测定每个瓶子的灌装量。
试确立样本均值偏离整体均值不超出0.3 盎司的概率。
解:整体方差知道的状况下,均值的抽样散布听从N , 2的正态散布,由正态散布,n标准化获得标准正态散布:z= x~ N 0,1 ,所以,样本均值不超出整体均值的概率P n为:P x 0.3 =P x 0.3= P0.3 x 0.3n n 1 9 n 1 9= P 0.9 z 0.9 =2 0.9 -1,查标准正态散布表得0.9 =0.8159所以, P x 0.3 =0.63186.2 在练习题 6.1 中,我们希望样本均值与整体均值的偏差在 0.3 盎司以内的概率达到0.95,应该抽取多大的样本?解: P xx 0.3= P0.3 x 0.30.3 =Pn n 1 n n 1 n= 2 (0.3 n) 1 0.95 (0.3 n) 0.9750.3 n 1.96 n 42.68288 n 436.3 Z1,Z2 ,,Z6表示从标准正态整体中随机抽取的容量,n=6 的一个样本,试确立常数b,使得6P Z i2b0.95i 1解:因为卡方散布是由标准正态散布的平方和构成的:设 Z1, Z2,,Z n是来自整体N(0,1)的样本,则统计量2 Z12 Z 22 Z n2听从自由度为2 2~ 2n 的χ散布,记为χχ( n)6 6 62所以,令2Z i2,则 2 Z i2 2 6 ,那么由概率 P Z i b0.95 ,可知:i 1 i 1 i 120.95 6 ,查概率表得: b=12.59b= 1121 6.4 在习题 6.1 中,假定装瓶机对瓶子的灌装量听从方差 的标准正态散布。
假定我们计划随机抽取 10 个瓶子构成样本,观察每个瓶子的灌装量,获得 10 个观察值,用这1n10 个观察值我们能够求出样本方差S 2 (S 2(Y i Y )2 ) ,确立一个适合的范围使得有n 1 i 1较大的概率保证 S 2落入此中是实用的,试求 b 1, b 2 ,使得p(b 1 S 2 b 2 ) 0.90解:更为样本方差的抽样散布知识可知,样本统计量:(n 1s)22(n 1 ) 2~此处, n=10,21 ,所以统计量(n 1)s 2(10 1)s 22~ 2(n 1)21 9s依据卡方散布的可知:P b 1 S 2 b 2P 9b 1 9S 29b 20.90又因为:2n122 n11P 1 29S2所以:P 9b 129b 2P2n 19S 22n1 10.909S122P 9b 12P222n 19S 9b 2 12 n 1 9S2P2922 9 0.900.959S0.05则:222 9299b 19b 10.95, b 20.050.959 ,9b 2 0.0599查概率表: 2 9 =3.325 ,2 9 =19.919 ,则0.950.052 92 90.95=0.369, b 20.05=1.88b 19927.1 从一个标准差为 5 的整体中采纳重复抽样方法抽出一个样本容量为40 的样本,样本均值为 25。
统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
二、 练习题1. 从一个标准差为5的总体中采用重复抽样方法抽出一个样本量为40的样本,样本均值为25。
1) 样本均值的抽样标准差x xσ等于多少? 2) 在95%的置信水平下,估计误差是多少?解: 1) 已知σ = 5,n = 40, = 25∵ ∴x σx σ= 5 /√40≈ 0.79 2) 已知∵ ∴ 估计误差 E = 1.96×5÷√40≈1.552. 某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。
1) 假定总体标准差为15元,求样本均值的抽样标准误差。
2) 在95%的置信水平下,求估计误差。
3) 如果样本均值为120元,求总体均值µ的95%的置信区间。
解:1)已知σ = 15,n = 49∵ x nx n x σσ=α2n z E σα2=n x n x σσ=nx n x σσ=∴x σx σ= 15÷√49 = 2.14 2)已知∵ ∴ 估计误差 E = 1.96×15÷√49 ≈ 4.23)已知 = 120∵ 置信区间为±E ∴ 其置信区间 = 120±4.23. 从一个总体中随机抽取n =100的随机样本,得到=104560,假定总体标准差σ = 85414,试构建总体均值µ的95%的置信区间。
解: 已知n =100, =104560,σ = 85414,1-α=95% ,由于是正态总体,且总体标准差已知。
总体均值μ在1-α置信水平下的置信区间为104560 ±1.96×85414÷√100= 104560 ±16741.1444. 从总体中抽取一个n =100的简单随机样本,得到 =81,s=12。
要求:1) 构建µ的90%的置信区间。
2) 构建µ的95%的置信区间。
3) 构建µ的99%的置信区间。
解:由于是正态总体,但总体标准差未知。
总体均值μ在1-α置信水α2n z E σα2=x x x x 2α()28.109,44.10192.336.105251096.136.1052=±=⨯±=±n z x σαx平下的置信区间公式为81±×12÷√100 = 81±×1.21)1-α=90%, 1.65 其置信区间为 81 ± 1.982)1-α=95% ,其置信区间为 81 ± 2.3523) 1-α=99%, 2.58其置信区间为 81 ± 3.0965. 利用下面的信息,构建总体均值的置信区间。
1) = 25,σ = 3.5,n =60,置信水平为95%2) =119,s =23.89,n =75,置信水平为98%3) =3.149,s =0.974,n =32,置信水平为90%解:∵ ∴ 1) 1-α=95% ,其置信区间为:25±1.96×3.5÷√60= 25±0.8852) 1-α=98% ,则α=0.02, α/2=0.01, 1-α/2=0.99,查标准正态分布表,可知: 2.33其置信区间为: 119±2.33×23.89÷√75= 119±6.345x x x 22未知αα)(22未知或σσααns z x n z x ±±3) 1-α=90%, 1.65其置信区间为:3.149±1.65×0.974÷√32= 3.149±0.2846. 利用下面的信息,构建总体均值µ的置信区间:1) 总体服从正态分布,且已知σ = 500,n = 15,=8900,置信水平为95%。
解: N=15,为小样本正态分布,但σ已知。
则1-α=95%,。
其置信区间公式为 ∴置信区间为:8900±1.96×500÷√15=(8646.7 , 9153.2)2) 总体不服从正态分布,且已知σ = 500,n = 35, =8900,置信水平为95%。
解:为大样本总体非正态分布,但σ已知。
则1-α=95%,。
其置信区间公式为 ∴置信区间为:8900±1.96×500÷√35=(8733.9 9066.1) 3) 总体不服从正态分布,σ未知,n = 35,=8900,s =500,置信水平为90%。
解:为大样本总体非正态分布,且σ未知,1-α=90%,1.65。
其置信区间为:8900±1.65×500÷√35=(8761 9039)4) 总体不服从正态分布,σ未知,n = 35, =8900,s =500,置信水平为99%。
2α()28.109,44.10192.336.105251096.136.1052=±=⨯±=±n z x σαx x 2α()28.109,44.10192.336.105251096.136.1052=±=⨯±=±n z x σαx x解:为大样本总体非正态分布,且σ未知,1- =99%, 2.58。
其置信区间为:8900±2.58×500÷√35=(8681.9 9118.1)7.某大学为了解学生每天上网的时间,在全校7500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时)(略)。
求该校大学生平均上网时间的置信区间,置信水平分别为90%解:先求样本均值:= 3.32再求样本标准差:置信区间公式:8.从一个正态总体中随机抽取样本量为8的样本,各样本值分别为:10,8,12,15,6,13,5,11。
求总体均值µ的95%置信区间。
解:本题为一个小样本正态分布,σ未知。
先求样本均值:= 80÷8=10再求样本标准差:= √84/7 = 3.4641于是 , 的置信水平为的置信区间是,已知,n = 8,则,α/2=0.025,查自由度为n-1 = 7的分布表得临界值 2.45所以,置信区间为:10±2.45×3.4641÷√79.某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离分别是:10,3,14,8,6,9,12,11,7,5,10,15,9,16,13,2。
假设总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
解:小样本正态分布,σ未知。
已知,n = 16,,则, α/2=0.025,查自由度为n-1 = 15的分布表得临界值 2.14 样本均值=150/16=9.375再求样本标准差:= √253.75/15 ≈4.11于是 , 的置信水平为的置信区间是,9.375±2.14×4.11÷√1610.从一批零件是随机抽取36个,测得其平均长度是149.5,标准差是1.93。
1)求确定该种零件平均长度的95%的置信区间。
2)在上面估计中,你使用了统计中的哪一个重要定理?请解释。
解:1)这是一个大样本分布。
已知N=36,= 149.5,S =1.93,x1-α=0.95,。
其置信区间为:149.5±1.96×1.93÷√36 2)中心极限定理论证:如果总体变量存在有限的平均数和方差,那么,不论这个总体的分布如何,随着样本容量的增加,样本均值的分布便趋近正态分布。
在现实生活中,一个随机变量服从正态分布未必很多,但是多个随机变量和的分布趋于正态分布则是普遍存在的。
样本均值也是一种随机变量和的分布,因此在样本容量充分大的条件下,样本均值也趋近于正态分布,这为抽样误差的概率估计理论提供了理论基础。
11.某企业生产的袋装食品采用自动打包机包装,每袋标准重量为100克,现从某天生产的一批产品中按重复抽样随机抽取50包进行检查,测得每包重量如下:(略)已知食品包重服从正态分布,要求:1)确定该种食品平均重量的95%的置信区间。
2)如果规定食品重量低于100克属于不合格,确定该批食品合格率的95%的置信区间。
解:1)本题为一个大样本正态分布,σ未知。
已知N=50,µ=100,1-α=0.95,。
①每组组中值分别为97、99、101、103、105,即此50包样本平均值= (97+99+101+103+105)/5 = 101②样本标准差为:=√{(97-101)²×2+(99-101)²×3+(101-101)²×34+(103-101)²×7+(105-101)²×4}÷(50-1)≈ 1.666③其置信区间为:101±1.96×1.666÷√502)∵不合格包数(<100克)为2+3=5包,5/50 = 10%(不合格率),即P = 90%。