上海市黄浦区2017-2018学年度第一学期九年级数学期末试卷-含答案
- 格式:docx
- 大小:284.06 KB
- 文档页数:9
上海黄浦学校数学九年级上册期末试卷(带解析)一、选择题1.若25x y =,则x y y+的值为( )A .25B .72C .57D .752.一元二次方程x 2=9的根是( ) A .3B .±3C .9D .±9 3.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1-4.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12 B .13 C .23 D .16 5.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .156.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .57.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 8.若两个相似三角形的相似比是1:2,则它们的面积比等于( ) A .1:2B .1:2C .1:3D .1:49.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.410.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A.25°B.40°C.45°D.50°11.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.1212.如图,△AOB为等腰三角形,顶点A的坐标(2,5),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(203,103)B.(163,45)C.(203,45)D.(163,43)13.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为( )A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内14.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+15.如图,AB为O的直径,C为O上一点,弦AD平分BAC∠,交BC于点E,6AB=,5AD=,则AE的长为()A .2.5B .2.8C .3D .3.2二、填空题16.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.17.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.18.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .19.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.20.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).21.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.22.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.23.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.24.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.25.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF 的面积为__________.26.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.27.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.28.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____. 29.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____. 30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
沪科版九年级数学上册期末测试卷(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题4分,共40分) 1.抛物线2)2(-=x y 的顶点坐标是( )A .(2,0)B .(-2,0)C .(0,2)D .(0,-2) 2.若(2,5)、(4,5)是抛物线c bx ax y ++=2上的两个点,则它的对称轴是( ) A.5=x B.1=x C.2=x D.3=x3.抛物线y =x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )A. y =x 2+4x +5B. y =x 2+4x +3C. y =x 2-4x +3D.y =x 2-4x +5 4.已知△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c =3b ,则cosA 等于( ) A .31 B .32 C .332 D .3105.在Rt△ABC 中,∠C =90°,若sinA =23,则tanB =( ) A .53 B6.如图,锐角△ABC 的高CD 和BE 相交于点O ,图中与△ODB 相似的三角形有( ) A .4个 B .3个 C . 2个 D .1个 7. 如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD =1∶3,则BE ∶EC =( ) A .1∶2 B .1∶3 C .2∶3 D .1∶48.如图:点P 是△ABC 边AB 上一点(AB >AC ),下列条件不一定能使△ACP ∽△ABC 的是( ) A .∠ACP =∠B B .∠APC =∠ACB C .AC AP AB AC = D .ABACBC PC =( 第6题图 ) ( 第7题图 ) ( 第8题图 )9.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O 点,若AOD S ∆∶OCD S ∆=1∶2,则A O D S ∆∶BOCS ∆=( ) A .61 B .31 C .41 D .6610.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<; ②1a b c -+>; ③0abc >; ④420a b c -+<; ⑤1c a ->。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,ABC 中,90C ∠=︒,13AB =,12AC =,则sin A =( )A .1213B .513C .512D .135【答案】B【分析】由题意根据勾股定理求出BC ,进而利用三角函数进行分析即可求值.【详解】解:∵ABC 中,90C ∠=︒,13AB =,12AC =,∴222213125BC AB AC =-=-=, ∴5sin 13BC A AB ==. 故选:B.【点睛】本题主要考查勾股定理和锐角三角函数的定义及运用,注意掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.在△ABC 中,I 是内心,∠BIC=130°,则∠A 的度数是( )A .40°B .50°C .65°D .80° 【答案】D【解析】试题分析:已知∠BIC=130°,则根据三角形内角和定理可知∠IBC+∠ICB=50°,则得到∠ABC+∠ACB=100度,则本题易解.解:∵∠BIC=130°,∴∠IBC+∠ICB=50°,又∵I 是内心即I 是三角形三个内角平分线的交点,∴∠ABC+∠ACB=100°,∴∠A=80°.故选D .考点:三角形内角和定理;角平分线的定义.3.若2是关于方程x 2﹣5x+c =0的一个根,则这个方程的另一个根是( )A .﹣3B .3C .﹣6D .6 【答案】B【分析】根据一元二次方程根与系数的关系即可得.【详解】设这个方程的另一个根为a , 由一元二次方程根与系数的关系得:5251a -+=-=, 解得3a =,故选:B .【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键. 4.对于题目“如图,在ABC 中,90,4,3,ACB AC BC P ∠=︒==是AB 边上一动点,PD AC ⊥于点D ,点E 在点P 的右侧,且1PE =,连接CE ,P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动,在整个运动过程中,求阴影部分面积12S S +的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果都不正确,应是一直增大D .甲、乙的结果都不正确,应是一直减小【答案】B【分析】设PD=x ,AB 边上的高为h ,求出AD 、h ,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:在Rt ABC 中,∵90,4,3ACB AC BC ∠=︒==, ∴2222AB AC BC 345=++=,设PD x =,AB 边上的高为h ,则125AC BC h AB ⋅==. ∵//PD BC ,∴ADP ACB ∽, ∴==PD AD AP BC AC AB, ∴45,33AD x PA x ==, ∴22121415122242333(4)2()23235353210S S x x x x x x +=⋅⋅+-⋅=-+=-+,∴当302x <<时,12S S +的值随x 的增大而减小, 当31225x ≤≤时,12S S +的值随x 的增大而增大, ∴乙的结果正确.故选B.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.5.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3- 【答案】D【分析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A (-2,3)关于原点对称的点的坐标是(2,-3), 故选D .【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.6.按如图所示的运算程序,输入的 x 的值为12,那么输出的 y 的值为( )A .1B .2C .3D .4【答案】D 【分析】把1=2x 代入程序中计算,知道满足条件,即可确定输出的结果. 【详解】把1=2x 代入程序, ∵12是分数, ∴120=-=-<y x 不满足输出条件,进行下一轮计算;把=2x -代入程序,∵2-不是分数 ∴()()22112122214044=--+=-⨯--⨯-+=>y x x 满足输出条件,输出结果y=4,故选D.【点睛】本题考查程序运算,解题的关键是读懂程序的运算规则.7.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )A .平均数B .方差C .中位数D .极差【答案】C【解析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C .【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.8.下列事件不属于...随机事件的是( ) A .打开电视正在播放新闻联播B .某人骑车经过十字路口时遇到红灯C .抛掷一枚硬币,出现正面朝上D .若今天星期一,则明天是星期二 【答案】D【分析】不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此可判断出结论.【详解】A . 打开电视正在播放新闻联播,是随机事件,不符合题意;B . 某人骑车经过十字路口时遇到红灯,是随机事件,不符命题意;C . 抛掷一枚硬币,出现正面朝上,是随机事件,不符合题意,D . 若今天星期一,则明天是星期二,是必然事件,符合题意.故选:D .【点睛】此题考查了必然事件、不可能事件、随机事件的概念.关键是理解不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.⊙O 的半径为5,圆心O 到直线l 的距离为3,下列位置关系正确的是( )A .B .C .D .【答案】B【分析】根据圆O 的半径和圆心O 到直线l 的距离的大小,相交:d <r ;相切:d =r ;相离:d >r ;即可选出答案.【详解】解:∵⊙O 的半径为5,圆心O 到直线l 的距离为3,∵5>3,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故选:B .【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键. 10.一个不透明的口袋中放着若干个红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,从口袋中随机取出一个球,取出红球的概率是14.如果袋中共有32个小球,那么袋中的红球有( )A .4个B .6个C .8个D .10个 【答案】C【解析】根据概率公式列方程求解即可.【详解】解:设袋中的红球有x 个, 根据题意得:1324x =, 解得:x =8,故选C .【点睛】此题考查了概率公式的计算方法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 11.如图,在Rt OAB 中,OA AB =,90OAB ∠=︒,点P 从点O 沿边OA ,AB 匀速运动到点B ,过点P 作PC OB ⊥交OB 于点G ,线段22AB =OC x =,POC S y =△,则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .【答案】D【分析】分两种情况:①当P 点在OA 上时,即2≤x≤2时;②当P 点在AB 上时,即2<x≤1时,求出这两种情况下的PC 长,则y=12PC•OC 的函数式可用x 表示出来,对照选项即可判断. 【详解】解:∵△AOB 是等腰直角三角形,AB=22∴OB=1.①当P 点在OA 上时,即2≤x≤2时,PC=OC=x ,S △POC =y=12PC•OC=12x 2, 是开口向上的抛物线,当x=2时,y=2;OC=x ,则BC=1-x ,PC=BC=1-x ,S △POC =y=12PC•OC=12x (1-x )=-12x 2+2x , 是开口向下的抛物线,当x=1时,y=2.综上所述,D 答案符合运动过程中y 与x 的函数关系式.故选:D .【点睛】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.12.一元二次方程2(x 2)0-=的根是( )A .x 2=B .12x x 2==C .1x 2=-,2x 2=D .1x 0=,2x 2=【答案】B【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【详解】(x ﹣2)2=0,则x 1=x 2=2,故选B .【点睛】本题主要考查了直接开平方法解一元二次方程,关键是掌握要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.二、填空题(本题包括8个小题)13.建国70周年阅兵式中,三军女兵方队共352人,其中领队2人,方队中,每排的人数比排数多11,则女兵方队共有____________排,每排有__________人.【答案】14; 1【分析】先设三军女兵方队共有x 排,则每排有(11x +)人,根据三军女兵方队共352人可列方程求解即可.【详解】设三军女兵方队共有x 排,则每排有(11x +)人,根据题意得:()112352x x ++=,整理,得2113500x x +-=.解得:121425x x ==-,(不合题意,舍去),则11141125x +=+=(人).故答案为:14,1.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.14.使函数y =x 的取值范围是___________. 【答案】0x ≥且3x ≠【分析】根据二次根式的性质和分式的性质即可得.【详解】由二次根式的性质和分式的性质得030x x ≥⎧⎨-≠⎩解得03x x ≥⎧⎨≠⎩ 故答案为:0x ≥且3x ≠.【点睛】本题考查了二次根式的性质、分式的性质,二次根式的被开方数为非负数、分式的分母不能为零是常考知识点,需重点掌握.15.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD的面积为________.【答案】16【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM ∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.16.在一个不透明的盒子里装有5个黑色棋子和若干白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到白色棋子的概率是23,则白色棋子的个数为_____. 【答案】1.【分析】设白色棋子的个数为x 个,根据概率公式列出算式,求出x 的值即可得出答案.【详解】解:设白色棋子的个数为x 个,根据题意得: 5x x +=23, 解得:x =1,答:白色棋子的个数为1个;故答案为:1.【点睛】此题主要考查概率的应用,解题的关键是根据题意列出分式方程进行求解.17.如图,若菱形ABCD 的边长为2cm ,∠A =120°,将菱形ABCD 折叠,使点A 恰好落在菱形对角线的交点O 处,折痕为EF ,则EF =_____cm ,【答案】3【分析】连接AC 、BD ,根据题意得出E 、F 分别为AB 、AD 的中点,EF 是△ABD 的中位线,得出EF =12BD ,再由已知条件根据三角函数求出OB ,即可求出EF.【详解】解:连接AC 、BD ,如图所示:∵四边形ABCD 是菱形,∴AC ⊥BD ,∵将菱形ABCD 折叠,使点A 恰好落在菱形对角线的交点O 处,折痕为EF ,∴AE =EO ,AF =OF ,∴E 、F 分别为AB 、AD 的中点,∴EF 是△ABD 的中位线,∴EF =12BD , ∵菱形ABCD 的边长为2cm ,∠A =120°,∴AB =2cm ,∠ABC =60°,∴OB =12BD ,∠ABO =30°, ∴OB =AB •cos30°=2×3=3, ∴EF =12BD =OB =3; 故答案为:3.【点睛】此题考查菱形的性质,折叠的性质,锐角三角函数,三角形中位线的判定及性质,由折叠得到EF 是△ABD 的中位线,由此利用锐角三角函数求出OB 的长度达到解决问题的目的.18.已知抛物线22y ax ax c =++,那么点P (-3,4)关于该抛物线的对称轴对称的点的坐标是______.【答案】(1,4).【解析】试题解析:抛物线的对称轴为:2 1.22b a x a a=-=-=- 点()34P -,关于该抛物线的对称轴对称的点的坐标是()1,4. 故答案为()1,4三、解答题(本题包括8个小题)19.在Rt △ABC 中,∠ACB =90°,AC =1,记∠ABC =α,点D 为射线BC 上的动点,连接AD ,将射线DA 绕点D 顺时针旋转α角后得到射线DE ,过点A 作AD 的垂线,与射线DE 交于点P ,点B 关于点D 的对称点为Q ,连接PQ .(1)当△ABD 为等边三角形时,①依题意补全图1;②PQ 的长为 ;(2)如图2,当α=45°,且BD =43时,求证:PD =PQ ; (3)设BC =t ,当PD =PQ 时,直接写出BD 的长.(用含t 的代数式表示)【答案】(1)①详见解析;②1;(1)详见解析;(3)BD =2223t t+. 【分析】(1)①根据题意画出图形即可.②解直角三角形求出PA ,再利用全等三角形的性质证明PQ =PA 即可.(1)作PF ⊥BQ 于F ,AH ⊥PF 于H .通过计算证明DF =FQ 即可解决问题.(3)如图3中,作PF ⊥BQ 于F ,AH ⊥PF 于H .设BD =x ,则CD =x ﹣t , ()21AD x t =+-,利用相似三角形的性质构建方程求解即可解决问题.【详解】(1)解:①补全图形如图所示:②∵△ABD 是等边三角形,AC ⊥BD ,AC =1∴∠ADC =60°,∠ACD =90°∴23sin 60AC AD ==︒∵∠ADP =∠ADB =60°,∠PAD =90°∴PA =AD •tan60°=1∵∠ADP =∠PDQ =60°,DP =DP .DA =DB =DQ∴△PDA ≌△PDQ (SAS )∴PQ =PA =1.(1)作PF ⊥BQ 于F ,AH ⊥PF 于H ,如图:∵PA ⊥AD ,∴∠PAD =90°由题意可知∠ADP =45°∴∠APD =90°﹣45°=45°=∠ADP∴PA =PD∵∠ACB =90°∴∠ACD =90°∵AH ⊥PF ,PF ⊥BQ∴∠AHF =∠HFC =∠ACF =90°∴四边形ACFH 是矩形∴∠CAH =90°,AH =CF∵∠ACH =∠DAP =90°∴∠CAD =∠PAH又∵∠ACD =∠AHP =90°∴△ACD ≌△AHP (AAS )∴AH =AC =1∴CF =AH =1 ∵43BD =,BC =1,B ,Q 关于点D 对称 ∴13CD BD BC =-=,43DQ BD == ∴2132DF CF CD DQ =-== ∴F 为DQ 中点∴PF 垂直平分DQ∴PQ =PD .(3)如图3中,作PF ⊥BQ 于F ,AH ⊥PF 于H .设BD =x ,则CD =x ﹣t ,()21AD x t =+-∵PD=PQ,PF⊥DQ∴12 DF FQ x==∵四边形AHFC是矩形∴()1 2AH CF CD DF x t x t ==+=-+-∵△ACB∽△PAD∴PA AD AC CB=∴()211x t PA+-=∴()21x t PA+-=∵△PAH∽△DAC∴PA AHAD AC=()()221321 1x tx ttx t+--=+-解得2223txt+ =∴2223tBDt+=.故答案是:(1)①详见解析;②1;(1)详见解析;(3)2223tBDt+=.【点睛】本题是三角形综合题目,主要考查了三角形的旋转、等边三角形的性质、锐角三角函数、勾股定理、全等三角形的判定和性质、矩形的判定和性质,构造全等三角形、相似三角形、直角三角形是解题的关键.20.已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)若△ABC是正三角形,试求这个一元二次方程的根.【答案】(1)直角三角形;(2).x1=-1,x2=0【解析】试题分析:(1)根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可;(2)根据等边进行得出a=b=c,代入方程化简,即可求出方程的解.解:(1)△ABC是直角三角形,理由是:∵关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0有两个相等的实数根,∴△=0,即(﹣2b)2﹣4(a+c)(a﹣c)=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵△ABC是等边三角形,∴a=b=c,∴方程(a+c)x2﹣2bx+(a﹣c)=0可整理为2ax2﹣2ax=0,∴x2﹣x=0,解得:x1=0,x2=1.考点:根的判别式;等边三角形的性质;勾股定理的逆定理.21.哈尔滨市教育局以冰雪节为契机,在全市校园内开展多姿多彩的冰雪活动.某校为激发学生参与冰雪体育活动热情,开设了“滑冰、抽冰尜、冰球、冰壶、雪地足球”五个冰雪项目,并开展了以“我最喜欢的冰雪项目”为主题的调查活动,围绕“在滑冰、抽冰尜、冰球、冰壶、雪地足球中,你最喜欢的冰雪项目是什么?(每名学生必选且只选一个)”的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的不完整的统计图.请根据统计图的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求本次调查中,最喜欢冰球项目的人数,并补全条形统计图;(3)若该中学共有1800名学生,请你估计该中学最喜欢雪地足球的学生约有多少名.【答案】(1)60;(2)12,图见解析;(3)450【分析】(1)用滑冰的人数除以滑冰的比例,即可解得本次调查共抽取的学生人数.(2)用总人数减去其他各项的人数,即可得到最喜欢冰球项目的人数,补全条形统计图.(3)用总人数乘以最喜欢雪地足球的学生的比例,即可进行估算.【详解】解:(1)1830%60÷=(人)∴本次抽样调查共抽取了60名学生(2)6018961512----=(人)∴本次调查中,最喜欢冰球项目的学生人数为12人.补全条形统计图(3)151********⨯=(人) ∴由样本估计总体得该中学最喜欢雪地足球的学生约有450人.【点睛】本题考查了概率统计的问题,掌握条形图的性质、饼状图的性质是解题的关键.22.某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量y (台)与售价x (万元/台)之间存在函数关系:24y x =-+.(1)设这种摘果机一期销售的利润为1W (万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?【答案】(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.【分析】(1)先根据等量关系式:总利润=(售价-成本)⨯销售量,列出函数关系式,再将132W =代入函数关系式得出方程求解即得;(2)先根据等量关系式:总利润=(售价-新成本)⨯销售量-7,列出函数关系式,再将263W =代入函数关系式得出方程求解即得.【详解】(1)根据题意列出函数关系式如下:21(6)(6)(24)(15)81W x y x x x =-⋅=--+=--+当132W =时,2(15)8132x --+=,解得18x =,222x =.∵要抢占市场份额∴8x =.答:在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台.(2)降低成本之后,每台的成本为5万元,每台利润为(5)x -万元,销售量24y x =-+.依据题意得22(5)(24)729127W x x x x =--+-=-+-,当263W =时,22912763x x -+-=,解得110x =,219x =.∵要继续保持扩大销售量的战略∴10x =答:要使二期利润达到63万元,销售价应该为10万元/台.【点睛】本题考查函数解析式及解一元二次方程,解题关键是正确找出等量关系式:总利润=(售价-成本)⨯销售量.23.如图,A(8,6)是反比例函数y =m x (x >0)在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,且AB =OA(B 在A 右侧),直线OB 交反比例函数y =m x的图象于点M (1)求反比例函数y =m x 的表达式; (2)求点M 的坐标;(3)设直线AM 关系式为y =nx+b ,观察图象,请直接写出不等式nx+b ﹣m x≤0的解集.【答案】 (1)y =48x;(2)M(1,4);(3)0<x≤8或x≥1. 【分析】(1)根据待定系数法即可求得;(2)利用勾股定理求得AB =OA =10,由AB ∥x 轴即可得点B 的坐标,即可求得直线OB 的解析式,然后联立方程求得点M 的坐标;(3)根据A 、M 点的坐标,结合图象即可求得.【详解】解:(1)∵A(8,6)在反比例函数图象上∴6=8m ,即m =48,∴反比例函数y =的表达式为y =48x; (2)∵A(8,6),作AC ⊥x 轴,由勾股定理得OA =10,∵AB =OA ,∴AB =10,∴B(18,6),设直线OB 的关系式为y =kx ,∴6=18k ,∴k =13, ∴直线OB 的关系式为y =13x , 由1348y x y x ⎧=⎪⎪⎨⎪=⎪⎩,解得x =±1 又∵在第一象限∴x =1故M(1,4);(3)∵A(8,6),M(1,4),观察图象,不等式nx+b ﹣m x≤0的解集为:0<x≤8或x≥1.【点睛】本题主要考查一次函数与反比例函数的交点问题,解题的关键是掌握待定系数法求函数解析式及求直线、双曲线交点的坐标.24.如图,在△ABC 中,AB=2,∠B=45°,1tan 2C ∠=.求△ABC 的周长.【答案】523++【分析】过点A 作AD ⊥BC 于D ,在Rt △ABD 中解直角三角形可得出AD 、BD 的长,再在Rt △ACD 中解直角三角形求出CD 的长,利用勾股定理求出AC ,然后根据三角形的周长公式列式计算即可得解.【详解】解:过点A 作AD ⊥BC ,交BC 于点D .∵Rt △ADB 中,∠B=45°,∴∠BAD=∠B=45°,∴AD=BD ,又2,∴AD=AB ·sin ∠2×22=1=BD . ∵Rt △ACD 中,1tan 2AD C DC∠==, ∴DC=2,∴BC=BD+DC=1.又Rt △ADC 中,AD=1,DC=2,∴22AD CD +5∴△ABC 523++. 【点睛】本题考查了解直角三角以及勾股定理,作辅助线构造出直角三角形是解题的关键.25.(1)解方程:2430x x -+=(2)已知点P (a+b ,-1)与点Q (-5,a-b )关于原点对称,求a ,b 的值.【答案】(1)123,1x x ==;(2)3,2a b ==.【分析】(1)利用因式分解法解一元二次方程即可得;(2)先根据关于原点对称的点坐标变换规律可得一个关于a 、b 二元一次方程组,再利用加减消元法解方程组即可得.【详解】(1)2430x x -+=,()()310x x --=,30x -=或10x -=,3x =或1x =,即123,1x x ==;(2)关于原点对称的点坐标变换规律:横、纵坐标均互为相反数,则(5)0(1)0a b a b ++-=⎧⎨-+-=⎩, 解得32a b =⎧⎨=⎩. 【点睛】本题考查了解一元二次方程、关于原点对称的点坐标变换规律、解二元一次方程组,熟练掌握方程(组)的解法和关于原点对称的点坐标变换规律是解题关键.26.如图,二次函数y =x 2+bx+c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且关于直线x =1对称,点A 的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC ,若点P 在y 轴上时,BP 和BC 的夹角为15°,求线段CP 的长度;(3)当a≤x≤a+1时,二次函数y =x 2+bx+c 的最小值为2a ,求a 的值.【答案】(1)y =x 2﹣2x ﹣3;(2)CP 的长为33或33;(3)a 的值为157【解析】(1)先根据题意得出点B 的坐标,再利用待定系数法求解可得;(2)分点P 在点C 上方和下方两种情况,先求出∠OBP 的度数,再利用三角函数求出OP 的长,从而得出答案;(3)分对称轴x=1在a 到a+1范围的右侧、中间和左侧三种情况,结合二次函数的性质求解可得.【详解】(1)∵点A (﹣1,0)与点B 关于直线x =1对称,∴点B 的坐标为(3,0),代入y =x 2+bx+c ,得:10930b c b c -+=⎧⎨++=⎩, 解得23b c =-⎧⎨=-⎩, 所以二次函数的表达式为y =x 2﹣2x ﹣3;(2)如图所示:由抛物线解析式知C(0,﹣3),则OB=OC=3,∴∠OBC=45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OBtan∠OBP=33∴CP=33;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OBtan∠OBP′=33,∴CP=33;综上,CP的长为33或3﹣3;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1﹣5;若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=7(负值舍去);综上,a的值为157.【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、三角函数的运用、二次函数的图象与性质及分类讨论思想的运用.27.据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈西尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”大意如下:如图,今有山AB 位于树CD 的西面.山高AB 为未知数,山与树相距53里,树高9丈5尺,人站在离树3里的F 处,观察到树梢C 恰好与山峰A 处在同一斜线上,人眼离地7尺,问山AB 的高约为多少丈?(1丈10=尺,结果精确到个位)【答案】由AB 的高约为165丈.【分析】由题意得53BD =里,95CD =尺,7EF =尺,3DF =里,过点E 作EG AB ⊥于点G ,交CD 于点H ,得 7BG DH EF ===尺,53GH BD ==里,3HE DF ==里,根据相似三角形的性质即可求出.【详解】解:由题意得53BD =里,95CD =尺,7EF =尺,3DF =里.如图,过点E 作EG AB ⊥于点G ,交CD 于点H .则7BG DH EF ===尺,53GH BD ==里,3HE DF ==里,//CD AB ,∴ △ ECH ∽ △ EAG ,CH EH AG EG∴=, 9573353AG -∴=+ 164.3AG ∴≈丈,0.7165AB AG =+≈丈.答:由AB 的高约为165丈.【点睛】此题主要考查了相似三角形在实际生活中的应用,能够将实际问题转化成相似三角形是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某商场举行投资促销活动,对于“抽到一等奖的概率为110”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽10次也可能没有抽到一等奖C.抽10次奖必有一次抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖【答案】B【解析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【详解】A. “抽到一等奖的概率为110”,抽一次也可能抽到一等奖,故错误;B. “抽到一等奖的概率为110”,抽10次也可能抽不到一等奖,故正确;C. “抽到一等奖的概率为110”,抽10次也可能抽不到一等奖,故错误;D. “抽到一等奖的概率为110”,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【点睛】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.2.已知AB、CD是⊙O的两条弦,AB∥CD,AB=6,CD=8,⊙O的半径为5,则AB与CD的距离是()A.1 B.7 C.1或7 D.无法确定【答案】C【分析】由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE ⊥AB ,∵AB =8,CD =6,∴AE =4,CF =3,∵OA =OC =5,∴由勾股定理得:EO =2254-=3,OF =2253-=4,∴EF =OF ﹣OE =1;②当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,EF =OF+OE =1,所以AB 与CD 之间的距离是1或1.故选:C .【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧. 也考查了勾股定理及分类讨论的思想的应用.3.如图,PA 、PB 分别切⊙O 于A 、B ,60APB ∠=,⊙O 半径为2,则PA 的长为( )A .3B .4C .23D .22【答案】C 【分析】连接PO 、AO 、BO ,由角平分线的判定定理得,PO 平分∠APB ,则∠APO=30°,得到PO=4,由勾股定理,即可求出PA.【详解】解:连接PO 、AO 、BO ,如图:∵PA 、PB 分别切⊙O 于A 、B ,∴PA AO ⊥,PB BO ⊥,AO=BO ,∴PO平分∠APB,∴∠APO=116022APB∠=⨯︒=30°,∵AO=2,∠PAO=90°,∴PO=2AO=4,由勾股定理,则224223PA=-=;故选:C.【点睛】本题考查了圆的切线的性质,角平分线的判定定理,以及勾股定理,解题的关键是掌握角平分线的判定定理,得到∠APO=30°.4.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等【答案】C【分析】根据菱形的判定与性质即可得出结论.【详解】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选C.【点睛】本题考查了菱形的判定与性质以及平行四边形的性质;熟记菱形的性质和判定方法是解题的关键.5.如图,点A在反比例函数y=3x(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )A.3 B.2 C.32D.1【答案】C【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S △OAB =12|k|,便可求得结果. 【详解】解:连结OA ,如图,∵AB ⊥x 轴,∴OC ∥AB ,∴S △OAB =S △CAB ,而S △OAB =12|k|=32, ∴S △CAB =32, 故选C .【点睛】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y=k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6.已知扇形的圆心角为60°,半径为1,则扇形的弧长为( )A .2πB .πC .6πD .3π 【答案】D【解析】试题分析:根据弧长公式知:扇形的弧长为601=1803ππ⨯. 故选D .考点:弧长公式. 7.若α为锐角,且()3sin 102α︒-=,则α等于( ) A .80︒B .70︒C .60︒D .50︒ 【答案】B【解析】根据3sin 60︒=得出α的值. 【详解】解:∵3sin 60︒=∴α-10°=60°,即α=70°.故选:B .【点睛】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.8.在一个不透明的袋中装有50个红、黄、蓝三种颜色的球,除颜色外其他都相同,佳佳和琪琪通过多次摸球试验后发现,摸到红球的频率稳定在0.2左右,则袋中红球大约有( )A .10个B .20个C .30个D .40个 【答案】A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】设袋中有红球x 个,由题意得0.250x = 解得x =10, 故选:A .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.9.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为( ) A .13 B .12 C .23 D .56【答案】C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=4263=, 故选:C .【点睛】 本题考查了树状图法求概率以及概率公式;如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n,注意本题是不放回实验.。
2018届九年级上数学期末调研测试试题(上海市黄浦区附答案)黄浦区2017-2018学年度第一学期九年级期终调研测试数学试卷2018年1月(考试时间:100分钟总分:150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.已知二次函数的图像大致如图所示,则下列关系式中成立的是(▲ )(A);(B);(C);(D). 2.若将抛物线向右平移2个单位后,所得抛物线的表达式为,则原来抛物线的表达式为(▲ )(A);(B);(C);(D). 3.在△ABC 中,∠C=90°,则下列等式成立的是(▲ )(A);(B);(C);(D). 4.如图,线段AB与CD交于点O,下列条件中能判定AC∥BD 的是(▲ )(A)OC=1,OD=2,OA=3,OB=4;(B)OA=1,AC=2,AB=3,BD=4;(C)OC=1,OA=2,CD=3,OB=4;(D)OC=1,OA=2,AB=3,CD=4. 5.如图,向量与均为单位向量,且OA⊥OB,令,则 =(▲ )(A)1;(B);(C);(D)2. 6.如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC 相似,则旋转角为(▲ )(A)20°;(B)40°;(C)60°;(D)80°.二、填空题:(本大题共12题,每题4分,满分48分)7.已知a、b、c满足,则= ▲ . 8.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD∶DB=3∶2,那么BF∶FC= ▲ . 9.已知向量为单位向量,如果向量与向量方向相反,且长度为3,那么向量= ▲ .(用单位向量表示) 10.已知△ABC ∽△DEF,其中顶点A、B、C分别对应顶点D、E、F,如果∠A=40°,∠E=60°,那么∠C= ▲ 度. 11.已知锐角,满足tan =2,则sin = ▲ . 12.已知点B位于点A北偏东30°方向,点C位于点A北偏西30°方向,且AB=AC=8千米,那么BC= ▲ 千米. 13.已知二次函数的图像开口向下,且其图像顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为▲ (表示为的形式). 14.已知抛物线开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变▲ .(填“大”或“小”)15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知AC=6,AB=8,BC=10,设EF=x,矩形DEFG的面积为y,则y关于x的函数关系式为▲ .(不必写出定义域)(第15题)(第16题) 16.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是▲ . 17.如图,点E为矩形ABCD边BC上一点,点F在边CD的延长线上,EF与AC交于点O,若CE∶EB=1∶2,BC∶AB=3∶4,AE⊥AF,则CO∶OA= ▲ .(第17题)(第18题) 18.如图,平面上七个点A、B、C、D、E、F、G,图中所有的连线长均相等,则cos∠BAF= ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算: .20.(本题满分10分)用配方法把二次函数化为的形式,再指出该函数图像的开口方向、对称轴和顶点坐标. 21.(本题满分10分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,D是边AC的中点,CE⊥BD 交AB于点E. (1)求tan∠ACE的值;(2)求AE∶EB.22.(本题满分10分)如图,坡AB的坡比为1∶2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上. (1)试问坡AB的高BT为多少米?(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物的高度CH.(精确到米, 1.73, 1.41)23.(本题满分12分)如图,BD是△ABC的角平分线,点E位于边BC上,已知BD是BA与BE的比例中项. (1)求证:∠CDE= ∠ABC;(2)求证:AD•CD=AB•CE.24.(本题满分12分)在平面直角坐标系xOy中,对称轴为直线x=1的抛物线过点(�2,0). (1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.25.(本题满分14分)如图,线段AB=5,AD=4,∠A=90°,DP∥AB,点C为射线DP上一点,BE平分∠ABC交线段AD于点E(不与端点A、D重合). (1)当∠ABC为锐角,且tan∠ABC=2时,求四边形ABCD 的面积;(2)当△ABE与△BCE相似时,求线段CD的长;(3)设CD=x,DE=y,求y关于x的函数关系式,并写出定义域.黄浦区2017-2018学年度第一学期九年级期终调研测试评分标准参考一、选择题(本大题6小题,每小题4分,满分24分) 1.D ; 2.C ;3.B;4.C;5.B;6.B. 二、填空题:(本大题共12题,每题4分,满分48分) 7.; 8.3∶2; 9.; 10.80; 11.; 12.8;13.等; 14.大; 15.; 16.3; 17.11∶30; 18..三、解答题:(本大题共7题,满分78分) 19.解:原式= ―――――――――――――――――――(4分)= ――――――――――――――――――――――――(4分)= ―――――――――――――――――――――――――――――(2分) 20. 解:= ――――――――――――――――――――(3分)= ―――――――――――――(2分)开口向下,对称轴为直线,顶点――――――――――――(5分) 21. 解:(1)由∠ACB=90°,CE⊥BD,得∠ACE=∠CBD.―――――――――――――――――――――――(2分)在△BCD中,BC=3,CD= AC=2,∠BCD=90°,得tan∠CBD= ,―――――――――――――――――――――――(2分)即tan∠ACE= .―――――――――――――――――――――――(1分)(2)过A作AC的垂线交CE的延长线于P,―――――――――――――(1分)则在△CAP中,CA=4,∠CAP=90°,tan∠ACP= ,得AP= ,――――――――――――――――――――――(2分)又∠ACB=90°,∠CAP=90°,得BC∥AP,得AE∶EB=AP∶BC=8∶9. ―――――――――――――――――(2分)22. 解:(1)在△ABT中,∠ATB=90°,BT∶AT=1∶2.4,AB=130,――――――(1分)令TB=h,则AT=2.4h,――――――――――――――――――――(1分)有,――――――――――――――――――――(1分)解得h=50(舍负).――――――――――――――――――――――(1分)答:坡AB的高BT为50米. ―――――――――――――――――――――(1分)(2)作DK⊥MN于K,作DL⊥CH于L,在△ADK中,AD= AB=65,KD= BT=25,得AK=60,――――――(1分)在△DCL中,∠CDL=30°,令CL=x,得LD= ,―――――――(1分)易知四边形DLHK是矩形,则LH=DK,LD=HK,在△ACH中,∠CAH=60°,CH=x+25,得AH= ,―――――(1分)所以,解得,―――――(1分)则CH= .―――――――――――――――――(1分)答:建筑物高度为89米. 23. 证:(1)∵BD是AB与BE的比例中项,∴ ,――――――――――――――――――――――――(1分)又BD是∠ABC的平分线,则∠ABD=∠DBE,――――――――――(1分)∴△ABD∽△DBE,――――――――――――――――――――――(2分)∴∠A=∠BDE. ―――――――――――――――――――――――(1分)又∠BDC=∠A+∠ABD,∴∠CDE=∠ABD= ∠ABC,即证. ―――――――――――――――(1分)(2)∵∠CDE=∠CBD,∠C=∠C, ――――――――――――――――――(1分)∴△CDE∽△CBD,――――――――――――――――――――――(1分)∴ .――――――――――――――――――――――――(1分)又△ABD∽△DBE,∴ ―――――――――――――――――――――――――(1分)∴ ,――――――――――――――――――――――――(1分)∴ .―――― ―――――――――――――――――(1分)24. 解:(1)由题意得:,―――――――――――――――――(2分)解得:,―――――――――――――――――――――――――(1分)所以抛物线的表达式为,其顶点为(1,9). ―――――(2分)(2)令平移后抛物线为,――――――――――――――(1分)易得D(1,k),B(0,k-1),且,由BC平行于x轴,知点C 与点B关于对称轴x=1对称,得C(2,k-1). (1分)由,解得(舍正),即.――――(2分)作DH⊥BC于H,CT⊥x轴于T,则在△DBH 中,HB=HD=1,∠DHB=90°,又AC∥BD,得△CTA∽△DHB,所以CT=AT,即,――――――――――――――――(2分)解得k=4, 所以平移后抛物线表达式为. ―――――(1分) 25. 解:(1)过C作CH⊥AB与H,―――――――――――――――――(1分)由∠A=90°,DP∥AB,得四边形ADCH为矩形. 在△BCH中,CH=AD=4,∠BHC=90°,t an∠CBH=2,得HB=CH÷2=2,(1分)所以CD=AH=5-2=3,―――――――――――――――――――――――(1分)则四边形ABCD的面积= .―――(1分)(2)由BE平分∠ABC,得∠ABE=∠EBC,当△ABE∽△EBC时,① ∠BCE=∠BAE=90°,由BE=BE,得△BEC≌△BEA,得BC=BA=5,于是在△BCH中,BH= ,所以CD=AH=5-3=2. ―――――――――――――――――――――――(2分)② ∠BEC=∠BAE=90°,延长CE交BA延长线于T,由∠ABE=∠EBC,∠BEC=∠BET=90°,BE=BE,得△BEC≌△BET,得BC=BT,且CE=TE,又CD∥AT,得AT=CD. 令CD=x,则在△BCH中,BC=BT=5+x,BH=5-x,∠BHC=90°,所以,即,解得.―――(2分)综上,当△ABE∽△EBC时,线段CD的长为2或.―――――――――(1分)(3)延长BE交CD延长线于M,――――――――――――――――――(1分)由AB∥CD,得∠M=∠ABE=∠CBM,所以CM=CB. 在△BCH中, . 则DM=CM-CD= ,又DM∥AB,得,即,――――(2分)解得――――――――――(2分)。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,DEFS :9BFAS=:25,则DE :EC =( )A .2:5B .3:2C .2:3D .5:3【答案】B【分析】根据平行四边形的性质得到DC//AB ,DC=AB ,得到△DFE ∽△BFA ,根据相似三角形的性质计算即可. 【详解】四边形ABCD 是平行四边形,//DC AB ∴,DC AB =, DFE ∴∽BFA ,DEFS∴:2()BFADE SAB=, 35DE AB ∴=, DE ∴:3EC =:2,故选B . 【点睛】本题考查的是相似三角形的性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.2.如图,点()8,6P 在ABC ∆的边AC 上,以原点O 为位似中心,在第一象限内将ABC ∆缩小到原来的12,得到'''A B C ∆,点P 在''A C 上的对应点P'的的坐标为( )A .()4,3B .()3,4C .()5,3D .()4,4【答案】A【解析】根据位似的性质解答即可.【详解】解:∵点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A′B′C′, ∴点P 在A′C′上的对应点P′的的坐标为:(4,3). 故选A . 【点睛】此题主要考查了位似变换,正确得出位似比是解题关键.如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,进而结合已知得出答案.3.如图坐标系中,O (0,0),A (3,33),B (6,0),将△OAB 沿直线CD 折叠,使点A 恰好落在线段OB 上的点E 处,若OE =65,则AC :AD 的值是( )A .1:2B .2:3C .6:7D .7:8【答案】B【分析】过A 作AF ⊥OB 于F ,如图所示:根据已知条件得到AF =3OF =1,OB =6,求得∠AOB =60°,推出△AOB 是等边三角形,得到∠AOB =∠ABO =60°,根据折叠的性质得到∠CED =∠OAB =60°,求得∠OCE =∠DEB ,根据相似三角形的性质得到BE =OB ﹣OE =6﹣65=245,设CE =a ,则CA =a ,CO =6﹣a ,ED =b ,则AD =b ,DB =6﹣b ,于是得到结论. 【详解】过A 作AF ⊥OB 于F ,如图所示:∵A (1,3),B (6,0), ∴AF =3OF =1,OB =6, ∴BF =1, ∴OF =BF , ∴AO =AB , ∵tan ∠AOB =3AFOF= ∴∠AOB =60°,∴△AOB 是等边三角形, ∴∠AOB =∠ABO =60°,∵将△OAB 沿直线CD 折叠,使点A 恰好落在线段OB 上的点E 处, ∴∠CED =∠OAB =60°,∵∠OCE +∠COE =∠OCE +60°=∠CED +∠DEB=60°+∠DEB , ∴∠OCE =∠DEB , ∴△CEO ∽△EDB , ∴OE BD =CE ED =COBE, ∵OE =65, ∴BE =OB ﹣OE =6﹣65=245, 设CE =a ,则CA =a ,CO =6﹣a ,ED =b ,则AD =b ,DB =6﹣b ,则656a b b =-,6245a ab -=, ∴6b =10a ﹣5ab ①,24a =10b ﹣5ab ②, ②﹣①得:24a ﹣6b =10b ﹣10a ,∴23ab=,即AC:AD=2:1.故选:B.【点睛】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得△AOB是等边三角形是解题的关键.4.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.125【答案】B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,225AB BD-=,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.5.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.144°B.132°C.126°D.108°【答案】A【分析】利用圆的周长公式求得该弧的长度,然后由弧长公式进行计算.【详解】解:依题意得2π×2=5 180nπ⨯,解得n=1.故选:A.【点睛】本题考查了弧长的计算. 此题的已知条件是半径为2的圆的周长=半径为5的弧的弧长. 6.△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线B.三条中线C.三条角平分线D.三条高【答案】A【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC 的外接圆圆心是△ABC 三边垂直平分线的交点, 故选:A . 【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.在Rt ABC ∆中,90C ∠=︒,A ∠、B 的对边分别是a 、b ,且满足2220a ab b --=,则tan A 等于( ) A .12B .2C .23D .23【答案】B【分析】求出a=2b ,根据锐角三角函数的定义得出tanA=ab,代入求出即可. 【详解】解:a 2-ab-2b 2=0, (a-2b )(a+b )=0, 则a=2b ,a=-b (舍去), 则tanA=ab=2, 故选:B . 【点睛】本题考查了解二元二次方程和锐角三角函数的定义的应用,注意:tanA=A A ∠∠的对边的邻边.8.下列算式正确的是( ) A .110--= B .()33--=C .231-=D .|3|3--=【答案】B【解析】根据有理数的减法、绝对值的意义、相反数的意义解答即可. 【详解】A. 112--=-,故不正确; B. ()33--=,正确;-=-,故不正确;C. 231--=-,故不正确;D. |3|3故选B.【点睛】本题考查了有理数的运算,熟练掌握有理数的减法法则、绝对值的意义、相反数的意义是解答本题的关键. 9.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1 B.2 C.3 D.4【答案】C【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB22-6,108AC BC-22∵M是AD的中点,∴OM=1CD=1.2故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为A.3:4 B.4:3C3:2 D.23【答案】C【分析】根据相似三角形面积比等于相似比的平方,周长的比等于相似比解答.【详解】解:∵△ABC∽△DEF,且S△ABC:S△DEF=3:4,∴△ABC与△DEF32,∴△ABC与△DEF3 2.故选C【点睛】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方,周长的比等于相似比. 11.如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )A .12πcm 2B .15πcm 2C .18πcm 2D .24πcm 2【答案】B【解析】试题分析:∵底面周长是6π,∴底面圆的半径为3cm ,∵高为4cm ,∴母线长5cm ,∴根据圆锥侧面积=12底面周长×母线长,可得S=12×6π×5=15πcm 1.故选B . 考点:圆锥侧面积.12.已知二次函数y=a (x ﹣h )2+k (a >0),其图象过点A (0,2),B (8,3),则h 的值可以是( ) A .6 B .5C .4D .3【答案】D【解析】解:根据题意可得当0<x <8时,其中有一个x 的值满足y=2, 则对称轴所在的位置为0<h <4 故选:D 【点睛】本题考查二次函数的性质,利用数形结合思想解题是关键. 二、填空题(本题包括8个小题) 13.在ABC ∆中,若A ∠、B 满足1sin tan 302A B -+-=,则ABC ∆为________三角形. 【答案】直角【分析】先根据非负数的性质及特殊角的三角函数值求得∠A 和∠B ,即可作出判断. 【详解】∵1sin tan 302A B --=, ∴1sin 02A -=,tan 30B =, ∴1sin 2A =,tan 3B =∵1sin 302︒=,tan 603︒=∴∠A=30°,∠B=60°,∴180?180306090C A B ∠∠∠=︒--=︒-︒-︒=︒,∴△ABC是直角三角形.故答案为:直角.【点睛】本题考查了特殊角的三角函数值,非负数的性质及三角形的内角和定理,根据非负数的性质及特殊角的三角函数值求出∠A、∠B的度数,是解题的关键.14.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.【答案】1【分析】根据函数值相等两点关于对称轴对称,可得答案.【详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为1.【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.15.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向坐标轴作垂线段,已知S阴影部分=m,则S1+S2=_____.【答案】8﹣2m【分析】根据反比例函数系数k的几何意义可得S四边形AEOF=4,S四边形BDOC=4,根据S1+S2=S四边形AEOF+S 四边形BDOC﹣2×S阴影,可求S1+S2的值.【详解】解:如图,∵A、B两点在双曲线y=4x上,∴S四边形AEOF=4,S四边形BDOC=4,∴S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影, ∴S 1+S 2=8﹣2m 故答案为:8﹣2m . 【点睛】本题考查了反比例函数系数k 的几何意义,熟练掌握在反比例函数图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.16.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.【答案】140°.【分析】根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠BOC 的度数. 【详解】∵点O 是△ABC 的内切圆的圆心, ∴OB 、OC 为∠ABC 和∠ACB 的角平分线, ∴∠OBC=12∠ABC ,∠OCB=12∠ACB , ∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°, ∴∠OBC+∠OCB=12(∠ABC+∠ACB )=40°, ∴∠BOC=180°-40°=140°. 故答案为:140° 【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.17.已知二次函数2y ax bx c =++的自变量x 与函数y 的部分对应值列表如下:x… -3 -2 -1 0 … y…-3-4-3…则关于x 的方程20ax bx c ++=的解是______. 【答案】13x =-,21x =【分析】首先根据x 与函数y 的部分对应值求出二次函数解析式,然后即可得出一元二次方程的解. 【详解】将(0,-3)(-1,-4)(-3,0)代入二次函数,得34930c a b c a b c =-⎧⎪-+=-⎨⎪-+=⎩解得123a b c =⎧⎪=⎨⎪=-⎩∴二次函数解析式为223y x x =+- ∴方程为2230x x +-=()()130x x -+=∴方程的解为13x =-,21x = 故答案为13x =-,21x =. 【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.18.如图,在平面直角坐标系中,将ABO ∆绕点A 顺时针旋转到111A B C ∆的位置,点B ,O 分别落在点1B ,1C 处,点1B 在x 轴上,再将11AB C ∆绕点1B 顺时针旋转到112A B C ∆的位置,点2C 在x 轴上,再将112A B C ∆绕点2C 顺时针旋转到222A B C ∆的位置,点2A 在x 轴上,依次进行下去,……,若点3,02A ⎛⎫⎪⎝⎭,()0,2B ,则点B 2016的坐标为______.【答案】(6048,2)【分析】由题意可得,在直角三角形OAB 中,53OA =,4OB =,根据勾股定理可得133AB =,即可求得OAB ∆的周长为10, 由此可得2B 的横坐标为10,4B 的横坐标为20,···由此即可求得点2016B 的坐标.【详解】在直角三角形OAB 中,53OA =,4OB =, 由勾股定理可得:133AB =, OAB ∆的周长为:51341033OA OB AB ++=++=,∴2B 的横坐标为:OA+AB 1+B 1C 1=10,4B 的横坐标为20,··· ∴20162016(10,4)2B ⨯. 故答案为(10080,4). 【点睛】本题考查了点的坐标的变化规律,根据题意正确得出点的变化规律是解决问题的关键. 三、解答题(本题包括8个小题)19.如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB =20米,顶点M 距水面6米(即MO =6米),小孔水面宽度BC =6米,顶点N 距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.【答案】(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析. 【分析】(1)设大孔所在的抛物线的解析式为26y ax =+,求得大孔所在的抛物线的解析式为23650y x =-+,当2x =时,得到2326 5.76550y =-⨯+=>,于是得到结论; (2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为2 4.5z mx =+,求得小孔所在的抛物线的解析式为21 4.52z x =-+,当 1.5x =时,得到 3.375 3.5z =<,于是得到结论.【详解】解:(1)设大孔所在的抛物线的解析式为26y ax =+, 由题意得,0()10,A -,2(10)60a ∴-+=, 350a ∴=-,∴大孔所在的抛物线的解析式为23650y x =-+, 当2x =时,2326 5.76550y =-⨯+=>, ∴该巡逻船能安全通过大孔;(2)建立如图所示的平面直角坐标系, 设小孔所在的抛物线的解析式为2 4.5z mx =+, 由题意得,(3,0)C , 23 4.50m ∴⨯+=,12m ∴=-,∴小孔所在的抛物线的解析式为21 4.52z x =-+,当 1.5x =时, 3.375 3.5z =<,∴小船不能安全通过小孔.【点睛】本题考查了二次函数的应用以及二次函数图象上点的坐标特征,结合函数图象及二次函数图象上点的坐标特征找出关于a 的一元一次方程是解题的关键. 20.如图,在△ABC 中,AB =4cm ,AC =6cm .(1)作图:作BC 边的垂直平分线分别交与AC ,BC 于点D ,E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD ,求△ABD 的周长.【答案】(1)详见解析;(2)10cm . 【分析】(1)运用作垂直平分线的方法作图,(2)运用垂直平分线的性质得出BD =DC ,利用△ABD 的周长=AB+BD+AD =AB+AC 即可求解. 【详解】解:(1)如图1,(2)如图2,∵DE是BC边的垂直平分线,∴BD=DC,∵AB=4cm,AC=6cm.∴△ABD的周长=AB+BD+AD=AB+AC=4+6=10cm.【点睛】本题考查的是尺规作图以及线段垂直平分线的性质:线段垂直平分线上的点到线段两端的距离相等, 21.如图,C地在B地的正东方向,因有大山阻隔,由B地到C地需绕行A地,已知A地位于B地北偏东53°方向,距离B地516千米,C地位于A地南偏东45°方向.现打算打通穿山隧道,建成两地直达高铁,求建成高铁后从B地前往C地的路程.(结果精确到1千米)(参考数据:sin53°=45,cos53°=35,tan53°=43)【答案】建成高铁后从B地前往C地的路程约为722千米.【分析】作AD⊥BC于D,分别根据正弦、余弦的定义求出BD、AD,再根据等腰直角三角形的性质求出CD的长,最后计算即可.【详解】解:如图:作AD⊥BC于D,在Rt△ADB中,cos∠DAB=ADAB,sin∠DAB=BDAB,∴AD=AB•cos∠DAB=516×35=309.6,BD=AB•sin∠DAB=516×45=412.8,在Rt△ADC中,∠DAC=45°,∴CD=AD=309.6,∴BC=BD+CD≈722,答:建成高铁后从B地前往C地的路程约为722千米.【点睛】本题考查了方向角问题,掌握方向角的概念和熟记锐角三角函数的定义是解答本题的关键.22.在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是:;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).【答案】(1) 12;(2)23.【解析】(1)共4张卡片,奇数卡片有2张,利用概率公式直接进行计算即可;(2)画出表格,数出总情况数,数出抽取的2张卡片标有数字之和大于4的情况数,再利用概率公式进行计算即可【详解】(1)共4张卡片,奇数卡片有2张,所以恰好抽到标有奇数卡片的概率是21 = 42(2)表格如下一共有12种情况,其中2张卡片标有数字之和大于4的有8种情况,所以82123 P==答:从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是12,抽取的2张卡片标有数字之和大于4的概率为2 3 .【点睛】本题主要考查利用画树状图或列表求概率问题,本题关键在于能够列出表格23.如图,在平面直角坐标系中,∠ACB =90°,OC =2BO ,AC =6,点B 的坐标为(1,0),抛物线y =﹣x 2+bx+c 经过A 、B 两点. (1)求点A 的坐标; (2)求抛物线的解析式;(3)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE =12DE . ①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【答案】(1)y=﹣x 2﹣3x+4;(2)①P (﹣1,6);②点M 的坐标为:∴M (﹣1,11)或(﹣1,3111,﹣1)或(﹣1,132). 【解析】(1)先根据已知求点A 的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB 的解析式为:y=-2x+2,根据PD ⊥x 轴,设P (x ,-x 2-3x+4),则E (x ,-2x+2),根据PE=12DE ,列方程可得P 的坐标;②先设点M 的坐标,根据两点距离公式可得AB ,AM ,BM 的长,分三种情况:△ABM 为直角三角形时,分别以A 、B 、M 为直角顶点时,利用勾股定理列方程可得点M 的坐标. 【详解】(1)∵B (1,0), ∴OB=1, ∵OC=2OB=2, ∴C (﹣2,0),Rt △ABC 中,tan ∠ABC=2,∴ACBC =2, ∴3AC=2, ∴AC=6, ∴A (﹣2,6),把A (﹣2,6)和B (1,0)代入y=﹣x 2+bx+c 得:426{10b c b c -+=-++=,解得:3 {4bc=-=,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=12 DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=12(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3∴M(﹣1,)或(﹣1,3);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=132,∴M(﹣1,132);综上所述,点M的坐标为:∴M(﹣1,)或(﹣1,3)或(﹣1,﹣1)或(﹣1,132).【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.24.已知抛物线y=mx2+(3–2m)x+m–2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q的坐标.【答案】 (1)m<94且m≠0;(2)点P(1,1)在抛物线上;(3)抛物线的顶点Q的坐标为(–12,–54).【分析】(1)与x轴有两个不同的交点即令y=0,得到的一元二次方程的判别式△>0,据此即可得到不等式求解;(2)把点(1,1)代入函数解析式判断是否成立即可;(3)首先求得函数解析式,化为顶点式,可求得顶点坐标.【详解】(1)由题意得,(3–2m)2–4m(m–2)>0,m≠0,解得,m<94且m≠0;(2)当x=1时,mx2+(3–2m)x+m–2=m+(3–2m)+m–2=1,∴点P(1,1)在抛物线上;(3)当m=1时,函数解析式为:y=x2+x–1=(x+12)2–54,∴抛物线的顶点Q的坐标为(–12,–54).【点睛】本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,则二次函数与x轴有一个交点;如果△<0, 则二次函数与x轴无交点.25.如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为BD的中点,且BD=8,AC=9,sinC=13,求⊙O的半径.【答案】⊙O的半径为256.【解析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
试卷第1页,总10页绝密★启用前2017-2018第一学期沪科版九年级期末复习数学试卷一做卷时间120分钟 满分150分 温馨提示:亲爱的同学们,考试只是检查我们对所学知识的掌握情况,希望你保持镇静,不要急于下结论;下笔时,把字写得规矩些,让自己和老师都看得舒服些,祝你成功!一、单选题(本大题共10小题,共40分)1.(本题4分)将二次函数2y x =的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( ) A .2(1)3y x =-+ B .2(1)3y x =++ C .2(1)3y x =-- D .2(1)3y x =+-2.(本题4分)已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,如果以此蓄电池为电源的用电器限制电流不超过10A ,那么此用电器的可变电阻为( )…○…………线※※……○A.不小于3.2Ω B.不大于3.2Ω C.不小于12ΩD.不大于12Ω3.(本题4分)如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是().A. AB⊥CDB. ∠AOB=4∠ACDC. AD=BDD. PO=PD4.(本题4分)某公园一喷水池喷水时水流的路线呈抛物线(如图).若喷水时水流的高度y(m)与水平距离x(m)之间的函数关系式是25.122++-=xxy,则水池在喷水过程中水流的最大高度为()A.1.25米 B.2.25米 C.2.5米 D.3米5.(本题4分)如图,在高为2米,坡角为30°的楼梯上铺地毯,地毯的长度至少应为()A.4米 B.6米 C.24米 D.()322+米6.(本题4分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,试卷第2页,总10页试卷第3页,总10页………○…………线…………○_________班级:________○…………线…………○……○…………装………以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A. 95B. 215C. 185D. 527.(本题4分)一个圆锥底面直径为2,母线为4,则它的侧面积为( ).A .2πB .12π C .4π D .8π8.(本题4分)如图,点A ,B ,C 在⊙O 上,AC ∥OB ,∠BAO=25°,则∠BOC 的度数为( )A. 25°B. 50°C. 60°D. 80°9.(本题4分)如图,是抛物线y=ax 2+bx+c (a ≠0)图象的一部分.已知抛物线的对称轴为x=2,与x 轴的一个交点是(﹣1,0).有下列结论:①abc >0;②4a ﹣2b+c <0;③4a+b=0;④抛物线与x 轴的另一个交点是(5,0);⑤点(﹣3,y 1),(6,y 2)都在抛物线上,则有y 1<y 2.其中正确的是( )试卷第4页,总10页○…………外…………订…※※线※※内※※答…………A .①②③B .②④⑤C .①③④D .③④⑤10.(本题4分)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水部分的面积是( )A .(163π-2cm B .(163π-2cm C .(83π-)2cmD .(43π-2cm二、填空题(本大题共4小题,计20分)11.(本题5分)若23a c bd ==,则23423+6a cb d -+-的值为_________. 12.(本题5分)如图,小明在打网球时,要使球恰好能打过网,而且落在离网5米的位置上,则球拍击球的高度应为__________米.试卷第5页,总10页………○………………○……学校:______……装…………○……………装…………○…13.(本题5分)(2015秋•辛集市期末)一个布袋中装有只有颜色不同的a (a >12)个小球,分别是2个白球、4个黑球,6个红球和b 个黄球,从中任意摸出一个球,记下颜色后放回,经过多次重复实验,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).根据题中给出的信息,布袋中黄球的个数为.14.(本题5分)如右图,A 、B 分别是反比例函数10y x =, 6y x=图象上的点,过A 、B 作x 轴的垂线,垂足分别为C 、D,连接OB 、OA,OA 交BD 于E 点,△BOE 的面积为S 1,四边形ACDE 的面积为S 2,则S 2-S 1= _________.三、(本题共2小题,计16分)15.(本题8分)(1)已知a b c 357==,求a b 2c b c+-+的值.试卷第6页,总10页(2)已知A B C∠∠∠,,是锐角△ABC 的三个内角,且满足(22sinA 0+=,求C ∠的度数.16.(本题8分)(本题满分6分)如图,AC 是△ABD 的高,∠D =45°,∠B =60°,AD =10.求AB 的长.四、(本大题共2小题,共16分)17.(本题8分)如图,AB 为⊙O 的直径,CO ⊥AB 于点O ,D 在⊙O 上,连接BD 、CD ,延长CD 与AB 的延长线交于E ,F 在BE 上,且FD=FE .(1)求证:FD 是⊙O 的切线;(2)若AF=10,tan ∠BDF=41,求EF 的长.18.(本题8分)(本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:试卷第7页,总10页(1)根据表中数据反映规律试确定y 与x 之间的函数关系式; (2)设经营此小工艺品的日销售利润为S 元,求出S 与x 之间的函数关系式;(3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?五、(本大题共2小题,共20分)19.(本题10分)已知:如图,在Rt △ABC 中,∠C =90°,AC 点D 为BC 边上一点,且BD =2AD ,∠ADC =60°,求△ABC 的周长.(结果保留根号)20.(本题10分)如图,在东西方向的海岸线l 上有一长为1千米的码头MN ,在码头西端M 的正西方向30 千米处有一观察站O .某时刻测得一艘匀速直线航行的轮船位于O 的北偏西30°方向,且与O 相距20 3千米的A 处;经过40分钟,又测得该轮船位于O 的正北方向,且与O 相距20千米的B 处.试卷第8页,总10页○…………外…线…………○……………………(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.(参考数据: ≈1.414, 3≈1.732)六、(本大题共12分)21.(本题12分)为推广阳光体育“大课间”活动,某中学决定在学生中开设A :实心球,B :立定跳远,C :跳绳,D :跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两幅统计图中的B 补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.试卷第9页,总10页七、(本大题共12分)22.(本题12分)如图,正比例函数y=2x 与反比例函数)0(≠=k xky 的图象的一个交点为A (2,m ). 求m 和k 的值.八、(本大题共14分)23.(本题14分)如图,抛物线243y x x =++交x 轴于A ,B 两点(A 在B 左侧),交y 轴于点C .已知一次函数y=kx+b 的图象过点A ,C .(1)求抛物线的对称轴和一次函数的解析式;(2)根据图象,写出满足kx+b >243x x ++的x 的取值范围; (3)在平面直角坐标系xoy 中是否存在点P ,与A 、B 、C 三点构成一个平行四边形?若存在,请写出点P 的坐标;若不存在,请试卷第10页,总10页说明理由.参考答案1.A.【解析】试题分析:∵二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度,∴所得图象的函数解析式是:y=(x-1)2+3.故选A.考点:二次函数图象与几何变换.2.A【解析】试题分析:解:由物理知识可知:I=,其中过点(8,4),故U=32,当I≤10时,由R≥3.2.故选A.考点:反比例函数的应用.3.D【解析】解:∵P是弦AB的中点,CD是过点P的直径,∴AB⊥CD,弧AD=弧BD,△AOB是等腰三角形,∴∠AOB=2∠AOP.∵∠AOP=2∠ACD,∴∠AOB=2∠AOP=2×2∠ACD=4∠ACD.故选D.点睛:本题主要利用平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧的性质选择.4.B.【解析】试题分析:把25.122++-=x x y 化为顶点式可得y=-(x-1)2+2.25,根据二次函数的性质可得当x=1时,y 最大为2.25,故答案选B .考点:二次函数的性质. 5.D 【解析】试题分析:因为高为2米,坡角为30°,所以水平距离是用平移可得地毯的长度=高+水平距离=()322+米,故选:D . 考点:1.锐角三角函数;2.图形的平移. 6.C【解析】试题解析:∵在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,∴5=,过C 作CM ⊥AB ,交AB 于点M ,如图所示,∵CM ⊥AB , ∴M 为AD 的中点,∵S △ABC =12AC •BC=12AB •CM ,且AC=3,BC=4,AB=5, ∴CM=125, 在Rt △ACM 中,根据勾股定理得:AC 2=AM 2+CM 2,即9=AM 2+(125)2,解得:AM=95,∴AD=2AM=185.故选C .考点:1.垂径定理;2.勾股定理. 7.C . 【解析】试题分析:圆锥的底面周长为2π,即侧面展开图的弧长为2π,所以它的侧面积为1242π⨯⨯=4π. 故选:C .考点:圆锥的计算. 8.B【解析】试题分析:先根据OA=OB ,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论. ∵OA=OB ,∠BAO=25°,∴∠B=25°.∵AC ∥OB ,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.故选B . 考点:圆周角定理及推论,平行线的性质. 9.C . 【解析】试题分析:①∵二次函数的图象开口向上, ∴a >0,∵二次函数的图象交y 轴的负半轴于一点, ∴c <0,∵对称轴是直线x=2,∴﹣2ba =2,∴b=﹣4a <0, ∴abc >0. 故①正确;②把x=﹣2代入y=ax 2+bx+c 得:y=4a ﹣2b+c ,由图象可知,当x=﹣2时,y >0, 即4a ﹣2b+c >0. 故②错误; ③∵b=﹣4a , ∴4a+b=0. 故③正确;④∵抛物线的对称轴为x=2,与x 轴的一个交点是(﹣1,0), ∴抛物线与x 轴的另一个交点是(5,0). 故④正确;⑤∵(﹣3,y 1)关于直线x=2的对称点的坐标是(7,y 1), 又∵当x >2时,y 随x 的增大而增大,7>6, ∴y 1>y 2. 故⑤错误;综上所述,正确的结论是①③④. 故选C .考点:二次函数图象与系数的关系. 10.A 【解析】试题分析:如图:过点O 作OD ⊥AB,垂足为C ,连结OA,OB,则AC=BC=12AB,OA=OB=OD=4,CD=2,所以在Rt △OAC 中,OC=2,AC=,∠AOC=60°,所以AB=∠AOB=120°,所以阴影部分的面积=扇形AOB的面积-△OAB 的面积=21204116236023ππ⨯-⨯=-A .考点:1.垂径定理;2.解直角三角形;3.扇形的面积. 11.23【解析】∵23a cb d ==, ∴22a b =33c d --=46=23 ∴23423+6a c b d -+-=23. 故答案为23.12.2.7m【解析】试题解析:如图:根据题意得:易证△OAB ∽△OCD , ∴0.9:h=5:15 ∴h=2.7m考点:相似三角形的应用. 视频 13.8 【解析】试题分析:首先根据黑球数÷总数=摸出黑球的概率,再计算出摸出白球,黑球,红球的概率可得答案. 解:球的总数:4÷0.2=20(个), 2+4+6+b=20, 解得:b=8, 故答案为:8.考点:利用频率估计概率. 14.2【解析】∵A 、B 分别是反比例函数10y x =, 6y x=图象上的点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,∴由反比例函数ky x=中, k 的几何意义可得:S △OBD =3,S △OAC =5. 又∵S 1= S △OAC - S △OED ,S 2= S △OBD - S △OED ,∴S 1-S 2=(S △OAC - S △OED )-(S △OBD - S △OED )= S △OAC - S △OBD =5-3=2. 15.(1)12-;(2)75°.【解析】试题分析:(1)根据等比的性质,设a b c k 357===,把a 、b 、c 分别用k 表示,代入所求代数式即可得出结果;(2)根据偶次幂和二次根式的非负数性质求出sinA tan B 1==,从而求得∠A=60°, ∠B=45°,根据三角形内角和定理即可求得C ∠的度数.试题解析:(1)设a b c k 357===,则a 3k b 5k c 7k ===,,,∴a b 2c 3k 5k 14k 6k 1b c 5k 7k 12k 2+-+--===-++.(2)由(22s i n 3B 10-=得(22sinA 0==,即s i n ,t a n B 1==, ∴∠A=60°, ∠B=45°. ∴C 180A B 75∠=︒-∠-∠=︒.考点:1.代数式求值;2.等比的性质;3.偶次幂和二次根式的非负数性质;4. 特殊角的三角函数值;5.三角形内角和定理. 16【解析】试题分析:首先根据Rt △ACD 的三角函数求出AC 的长度,然后根据Rt △ABC 的三角形函数求出AB 的长度.试题解析:在Rt △ACD 中,AC=10×sin ∠D=10×sin45°在Rt △ABC 中,AB=sin AC B ∠考点:锐角三角函数的应用. 17.(1)、证明过程见解析;(2)、2.5【解析】试题分析:(1)、连结OD ,如图,由CO ⊥AB 得∠E+∠C=90°,根据等腰三角形的性质由FE=FD ,OD=OC 得到∠E=∠FDE ,∠C=∠ODC ,于是有∠FDE+∠ODC=90°,则可根据切线的判定定理得到FD 是⊙O 的切线;(2)、连结AD ,如图,利用圆周角定理,由AB 为⊙O 的直径得到∠ADB=90°,则∠A+∠ABD=90°,加上∠OBD=∠ODB ,∠BDF+∠ODB=90°,则∠A=∠BDF ,易得△FBD ∽△FDA ,根据相似的性质得AF DF=AD BD ,再在Rt △ABD 中,根据正切的定义得到tan ∠A=tan ∠BDF=AD BD =41,于是可计算出DF=2.5,从而得到EF=2.5.试题解析:(1)、连结OD ,如图, ∵CO ⊥AB , ∴∠E+∠C=90°, ∵FE=FD ,OD=OC ,∴∠E=∠FDE ,∠C=∠ODC , ∴∠FDE+∠ODC=90°, ∴∠ODF=90°, ∴OD ⊥DF , ∴FD 是⊙O 的切线;(2)、连结AD ,如图, ∵AB 为⊙O 的直径, ∴∠ADB=90°, ∴∠A+∠ABD=90°, ∵OB=OD ,∴∠OBD=∠ODB , ∴∠A+∠ODB=90°, ∵∠BDF+∠ODB=90°, ∴∠A=∠BDF , 而∠DFB=∠AFD ,∴△FBD ∽△FDA , ∴AF DF =AD BD , 在Rt △ABD 中,tan ∠A=tan ∠BDF=AD BD =41, ∴10DF =41,∴DF=2.5, ∴EF=2.5.考点:(1)、切线的判定;(2)、勾股定理;(3)、垂径定理;(4)、解直角三角形. 18.(1)x y 420=;(2)1260420S x=-+;(3)当日销售单价定为9元时,才能获得最大日销售利润是280元. 【解析】试题分析:(1)利用表中数据规律可知x 与y 的乘积不变,得出y 与x 之间的函数关系式;(2)利用(1)中所求,再利用进价为3元,得出每件利润,即可得出S 与x 之间的函数关系式;(3)首先得出x 的取值范围,利用函数增减性即可得出答案. 试题解析:(1)由表中数据规律可知x 与y 的乘积不变,为105×4=420,所以函数关系式为:xy 420=; (2)根据题意可得:4201260(3)420S x x x=-⨯=-+; (3)由题意可知:x ≤3+3×200%,∴3≤x ≤9,∵k=﹣1260<0,∴S 随x 的增大而增大,∴当x=9时,S 的值最大,最大值为280,∴当日销售单价定为9元时,才能获得最大日销售利润是280元. 考点:二次函数的应用. 19.5【解析】在Rt △ADC 中,∠C =90°,AC ,∠ADC =60°,因为sin AC ADC AD ∠=,即2AD =,所以AD =2.由勾股定理得:1DC ==. 所以BD =2AD =4,BC =BD +DC =5.在Rt △ABC 中,∠C =90°,AC BC =5,由勾股定理得:AB =所以Rt △ABC 的周长为5AB BC AC ++=.20.(1)30千米/时; (2) 轮船不改变航向继续航行,不能行至码头MN 靠岸.【解析】试题分析:(1)过点A 作AC ⊥OB 于点C .由题意,得OA=千米,OB=20千米,∠AOC=30°.∴(千米).∵在Rt △AOC 中,OC=OA •cos ∠AOC==30(千米).∴BC=OC ﹣OB=30﹣20=10(千米).∴在Rt △ABC 中,==20(千米).∴轮船航行的速度为:(千米/时).(2)如果该轮船不改变航向继续航行,不能行至码头MN 靠岸. 理由:延长AB 交l 于点D .∵AB=OB=20(千米),∠AOC=30°.∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.∴在Rt △BOD 中,OD=OB •tan ∠OBD=20×tan60°=(千米).∵>30+1,∴该轮船不改变航向继续航行,不能行至码头MN 靠岸.考点:解直角三角形的应用-方向角问题.21.(1)在这项调查中,共调查了150名学生;(2)喜欢“立定跳远”的学生人数为45人,“立定跳远”的学生占被调查学生的30%;补全图形见解析;(3)刚好抽到同性别学生的概率是2.5【解析】试题分析:(1)用A的人数除以所占的百分比,即可求出调查的学生数;(2)用抽查的总人数减去A、C、D的人数,求出喜欢“立定跳远”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(3)用A表示男生,B表示女生,画出树形图,再根据概率公式进行计算即可.试题解析:(1)根据题意,得:15÷10%=150(人),答:在这项调查中,共调查了150名学生;(2)本次调查中喜欢“立定跳远”的学生人数为:150﹣15﹣60﹣30=45(人),“立定跳远”的学生占被调查学生百分比为:45×100%=30%,150补全图形如下:(3)用A 表示男生,B 表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是820=25. 22.m=4;k=8.【解析】试题分析:首先将点A 的坐标代入正比例函数解析式求出m 的值,然后将点A 的坐标代入反比例函数解析式求出k 的值.试题解析:将点A (2,m )的坐标代入y=2x 中,得m =2×2,即m =4. ∴A (2,4).将点A (2,4)的坐标代入xk y =,得k =2×4,即k =8.考点:一次函数与反比例函数的交点问题.23.(1)2,3x y x =-=+;(2)30x -<<(3)存在点P ,共有三种情况:(2,3)或(-2,3)或(-4,-3).【解析】试题分析:(1)利用对称轴2b x a =-公式计算即可,令243y x x =++=0,求出点A 的坐标,令x=0,求出点C 的坐标,然后代入y=kx+b 得出关于k 、b 的方程组,解方程组即可;(2)根据图象作答即可;(3)分三种情况讨论:分别以AC ,AB 为对角线各可求得一点,再以AC ,AB 为边求得一点;试题解析:(1)对称轴4222b x a =-=-=-;令243y x x =++=0,有x 2+4x+3=0,解之,得x 1=-1,x 2=-3,∴点A 的坐标为(-3,0),令x=0,则243y x x =++=3,所以点C 的坐标为(0,3),把(-3,0),(0,3),代入y=kx+b 得:303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩,所以直线解析式是3y x =+;(2)根据图象可得:当-3<x <0时,kx+b >243x x ++;(3)因为可求点B 的坐标是(-1,0),所以AB=3,当四边形ABPC 是平行四边形时,有AB//PC ,AB=PC=2,而点C 的坐标是(0,3),所以点P 为(2,3),同理当四边形ABCP 是平行四边形时,点P 坐标是(-2,3);当四边形APBC 是平行四边形时,点P 在第三象限,此时利用平行四边形的性质可求点P 坐标是(-4,-3);所以点P 的坐标为:(2,3)或(-2,3)或(-4,-3).考点:二次函数的性质、一次函数、待定系数法、平行四边形的性质.。
2018年上海浦东新区初三上学期期末数学试卷一、选择题:(本大题共6题,每题4分,满分24分)1.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A 的余切值( )A. 扩大为原来的两倍B. 缩小为原来的 12 C. 不变 D. 不能确定【答案】C【解析】因为△ABC 三边的长度都扩大为原来的2倍所得的三角形与原三角形相似,所以锐角A 的大小没改变,所以锐角A 的余切值也不变.故选:C.2.下列函数中,二次函数是( )A. y =﹣4x+5B. y =x(2x ﹣3)C. y =(x+4)2﹣x 2D. y =21x 【答案】B【解析】A. y=-4x+5是一次函数,故此选项错误;B. y= x(2x -3)=2x 2-3x ,是二次函数,故此选项正确;C. y=(x+4)2−x 2=8x+16,为一次函数,故此选项错误;D. y=21x 是组合函数,故此选项错误.故选:B.3.已知在Rt △ABC 中,∠C =90°,AB =7,BC =5,那么下列式子中正确的是( )A sinA =57 B. cosA =57 C. tanA =57 D. cotA =57【答案】A【解析】如图:.由锐角三角函数定义,知:BC 5sinA AB 7==) 故选:A.4.已知非零向量,,a b c v v v )下列条件中,不能判定向量a v 与向量b v平行的是 A. a v ∥b v ,b v ∥c v B. 3a b =v v C. ,2a c b c ==v v v v D. 0a b +=v vv 【答案】B【解析】 A.由a C,b c v P v v P v 推知非零向量a,b,c v v v 的方向相同,则a b v P v,故本选项错误; B.由a 3b =v v 不能确定非零向量a,b v v 的方向,故不能判定其位置关系,故本选项正确;C.由a c,b 2c ==v v v v 推知b 2a =v v ,则非零向量a v 与b v 的方向相同,所以a v ∥b v ,故本选项错误;D.由a b 0+=v v v 推知非零向量a v 与b v 的方向相反,则a v ∥b v ,故本选项错误.故选:B.5.如果二次函数2y ax bx c =++的图像全部在x 轴的下方,那么下列判断中正确的是A. a)0)b)0B. a)0)b)0C. a)0)c)0D. a)0)c)0【答案】D【解析】如果二次函数2y ax bx c =++的图像全部在x 轴的下方,则抛物线开口向下,与y 轴交于负半轴,所以a)0)c)0.故选:D.6.如图,已知点D 、F 在△ABC 的边AB 上,点E 在边AC 上,且DE△BC ,要使得EF△CD ,还需添加一个条件,这个条件可以是( )A. EF ADCD AB= B. AE ADAC AB= C.AF ADAD AB= D.AF ADAD DB=【答案】C 【解析】∵DE∥BC∴ADAB=AEAC.∵EF∥DC)∴AFAD=AEAC)∴AF ADAD AB=即AD2=AF⋅AB.故选:C.点睛:本题考查了平行线分线段成比例.平行于三角形一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.注意找对应关系,以防错解.二、填空题:(本大题共12题,每题4分,满分48分)7.已知32xy=,则x yx y-+=_____)【答案】1 5【解析】设x=3a时,y=2a)则x yx y-+=3a2a3a2a-+=a5a=15.故答案为:1 5 .8.已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP的长是cm)【答案】2较长的线段MP 的长为xcm ,则较短的线段长是(4−x)cm.则x 2=4(4−x))解得x=2或−2 (舍去).故答案为:2.9.已知△ABC△△A 1B 1C 1,△ABC 的周长与△A 1B 1C 1的周长的比值是32,BE 、B 1E 1分别是它们对应边上的中线,且BE=6,则B 1E 1= ________.【答案】4【解析】∵△ABC ∽△A 1B 1C 1,且周长的比值是32) ∴相似比为32) ∵BE)B 1E 1分别是它们对应边上的中线,∴BE)B 1E 1=3:2)∵BE=6)∴B 1E 1=4.故答案为:4.10.计算:132()2a ab +-v v v = ) 【答案】5a b -v v【解析】13a 2a b 2⎛⎫+- ⎪⎝⎭v v v = 3a 2a b +-v v v =5a b -v v . 故答案为:5a b -v v .11.计算:3tan30°+sin45°= )23tan30°+sin45°=332⨯+2.212.抛物线234y x =- 的最低点的坐标是 )【答案】)0,-4)【解析】根据二次函数的图象与性质可得抛物线234y x =-的最低点(顶点)的坐标是(0,4-).13.将抛物线22y x =向下平移3个单位,所得的抛物线的表达式是 )【答案】223y x =-【解析】抛物线y=2x 2的顶点坐标为(0)0))点(0)))向下平移3个单位后所得对应点的坐标为(0)-3))所以平移后的抛物线的表达式是y=2x 2-3.故答案为)y=2x 2−3.14.如图,已知直线l 1)l 2)l 3分别交直线l 4于点A)B)C ,交直线l 5于点D)E)F ,且l 1∥l 2∥l 3,若AB)4)AC)6)DF)9,则DE)) )A. 5B. 6C. 7D. 8 【答案】6【解析】∵l 1∥l 2∥l 3)∴AB DE AC DF=. ∵AB=4)AC=6)DF=9)) ∴469DE =) ∴DE=6.故答案为:6.15.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数解析式是______(不写定义域).【答案】2210S x x =-+【解析】【分析】根据题意列出S 与x 的二次函数解析式即可.【详解】设垂直于墙的一边为x 米,则平行于墙的一边为(10﹣2x )米,根据题意得:S =x (10﹣2x )=﹣2x 2+10x .故答案为:S =﹣2x 2+10x .【点睛】本题考查了根据实际问题列二次函数关系式,弄清题意是解答本题的关键.16.如图,湖心岛上有一凉亭B ,在凉亭B 的正东湖边有一棵大树A ,在湖边的C 处测得B 在北偏西45°方向上,测得A 在北偏东30°方向上,又测得A )C 之间的距离为100米,则A )B 之间的距离是 米(结果保留根号形式))【答案】50【解析】过点C ⊥AB 于点D,在Rt △ACD 中,∵∠ACD=30°)AC=100m)∴AD=100⋅sin ∠ACD=100×12=50(m))CD=100⋅cos ∠(m) 在Rt △BCD 中,∵∠BCD=45°)∴BD=CD=则AB=AD+BD=50+(m).故答案为:50+17.已知点(﹣1,m)、(2,n )在二次函数y =ax 2﹣2ax ﹣1的图象上,如果m >n ,那么a ____0(用“>”或“<”连接).【答案】>)【解析】【详解】∵2y ax 2ax 1=--=a(x -1)2-a -1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为:>18.如图,已知在Rt)ABC中,∠ACB=90°)cos45B=)BC=8,点D在边BC上,将)ABC沿着过点D的一条直线翻折,使点B落在AB边上的点E处,联结CE、DE,当)BDE=)AEC时,则BE的长是.【答案】39 5【解析】如图作CH)AB于H.在Rt)ABC中,)BC=8)4 cosB5=))AB=10)AC=8)CH=245,BH=325,由题意EF=BF,设EF=BF=a,则BD=5 4 a,))BDE=)AEC,))CED+)ECB=)ECB+)B,))CED =)B,))ECD=)BCE,))ECD))BCE,)EC2=CD·CB,)(245)2+(2a-325)2=(8-54a)×8,解得a=5910或0,(舍)BE=2a=59 5故答案为:59 5.点睛:此题考查相似三角形的判定和性质、勾股定理、翻折变换等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程解决问题,属于中考常考题型.三、解答题:(本大题共7题,满分78分)19.将抛物线245y x x =-+向左平移4个单位,求平移后抛物线的表达式、顶点坐标和对称轴)【答案】2(2)1y x =++ )顶点坐标是(-2)1))对称轴是直线2x =-)【解析】试题分析:平移抛物线的依据是,当二次函数的二次项系数a 的值相同时,二次函数图像的形状完全相同,即开口方向和开口大小完全相同,仅仅位置不同,所以他们之间可以进行平移.试题解析:∵2y x 4x 445=-+-+=()2x 21-+) ∴平移后的函数解析式是()2y x 21=++)顶点坐标是(-2)1))对称轴是直线x 2=-)20.如图,已知△ABC 中,点D )E 分别在边AB 和AC 上,DE )BC ,且DE 经过△ABC 的重心,设BC a =u u u r r ))1)DE =uuu r (用向量a r 表示)))2)设AB b =u u u v v )在图中求作12b a +r r ) (不要求写作法,但要指出所作图中表示结论的向量))【答案】)1)23DE a =u u u v v ))2)详见解析. 【解析】试题分析:)1)由DE ∥BC)DE 经过△ABC 的重心,可得AD)AB=DE)BC=2)3,即可求得DE u u u v ) )2)取点BC 的中点M ,连接AM ,则AM u u u u v 即为所求.试题解析:(1)∵DE ∥BC)DE 经过△ABC 的重心,∴AD)AB=DE)BC=2)3))∵BC a =u u u v v) ∴2DE a 3=u u u v v ) )2)如图,取点AB 的中点M)连接AM ,则AM u u u u v即为所求.21.如图,已知G )H 分别是□ABCD 对边AD )BC 上的点,直线GH 分别交BA 和DC 的延长线于点E )F ))1)当18CFHCDGH S S ∆=四边形时)求CH DG的值; )2)联结BD 交EF 于点M ,求证:MG·ME=MF·MH .【答案】(1)13;(2)详见解析. 【解析】试题分析:(1)由ΔCFHCDGH S 1S 8=四边形,得ΔCFH DFG S 1S 9=三角形.由于△CFH ∽△DFG ,由相似三角形面积的比等于相似比的平方,即可求得结果;)2)根据平行四边形的性质得出AB ∥CD)AD//BC)由平行线分线段成比例得出比例式,即可得出答案. 试题解析:)1)∵ΔCFHCDGH S 1S 8=四边形)∴ΔCFHDFG S 1S 9=三角形) ∵ □ABCD 中,AD//BC,∴ △CFH ∽△DFG ) ∴ΔCFHDFG S S =三角形(CH DG )219=, ∴CH DG =13) )2)证明:∵ □ABCD 中,AD//BC) ∴MB MH MD MG =, ∵ □ABCD 中,AB//CD)∴ME MB MF MD=, ∴ME MH MF MG =) ∴MG·ME=MF·MH)22.如图,为测量学校旗杆AB 的高度,小明从旗杆正前方3米处的点C 出发,沿坡度为i=1的斜坡CD 前进D ,在点D 处放置测角仪,测得旗杆顶部A 的仰角为37°,量得测角仪DE 的高为1.5米.A 、B 、C 、D 、E 在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D 的铅垂高度(结果保留根号);(2)求旗杆AB 的高度(精确到0.1).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【答案】(1)点D2)旗杆AB 的高度约为7.7米【解析】试题解析:(1)延长ED 交射线BC 于点H ,在Rt CDH V 中,求得∠DCH=30°,根据30°角直角三角形的性质即可求得DH 的长,即求得点D 的铅垂高度;(2)过点E 作EF ⊥AB 于F ,根据题意可得37AEF o ∠=,易证四边形FBHE 为矩形.从而求得EF)FB 的长;在Rt AEF V 中,根据锐角三角函数求得AF 的长,即可求得AB 的长.试题分析:()1延长ED 交射线BC 于点H )由题意得DH BC ⊥.在Rt CDH V 中,90tan 1DHC DCH i ∠=∠==o ,30DCH ∴∠=o .2CD DH ∴=.CD =Q ,3DH CH ∴==.答:点D .()2过点E 作EF AB ⊥于F .由题意得,AEF ∠即为点E 观察点A 时仰角,37AEF ∴∠=o .EF AB AB BC ED BC Q ,,⊥⊥⊥,90BFE B BHE ∴∠=∠=∠=o .∴四边形FBHE 为矩形.6EF BH BC CH ∴==+=.1.5FB EH ED DH ==+=+在Rt AEF V 中,90tan 60.75 4.5AFE AF EF AEF ∠==∠≈⨯≈o ,.66 1.737.7AB AF FB ∴=+=+≈+≈.答:旗杆AB 的高度约为7.7米.23.如图,已知,在锐角△ABC 中,CE )AB 于点E ,点D 在边AC 上,联结BD 交CE 于点F ,且EF·FC=FB·DF .)1)求证:BD )AC ))2)联结AF ,求证:AF·BE=BC·EF .【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)由两边成比例且夹角相等的两个三角形相似,可得△EFB ∽△DFC ,再由相似三角形对应角相等得∠FEB=∠FDC = 90°,即可得证;)2)由△EFB ∽△DFC 得∠ABD =∠ACE ,进而△AEC ∽△FEB ,由相似三角形对应边成比例得AE FE EC EB =,由此△AEF ∽△CEB ,可得AF BE BC EF ⋅=⋅.试题解析))1)∵AF·BE=BC·EF ) ∴EF FB DF FC=) ∵ ∠EFB=∠DFC)∴ △EFB ∽△DFC.∴ ∠FEB=∠FDC.∵ CE ⊥AB)∴ ∠FEB= 90°.∴ ∠FDC= 90°.∴ BD ⊥AC.)2)∵ △EFB ∽△DFC)∴ ∠ABD =∠ACE.∵ CE ⊥AB)∴ ∠FEB= ∠AEC= 90°∴ △AEC ∽△FEB. ∴AE EC FE EB=, ∴AE FE EC EB =. ∵ ∠AEC=∠FEB= 90°) ∴ △AEF ∽△CEB ∴AF EF CB EB=) ∴ AF BE BC EF ⋅=⋅.点睛:此题考查了相似三角形的判定和性质,关键是根据相似三角形的对应边比值相等的性质解答.24.已知抛物线y =ax 2+bx+5与x 轴交于点A(1,0)和点B(5,0),顶点为M .点C 在x 轴的负半轴上,且AC =AB ,点D 的坐标为(0,3),直线l 经过点C 、D .(1)求抛物线的表达式; (2)点P 是直线l 在第三象限上的点,联结AP ,且线段CP 是线段CA 、CB 的比例中项,求tan ∠CPA 的值; (3)在(2)的条件下,联结AM 、BM ,在直线PM 上是否存在点E ,使得∠AEM =∠AMB ?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】 )1)265y x x =-+))2)13))3)E 的坐标为(-2)-4)或(4)-4). 【解析】 试题分析:)1)把A)B 两点带入抛物线解析式,求得a)b 的值,即可得到抛物线解析式;)2)由AC=AB 且点C 在点A 的左侧,及线段CP 是线段CA)CB 的比例中项,可得CP= 由两边对应成比例且夹角相等的三角形相似,可得△CPA ∽△CBP ,由此∠CPA= ∠CBP...过P 作PH ⊥x 轴于H ,易得PH=4)H)-7)0))BH=12. 由于P)-7)-4),可求1tan CBP tan CPA 3∠∠==) )3)分两种情况:点E 在M 左侧和点E 在M 右侧讨论即可.试题解析:)1)∵ 抛物线2y ax bx 5=++与x 轴交于点A)1)0))B)5)0))∴5025550a b a b ++=⎧⎨++=⎩,解得16.a b =⎧⎨=-⎩;∴ 抛物线的解析式为2y x 6x 5=-+ .)2)∵ A)1)0))B)5)0))∴ OA=1)AB=4.∵ AC=AB 且点C 在点A 的左侧,∴ AC=4 .∴ CB=CA+AB=8.∵ 线段CP 是线段CA)CB 的比例中项,∴ CA CPCP CB =.∴CP=又 ∵ ∠PCB 是公共角,∴ △CPA ∽△CBP .∴ ∠CPA= ∠CBP.过P 作PH ⊥x 轴于H.∵ OC=OD=3)∠DOC=90°)∴ ∠DCO=45°.∴ ∠PCH=45°∴ PH=CH=CP sin45o =4)∴ H)-7)0))BH=12)∴ P)-7)-4))∴ PH 1tan CBP BH 3∠==) tan ∠CPA=13)3) ∵ 抛物线的顶点是M)3)-4)).又∵P)-7)-4))∴ PM∥x轴 .当点E在M左侧,则∠BAM=∠AME.∵∠AEM=∠AMB)∴△AEM∽△BMA.∴ME AM AM BA=,=∴ ME=5)∴ E)-2)-4).过点A作AN⊥PM于点N,则N)1)-4).当点E在M右侧时,记为点E')∵∠A E'N=∠AEN)∴点E'与E 关于直线AN对称,则)4)-4).综上所述,E的坐标为(-2)-4)或(4)-4).点睛:本题主要考查二次函数的综合应用)解答本题主要应用了待定系数法求二次函数解析式)相似三角形的性质和判定)等腰直角三角形的性质)锐角三角函数的定义)证得△AEM∽△BMA是解题的关键.25.如图,已知在△ABC中,∠ACB)90°)BC)2)AC)4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G))1)求证:△EFG∽△AEG))2)设FG)x)△EFG的面积为y,求y关于x的函数解析式并写出定义域;)3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.【答案】(1)详见解析;(2)234(053y x x =≤p ;)3)当△EFD 为等腰三角形时,FG 的长度是:25425,,27312-) 【解析】试题分析:(1)由等边对等角得∠B=∠BED ,由同角的余角相等可得∠A=∠GEF ,进而由两角分别相等的两个三角形相似,可证△EFG ∽△AEG))2)作EH ⊥AF 于点H ,由tanA=12及△EFG ∽△AEG ,得AG=4x)AF=3x)EH=65x ) 可得y 关于x 的解析式;)3)△EFD 是等腰三角形,分三种情况讨论:①EF=ED)②ED=FD)③ED=EF 三种情况讨论即可. 试题解析:)1)∵ ED=BD)∴ ∠B=∠BED)∵ ∠ACB=90°)∴ ∠B+∠A=90°)∵ EF ⊥AB)∴ ∠BEF=90°)∴ ∠BED+∠GEF=90°)∴ ∠A=∠GEF)∵ ∠G 是公共角,∴ △EFG ∽△AEG))2)作EH ⊥AF 于点H)∵在Rt△ABC中,∠ACB=90°)BC=2)AC=4)∴tanA=BCAC=12)∴在Rt△AEF中,∠AEF=90°)tanA=EFAE=12,∵△EFG∽△AEG)∴FG GE EF1 EG GA AE2===,∵ FG=x)∴ EG=2x)AG=4x)∴ AF=3x)∵ EH⊥AF)∴∠AHE=∠EHF=90°)∴∠EFA+∠FEH=90°)∵∠AEF=90°)∴∠A+∠EFA=90°,∴∠A=∠FEH,∴ tanA =tan∠FEH,∴在Rt△EHF中,∠EHF=90°)tan∠FEH=HFEH=12,∴ EH=2HF,∵在Rt△AEH中,∠AHE=90°)tanA=EHAH=12)∴ AH=2EH)∴ AH=4HF)∴ AF=5HF)∴ HF=35 x)∴EH=65 x)∴y=12FG·EH=12x·65x=235x定义域:(0<x≤43)))3)当△EFD为等腰三角形时,①当ED=EF时,则有∠EDF=∠EFD,∵∠BED=∠EFH,∴∠BEH=∠AHG,∵∠ACB=∠AEH=90°,∴∠CEF=∠HEF,即EF为∠GEH的平分线,则ED=EF=x,DG=8−x,∵anA=12,∴x=3,即BE=3;②若FE=FD, 此时FG的长度是4 3 ;③若DE=DF, 此时FG的长度是2512.点睛:此题考查了相似三角形的性质与判定,也考查了求函数解析式,综合性比较强,解题的关键是多次利用相似三角形的判定和性质解决问题.。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.抛物线221y x x =++的顶点坐标是( )A .(0,-1)B .(-1,1)C .(-1,0)D .(1,0)【答案】C【解析】用配方法将抛物线的一般式转化为顶点式,可确定顶点坐标. 解答:解:∵y=x 2+2x+1=(x+1)2, ∴抛物线顶点坐标为(-1,0), 故选C .2.如图,一次函数y kx k =-分别与x 轴、y 轴交于点A 、B ,若sin 35OAB ∠=,则k 的值为( )A .43B .43-C .35D .34-【答案】D【分析】由解析式求得图象与x 轴、y 轴的交点坐标,再由sin 35OAB ∠=,求出AB ,利用勾股定理求出OA=43k -,由此即可利用OA=1求出k 的值. 【详解】∵y kx k =-,∴当x=0时,y=-k ,当y=0时,x=1, ∴B (0,-k ),A (1,0), ∵sin 35OAB ∠=, ∴35OB AB =, ∵OB=-k , ∴AB=53k -, ∴22AB OB -43k -∴43k -=1, ∴k=34-,故选:D. 【点睛】此题考查一次函数的性质,勾股定理,三角函数,解题中综合运用,题中求出AB ,利用勾股定理求得OA 的长是解题的关键.3.图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是( )A .B .C .D .【答案】D【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中. 【详解】从上面看,图2的俯视图是正方形,有一条对角线. 故选:D . 【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是( )A .4月份的利润为50万元B .污改造完成后每月利润比前一个月增加30万元C .治污改造完成前后共有4个月的利润低于100万元D .9月份该厂利润达到200万元 【答案】C【分析】首先设反比例函数和一次函数的解析式,根据图像信息,即可得出解析式,然后即可判断正误.【详解】设反比例函数解析式为()0ky x x=≠ 根据题意,图像过点(1,200),则可得出()2000y x x=≠当4x =时,50y =,即4月份的利润为50万元,A 选项正确;设一次函数解析式为y kx b =+根据题意,图像过点(4,50)和(6,110)则有4506110k b k b +=⎧⎨+=⎩解得3070k b =⎧⎨=-⎩∴一次函数解析式为3070y x =-,其斜率为30,即污改造完成后每月利润比前一个月增加30万元,B 选项正确;治污改造完成前后,1-6月份的利润分别为200万元、100万元、2003万元、50万元、110万元,共有3个月的利润低于100万元,C 选项错误;9月份的利润为30970200⨯-=万元,D 选项正确; 故答案为C . 【点睛】此题主要考查一次函数和反比例函数的实际应用,熟练掌握,即可解题. 5.下列事件中,属于必然事件的是( ) A .任意购买一张电影票,座位号是奇数 B .明天晚上会看到太阳C .五个人分成四组,这四组中有一组必有2人D .三天内一定会下雨 【答案】C【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】A 、任意购买一张电影票,座位号是奇数是随机事件; B 、明天晚上会看到太阳是不可能事件;C 、五个人分成四组,这四组中有一组必有2人是必然事件;D 、三天内一定会下雨是随机事件; 故选:C . 【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.在ABC ∆中,90C ∠=︒,若cos B =,则sin A 的值为( )A .3B .33C .32D .12【答案】C【分析】根据特殊角的三角函数值求出∠B ,再求∠A ,即可求解. 【详解】在ABC ∆中,90C ∠=︒,若3cos 2B =,则∠B=30° 故∠A=60°,所以sinA=32故选:C 【点睛】本题考查的是三角函数,掌握特殊角的三角函数值是关键.7.如图,直角△ABC 中,90A ∠=︒,30B ∠=︒,4AC =,以 A 为圆心,AC 长为半径画四分之一圆,则图中阴影部分的面积是( )A .4433π-B .1233π-C .4433π+D .1233π+【答案】A【分析】连结AD .根据图中阴影部分的面积=三角形ABC 的面积-三角形ACD 的面积-扇形ADE 的面积,列出算式即可求解. 【详解】解:连结AD .∵直角△ABC 中,∠A=90°,∠B=30°,AC=4, ∴∠C=60°,3 ∵AD=AC ,∴三角形ACD 是等边三角形, ∴∠CAD=60°, ∴∠DAE=30°,∴图中阴影部分的面积=4×2-4×÷2-2304360π⨯43π. 故选A . 【点睛】本题考查了扇形面积的计算,解题的关键是将不规则图形的面积计算转化为规则图形的面积计算. 8.用配方法解方程x 2﹣2x ﹣5=0时,原方程应变形为( ) A .(x+1)2=6 B .(x+2)2=9C .(x ﹣1)2=6D .(x ﹣2)2=9【答案】C【分析】配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方. 【详解】解:由原方程移项,得 x 2﹣2x =5,方程的两边同时加上一次项系数﹣2的一半的平方1,得 x 2﹣2x+1=1 ∴(x ﹣1)2=1. 故选:C . 【点睛】此题考查利用配方法将一元二次方程变形,熟练掌握配方法的一般步骤是解题的关键.9.若232m 1x ﹣+10x+m=0是关于x 的一元二次方程,则m 的值应为( ) A .m="2" B .m=23 C .m=32D .无法确定【答案】C【解析】试题分析:根据一元二次方程的定义进行解得2m ﹣1=2,解得 m=32. 故选C .考点:一元二次方程的定义10.如图,将ABC ∆绕着点C 按顺时针方向旋转20︒,B 点落在'B 位置,A 点落在'A 位置,若''AC A B ⊥,则BAC ∠的度数是 ( )A .50︒B .60︒C .70︒D .80︒【答案】C【解析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC ⊥A’B’可得∠BAC=∠A’=90°-20°=70°, 故选择C. 【点睛】本题考查了旋转的性质.11.一元二次方程x 2﹣x ﹣2=0的解是( ) A .x 1=﹣1,x 2=﹣2 B .x 1=1,x 2=﹣2 C .x 1=1,x 2=2 D .x 1=﹣1,x 2=2 【答案】D【解析】试题分析:利用因式分解法解方程即可. 解:(x ﹣2)(x+1)=0, x ﹣2=0或x+1=0, 所以x 1=2,x 2=﹣1. 故选D .考点:解一元二次方程-因式分解法. 12.如图,AB 是O 的直径,点C ,D 是圆上两点,且CDB ∠=28°,则AOC ∠=( )A .56°B .118°C .124°D .152°【答案】C【分析】根据一条弧所对的圆周角是它所对的圆心角的一半可得∠BOC 的度数,再根据补角性质求解.【详解】∵∠CDB=28°,∴∠COB=2∠CDB=2×28°=56°,∴∠AOC=180°-∠COB=180°-56°=124°.故选:C【点睛】本题考查圆周角定理,根据定理得出两角之间的数量关系是解答此题的关键.二、填空题(本题包括8个小题)13.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.【答案】3 7【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是37,故答案为:37.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.小明同学身高1.5米,经太阳光照射,在地面的影长为2米,他此时测得旗杆在同一地面的影长为12米,那么旗杆高为_________米.【答案】9【解析】设旗杆高为x米,根据同时同地物高与影长成正比列出比例式,求解即可.【详解】设旗杆高为x米,根据题意得,1.5 212x解得:x=9,故答案为:9【点睛】本题主要考查同一时刻物高和影长成正比.考查利用所学知识解决实际问题的能力.15.如图,在平面直角坐标系中,正方形ABCD的三个顶点A、B、D均在抛物线y=ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC长为_____.【答案】1.【解析】试题解析:抛物线的对称轴x=-42aa-=2,点B 坐标(0,3), ∵四边形ABCD 是正方形,点A 是抛物线顶点, ∴B 、D 关于对称轴对称,AC=BD , ∴点D 坐标(1,3) ∴AC=BD=1.考点:1.正方形的性质;2.二次函数的性质.16.如图,点G 是△ABC 的重心,过点G 作GE//BC ,交AC 于点E ,连结GC. 若△ABC 的面积为1,则△GEC 的面积为____________.【答案】19【分析】如图,延长AG 交BC 于D,利用相似三角形的面积比等于相似比的平方解决问题即可. 【详解】解:连接AG 并延长交BC 于点D ,∴D 为BC 中点 ∴1122ACDABCSS ==又∵//GE CD ∴AGE ADC △∽△ ∵G 为重心∴21AE AG EC GD == ∴224()39AGE ADC S S == ∴49AGE S =△,29ADC S =△ 又∵21AGE GEC S AE S EC ==△△ ∴19GECS=.【点睛】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.某同学用描点法y=ax 2+bx+c 的图象时,列出了表: x … ﹣2 ﹣1 0 1 2 … y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y 值,则这个错误的y 值是_______. 【答案】﹣1.【解析】根据关于对称轴对称的自变量对应的函数值相等,可得答案. 解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得212a b c c a b c -+=-⎧⎪=⎨⎪++=-⎩, 解得,301a b c =-⎧⎪=⎨⎪=⎩,函数解析式为y=﹣3x 2+1 x=2时y=﹣11, 故答案为﹣1.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.18.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学. 【答案】1【解析】设参加聚会的有x 名学生,根据“在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送10份小礼品”,列出关于x 的一元二次方程,解之即可. 【详解】解:设参加聚会的有x 名学生, 根据题意得:()x x 1110-=,解得:1x 11=,2x 10(=-舍去), 即参加聚会的有1名同学, 故答案为:1. 【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键. 三、解答题(本题包括8个小题)19.如图,一次函数y =kx +b 与反比例函数y =ax的图象在第一象限交于A ,B 两点,B 点的坐标为(3,2),连接OA ,OB ,过B 作BD⊥y 轴,垂足为D ,交OA 于C ,若OC =CA . (1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积.【答案】 (1) y =6x ;y =-43x +6(2) 92【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A 的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB 的解析式,进而求出AG ,用三角形的面积公式即可得出结论. 【详解】解:(1)如图,过点A 作AF ⊥x 轴交BD 于E , ∵点B (3,2)在反比例函数ay x=的图象上, ∴a =3×2=6,∴反比例函数的表达式为6y x=, ∵B (3,2), ∴EF =2,∵BD ⊥y 轴,OC =CA , ∴AE =EF =12AF , ∴AF =4,∴点A 的纵坐标为4,∵点A 在反比例函数6y x =图象上, ∴A (32,4), ∴32342k b k b +=⎧⎪⎨+=⎪⎩, ∴436k b ⎧=-⎪⎨⎪=⎩,∴一次函数的表达式为463y x =-+ ; (2)如图1,过点A 作AF ⊥x 轴于F 交OB 于G ,∵B (3,2),∴直线OB 的解析式为y =23x , ∴G (32,1), ∵A (32,4), ∴AG =4﹣1=3,∴S △AOB =S △AOG +S △ABG =12×3×3=92.【点睛】此题主要考查了待定系数法,三角形的面积公式,三角形的中位线,解本题的关键是用待定系数法求出直线AB 的解析式.20.如图是一根钢管的直观图,画出它的三视图.【答案】答案见解析【解析】试题分析:根据三视图的画法得出答案.试题解析:如图考点:三视图21.某汽车销售商推出分期付款购车促销活动,交首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款y 万元,x 个月结清.y 与x 的函数关系如图所示,根据图像回答下列问题:(1)确定y 与x 的函数解析式,并求出首付款的数目;(2)王先生若用20个月结清,平均每月应付多少万元?(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?【答案】(1)y=9x,3万元;(2)0.45万元;(3)23个月才能结清余款 【分析】(1)由图像可知y 与x 成反比例,设y 与x 的函数关系式为y=k x ,把(5,1.8)代入关系式可求出k 的值,再根据首付款=12-k 可得出结果;(2)在(1)的基础上,知道自变量,便可求出函数值;(3)知道了y 的范围,根据反比例函数的性质即可求出x 的范围,从而可得出x 的最小值.【详解】解:(1)由图像可知y 与x 成反比例,设y 与x 的函数关系式为y=k x, 把(5,1.8)代入关系式得1.8=5k , ∴k=9,∴y=9x , ∴12﹣9=3(万元).答:首付款为3万元;(2)当x=20时,y=920=0.45(万元), 答:每月应付0.45万元; (3)当y=0.4时,0.4=9x ,解得:x=452, 又∵k >0,在第一象限内,y 随x 的增大而减小, ∴当y ≤4000时,x ≥452, 又x 取整数,∴x 的最小值为23. 答:王先生至少要23个月才能结清余额.【点睛】此题主要考查了用待定系数法求反比例函数的解析式,然后再根据实际意义进行解答,难易程度适中. 22.如图所示,AD 、BC 为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m ,小明站在P 处,小亮站在Q 处,小明在路灯C 下的影长为2m ,已知小明身高1.8m ,路灯BC 高9m . ①计算小亮在路灯D 下的影长;②计算建筑物AD 的高.【答案】① 1.5BQ =;②12DA =.【分析】解此题的关键是找到相似三角形,利用相似三角形的性质,相似三角形的对应边成比例求解.【详解】①∵EP AB ⊥,CB AB ⊥,∴90EPA CBA ∠=∠=∵EAP CAB ∠=∠,∴EAP CAB ∽∴EP AP BC AB= ∴1.829AB = ∴10AB =102 6.5 1.5BQ =--=;②∵HQ AB ⊥,DA AB ⊥,∴90HQB DAB ∠=∠=∵HBQ DBA ∠=∠,∴BHQ BDA ∽∴HP BQ DA AB= ∴1.8 1.510DA = ∴12DA =.【点睛】本题考查了相似三角形,解题的关键是找到相似三角形利用相似三角形的对应边成比例进行求解. 23.若抛物线y =ax 2+bx ﹣3的对称轴为直线x =1,且该抛物线经过点(3,0).(1)求该抛物线对应的函数表达式.(2)当﹣2≤x≤2时,则函数值y 的取值范围为 .(3)若方程ax 2+bx ﹣3=n 有实数根,则n 的取值范围为 .【答案】(1)y =x 2﹣2x ﹣3;(2)﹣1≤y ≤5;(3)n ≥﹣1.【分析】(1)由对称轴x =1可得b=-2a ,再将点(3,0)代入抛物线解析式得到9a+3b-3=0,然后列二元一次方程组求出a 、b 即可;(2)用配方法可得到y =(x ﹣1)2﹣1,则当x=1时,y 有最小值-1,而当x=-2时,y=5,即可完成解答; (3)利用直线y=n 与抛物线y =(x ﹣1)2﹣1有交点的坐标就是方程ax2+bx-3=n 有实数解,再根据根的判别式列不式、解不等式即可.【详解】解:(1)∵抛物线的对称轴为直线x =1, ∴﹣2b a=1,即b =﹣2a , ∵抛物线经过点(3,0).∴9a+3b ﹣3=0,把b =﹣2a 代入得9a ﹣6a ﹣3=0,解得a =1,∴b =﹣2,∴抛物线解析式为y =x 2﹣2x ﹣3;(2)∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣1,∴x =1时,y 有最小值﹣1,当x =﹣2时,y =1+1﹣3=5,∴当﹣2≤x ≤2时,则函数值y 的取值范围为﹣1≤y ≤5;(3)当直线y =n 与抛物线y =(x ﹣1)2﹣1有交点时,方程ax 2+bx ﹣3=n 有实数根,∴n ≥﹣1.【点睛】本题考查了二次函数的性质及其与二元一次方程的关系,把求二次函数图像与x 轴的交点坐标问题转化为解关于x 的一元二次方程是解答本题的关键.24.黄山景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件.物价部门规定:销售单价不低于6元,但不能超过12元,设该纪念品的销售单价为x (元),日销量为y (件).(1)直接写出y 与x 的函数关系式.(2)求日销售利润w (元)与销售单价x (元)的函数关系式.并求当x 为何值时,日销售利润最大,最大利润是多少?【答案】(1)10280y x =-+;(2)()210171210w x =--+,x=12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意得到w=(x-6)(-10x+280)=-10(x-17)2+1210,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,20010(8)10280y x x =--=-+,故y 与x 的函数关系式为10280y x =-+;(2)根据题意得,()2(6)(10280)10171210w x x x =--+=--+ 100,612x -<≤≤∴当17x <时,w 随x 的增大而增大,当12x =时,960w =最大,答:当x 为12时,日销售利润最大,最大利润960 元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.25.先化简,后求值:2211()1121x x x x x x -+÷+--+,其中1x =.【答案】21x + 【分析】先将括号内的分式通分并相加,再利用分式的除法法则进行计算即可得到化简结果,代入x 的值即可求解. 【详解】解:22111121x x x x x x -⎛⎫+÷ ⎪+--+⎝⎭ ()()()()2111111x x x x x x x --++=÷+-- ()()2111x x x x x -=⨯+-当21x =-时,原式2211==-+. 【点睛】本题考查分式的化简求值,掌握分式的性质和分式的运算法则是解题的关键.26.在平面直角坐标系中,己知10cm OA =,5cm OB =.点P 从点O 开始沿OA 边向点A 以2cm/s 的速度移动;点Q 从点B 开始沿BO 边内点O 以1cm/s 的速度移动.如果P 、Q 同时出发,用()t s 表示移动的时间()05t ≤≤.(1)用含t 的代数式表示:线段PO =_______cm ;OQ =______cm ;(2)当t 为何值时,四边形PABQ 的面积为219cm .(3)当POQ ∆与AOB ∆相似时,求出t 的值.【答案】(1)2t ,(5﹣t);(2)t=2或3;(3)t 52=或1. 【分析】(1)根据路程=速度×时间可求解;(2)根据S 四边形PABQ =S △ABO ﹣S △PQO 列出方程求解;(3)分OP OQ OA OB =或OP OQ OB OA=两种情形列出方程即可解决问题. 【详解】(1)OP=2tcm ,OQ=(5﹣t)cm .故答案为:2t ,(5﹣t).(2)∵S 四边形PABQ =S △ABO ﹣S △PQO ,∴1912=⨯10×512-⨯2t ×(5﹣t), 解得:t=2或3,∴当t=2或3时,四边形PABQ 的面积为19cm 2.(3)∵△POQ 与△AOB 相似,∠POQ=∠AOB=90°,∴OP OQ OA OB =或OP OQ OB OA=. ①当OP OQ OA OB =,则25105t t -=,②当OP OQ OB OA =时,则25510t t -=, ∴t=1. 综上所述:当t 52=或1时,△POQ 与△AOB 相似. 【点睛】本题是相似综合题,考查相似三角形的判定和性质、坐标与图形的性质、三角形的面积等知识,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.如图,点E 是ABC ∆的内心,AE 的延长线交BC 于点F ,交ABC ∆的外接圆O 于点D ,连接BD ,过点D 作直线DM ,使BDM DAC ∠=∠;(1)求证:直线DM 是O 的切线;(2)若2DF =,5AF =,求BD .【答案】(1)证明见解析;(2)14DB =.【分析】(1)首先根据三角形内心的性质得出BAD CAD ∠=∠,然后利用等弧对等角进行等量转换,得出//BC DM ,最后利用垂径定理即可得证;(2)利用相似三角形的判定以及性质即可得解.【详解】(1)证明:如图所示,连接OD ,∵点E 是ABC ∆的内心,∴BAD CAD ∠=∠,∴BD CD =,∴ODBC , 又∵BDM DAC ∠=∠,DAC DBC ∠=∠,∴BDM DBC ∠=∠,∴//BC DM ,∴OD DM ⊥,又∵OD 为O 半径,∴直线DM 是O 的切线; (2)∵BD CD =,∴DBF DAB ∠=∠,又∵BDF ADB ∠=∠(公共角),∴DBFDAB ∆∆, ∴DF DB DB DA=,即2DB DF DA =⋅, ∵2DF =,5AF =∴7DA DF AF =+=∴214DB DF DA =⋅= ∴DB =【点睛】此题主要考查圆的切线的证明以及相似三角形的判定与性质,熟练掌握,即可解题.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列等式中从左到右的变形正确的是( ).A .235a a a ⋅=B 3=-C .a ac b bc =D .23a a a ÷= 【答案】A【分析】根据同底数幂乘除法和二次根式性质进行分析即可.【详解】A.235a a a ⋅=,正确;33=-=,错误; C.a ac b bc=,c 必须不等于0才成立,错误; D.231a a a ,错误 故选:A .【点睛】考核知识点:同底数幂除法,二次根式的化简,掌握运算法则是关键.2.一名射击爱好者5次射击的中靶环数如下:6,7,1,8,1.这5个数据的中位数是( ) A .6B .7C .8D .1 【答案】C【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),据此求解即可.【详解】将这组数据重新排序为6,7,8,1,1,∴中位数是按从小到大排列后第3个数为:8.故选C.3.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( )A .12B .13C .23D .14【答案】D【解析】试题分析:先利用列表法与树状图法表示所有等可能的结果n ,然后找出某事件出现的结果数m ,最后计算概率.同时掷两枚质地均匀的硬币一次,共有正正、反反、正反、反正四种等可能的结果,两枚硬币都是正面朝上的占一种,所以两枚硬币都是正面朝上的概率=1÷4=14. 考点:概率的计算.4.如图是二次函数2y ax bx c =++图象的一部分,其对称轴是1x =-,且过点(3,0)-,下列说法:①0abc <;②20a b -=;③420a b c ++<;④若()1255,,,2y y ⎛⎫-⎪⎝⎭是抛物线上两点,则12y y <,其中说法正确的是( )A .①②B .②③C .①②④D .②③④【答案】A 【分析】根据二次函数的图像和性质逐个分析即可.【详解】解:对于①:∵抛物线开口向上,∴a>0,∵对称轴02b a -<,即02b a>,说明分子分母a,b 同号,故b>0, ∵抛物线与y 轴相交,∴c<0,故0abc <,故①正确;对于②:对称轴=12-=-b x a,∴20a b -=,故②正确; 对于③:抛物线与x 轴的一个交点为(-3,0),其对称轴为直线x=-1,根据抛物线的对称性可知,抛物线与x 轴的另一个交点为,1,0),故当自变量x=2时,对应的函数值y=420a b c ++>,故③错误;对于④:∵x=-5时离对称轴x=-1有4个单位长度,x=52时离对称轴x=-1有72个单位长度, 由于72<4,且开口向上,故有12y y >,故④错误, 故选:A .【点睛】本题考查了二次函数的图像与其系数的符号之间的关系,熟练掌握二次函数的图形性质是解决此类题的关键.5.如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段 AB ,则点 B 的对应点 B′的坐标是( )A .(-4 , 1)B .( -1, 2)C .(4 ,- 1)D .(1 ,- 2)【答案】D 【解析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【详解】将线段AB 先向右平移5个单位,点B (2,1),连接OB ,顺时针旋转90°,则B'对应坐标为(1,-2),故选D .【点睛】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.6.若方程240x x m -+=有两个不相等的实数根,则实数m 的值可能是( )A .3B .4C .5D .6【答案】A【分析】根据一元二次方程有两个实数根可得:△>0,列出不等式即可求出m 的取值范围,从而求出实数m 的可能值.【详解】解:由题可知: ()244m 0∆=-->解出:4m <各个选项中,只有A 选项的值满足该取值范围,故选A.【点睛】此题考查的是求一元二次方程的参数的取值范围,掌握一元二次方程根的情况与△的关系是解决此题的关键.7.如图,在△ABC 中,若DE ∥BC ,AD=5,BD=10,DE=4,则BC 的值为( )A .8B .9C .10D .12【答案】D 【解析】试题分析:由DE ∥BC 可推出△ADE ∽△ABC ,所以AD DE AB BC =. 因为AD=5,BD=10,DE=4,所以54510BC=+,解得BC=1. 故选D.考点:相似三角形的判定与性质. 8.已知x =3是关于x 的一元二次方程x 2﹣2x ﹣m =0的根,则该方程的另一个根是( )A .3B .﹣3C .1D .﹣1【答案】D【分析】设方程的另一根为t,根据根与系数的关系得到3+t =2,然后解关于t 的一次方程即可.【详解】设方程的另一根为t,根据题意得3+t =2,解得t =﹣1.即方程的另一根为﹣1.所以D 选项是正确的.【点睛】本题考查了根与系数的关系:12x x ,是一元二次方程()2ax +bx+c=00a ≠的两根时, 12b x x a +=-,12c x x a=. 9.已知方程2231x x -=的两根为1x ,2x 则1122x x x x ++的值是( )A .1B .2C .-2D .4 【答案】A【分析】先化成一元二次方程的一般形式,根据根与系数的关系得出x 1+x 232=,x 1•x 212=-,代入求出即可.【详解】∵2x 2﹣3x=1,∴2x 2﹣3x ﹣1=0,由根与系数的关系得:x 1+x 232=,x 1•x 212=-,所以x 1+x 1x 2+x 232=+(12-)=1. 故选:A .【点睛】 本题考查了根与系数的关系,能熟记根与系数的关系的内容是解答本题的关键.10. “汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是( )A .确定事件B .随机事件C .不可能事件D .必然事件【答案】B【分析】直接利用随机事件的定义分析得出答案.【详解】解:“汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是随机事件. 故选B .【点睛】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.11.已知二次函数y =ax 2+bx+c (a≠0)的对称轴为直线x =﹣1,与x 轴的一个交点B 的坐标为(1,0)其图象如图所示,下列结论:①abc >0;②2a ﹣b =0;③一元二次方程ax 2+bx+c =0的两个根是﹣3和1;④当y >0时,﹣3<x <1;⑤当x >0时,y 随x 的增大而增大:⑥若点E (﹣4,y 1),F (﹣2,y 2),M (3,y 3)是函数图象上的三点,则y 1>y 2>y 3,其中正确的有( )个A .5B .4C .3D .2【答案】C 【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性逐个进行判断,得出答案.【详解】由抛物线的开口向上,可得a >0,对称轴是x =﹣1,可得a 、b 同号,即b >0,抛物线与y 轴交在y 轴的负半轴,c <0,因此abc <0,故①不符合题意;对称轴是x =﹣1,即﹣2b a=﹣1,即2a ﹣b =0,因此②符合题意; 抛物线的对称轴为x =﹣1,与x 轴的一个交点B 的坐标为(1,0),可知与x 轴的另一个交点为(﹣3,0),因此一元二次方程ax 2+bx+c =0的两个根是﹣3和1,故③符合题意;由图象可知y >0时,相应的x 的取值范围为x <﹣3或x >1,因此④不符合题意;在对称轴的右侧,y 随x 的增大而增大,因此当x >0时,y 随x 的增大而增大是正确的,因此⑤符合题意;由抛物线的对称性,在对称轴的左侧y随x的增大而减小,∵﹣4<﹣2,∴y1>y2,(3,y3)l离对称轴远因此y3>y1,因此y3>y1>y2,因此⑥不符合题意;综上所述,正确的结论有3个,故选:C.【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a、b、c的值决定抛物线的位置,抛物线的对称性是解决问题的关键.12.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E A D C→→→移动至终点C,设P点经过的路径长为x,CPE∆的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.【答案】C【分析】结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.【详解】①当点P在AE上时,∵正方形边长为4,E为AB中点,∴2AE=,∵P点经过的路径长为x,∴PE x=,∴12CPEy S PE BC∆==⋅⋅1422x x=⨯⨯=,②当点P在AD上时,∵正方形边长为4,E 为AB 中点,∴2AE =,∵P 点经过的路径长为x ,∴2AP x =-,6DP x =-,∴CPE BEC APE PDC ABCD y S S S S S ∆∆∆∆==---正方形,11144242(2)4(6)222x x =⨯-⨯⨯-⨯⨯--⨯⨯-, 1642122x x =--+-+,2x =+,③当点P 在DC 上时,∵正方形边长为4,E 为AB 中点,∴2AE =,∵P 点经过的路径长为x ,∴6PD x =-,10PC x =-, ∴12CPE y S PC BC ∆==⋅⋅1(10)42202x x =⨯-⨯=-+, 综上所述:y 与x 的函数表达式为: 2(02)2(26)220(610)x x y x x x x ≤≤⎧⎪=+<≤⎨⎪-+<≤⎩. 故答案为C.【点睛】本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y 随x 的变化而变化的趋势.二、填空题(本题包括8个小题)13.二次函数y =2(5)3-+-x 图像的顶点坐标是__________.【答案】 (-5,-3)【分析】根据顶点式2()y a x h k =-+,其顶点坐标是(,)h k ,对照即可解答. 【详解】解:二次函数22(5)3y x =-+-是顶点式, ∴顶点坐标为(5,3)--.故答案为:(5,3)--.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握. 14.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y (毫克)与时间t(小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.5毫克时治疗有效,则服药一次治疗疾病有效的时间为______小时.【答案】7.1【分析】将点(1,4)分别代入y=kt,myt=中,求k、m,确定函数关系式,再把y=0.5代入两个函数式中求t,把所求两个时间t作差即可.【详解】解:把点(1,4)分别代入y=kt,myt=中,得k=4,m=4,∴y=4t,4yt =,把y=0.5代入y=4t中,得t1=0.5=0.125 4,把y=0.5代入4yt=中,得t2=4=80.5,∴治疗疾病有效的时间为:t2-t1=80.1257.875-=故答案为:7.1.【点睛】本题考查了本题主要考查函数模型的选择与应用、反比例函数、一次函数的实际应用.关键是用待定系数法求函数关系式,理解题意,根据已知函数值求自变量的差.15.如图所示是某种货号的直三棱柱(底面是等腰直角三角形)零件的三视图,则它的表面积为__________2cm【答案】2)【分析】根据三视图可知,直三棱柱的底面是斜边为4厘米、斜边上的高为2厘米的等腰直角三角形,直三棱柱的高是5厘米的立体图形,根据表面积计算公式即可求解.。
试卷第1页,总9页 绝密★启用前 2017-2018第一学期沪科版(上海)九年级 期末复习数学试卷二 做卷时间120分钟 满分150分 温馨提示:亲爱的同学们,考试只是检查我们对知识的掌握情况,希望你不要慌张,平心静气,不要急于下结论;下笔时,把字写得规矩些,让自己和老师都看得舒服,祝你成功! 一、单选题(计40) 1.(本题4分)若==≠0,则=. 2.(本题4分)(2015秋•江宁区期末)如图,利用标杆BE 测量建筑物的高度,如果标杆BE 长1.2m ,测得AB=1.6m ,BC=8.4m ,楼高CD 是多少?试卷第2页,总9页3.(本题4360的扇形的面积是( )A .πB .10C .110π D .10π 4.(本题4分)正三角形的外接圆半径与内切圆的半径之比是( ) A. 1∶ 2 B.1 1 D. 2∶15.(本题4分)如图,为安全起见,萌萌拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB 的长为3m ,点D 、B 、C 在同一水平地面上,那么加长后的滑梯AD 的长是( ).A .22mB .23mC .32mD .3m6.(本题4分)如图,飞机飞行高度BC 为1500m ,飞行员看地平面指挥塔A 的俯角为α,则飞机与指挥塔A 的距离为( ) m .A .αsin 1500B .1500sin αC .1500cos αD .αtan 15007.(本题4分)抛物线y =x 2-6x +3的顶点坐标为()A. (3,-6)B. (3,12)C. (-3,-9)D. (-3,-6)8.(本题4分)小军为了解同学们的课余生活,设计了如下的调试卷第3页,总9页 ○…………装………………○学校:___________姓名:____……○…………订…………○…○…………装………查问卷(不完整): 他准备在“①看课外书,②体育活动,③看电视,④踢足球,⑤看小说”中选取三个作为该问题的备选答案,选取合理的是( )A. ①②③B. ①④⑤C. ②③④D. ②④⑤ 9.(本题4分)如果给定数组中每一个数都加上同一个非零常数,则数据的( ) A. 平均数不变,方差不变 B. 平均数改变,方差改变 C. 平均数改变,方差不变 D. 平均数不变,方差改变 10.(本题4分)如图,将△ABC 的高AD 三等分,过每个分点作底边的平行线,把△ABC 的面积分成三部分S 1,S 2,S 3,则S 1:S 2:S 3=( ) A .1:2:3 B .1:4:9 C .1:3:5 D .1:9:25 二、填空题(计20分) 11.(本题5分)如图,已知零件的外径为30 mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD )测量零件的内孔直径AB .若试卷第4页,总9页…○……………○…………订装※※订※※线※※内……线…OC ∶OA=1∶2,且量得CD =12 mm ,则零件的厚度x=____________mm .12.(本题5分)如图,在△ABC 中,AB=AC=10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连OD 交BE 于点M ,且MD=2,则BE 长为.13.(本题5分)如图,△ABC 中,∠ACB=90°,tanA=43,AB=15,AC=.14.(本题5分)如图,李明打网球时,球恰好打过网,且落在离网4m 的位置上,则网球的击球的高度h 为__m .试卷第5页,总9页 三、解答题(计90分) 15.(本题8分)有三组数如下: (1)1,3 (2)3,2,6,3;(3其中哪些组能成比例?哪些不能?若能,请各写出一个比例式子. 16.(本题8分)计算: )20142-⎛⎫ ⎪⎝⎭ . 17.(本题8分)二次函数y=ax 2+bx+c 的对称轴为x=3,最小值为−2,且过(0,1),求此函数的解析式.试卷第6页,总9页……订…………线※※内※※答※※题※※………18.(本题8分)如图,为了测量某山AB 的高度,小明先在山脚下C 点测得山顶A 的仰角为45︒,然后沿坡角为30︒的斜坡走100米到达D 点,在D 点测得山顶A 的仰角为30︒,求山AB 的高度(精确到0.1米).(参 考数据: 1.73≈)19.(本题10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w (元)与每件涨价x (元)之间的函数关系式;并写出自变量的取值范围(2)商场的营销部在调控价格方面,提出了A ,B 两种营销方案. 方案A :每件商品涨价不超过11元;试卷第7页,总9页 ………○…………_________班级:________○…………线…………○…方案B :每件商品的利润至少为16元. 请比较哪种方案的最大利润更高,并说明理由.20.(本题10分)如图,在4×4的正方形方格中,△ABC 的顶点A 、B 、C 在单位正方形的顶点上.请在图中画一个△A 1B 1C 1,使△A 1B 1C 1∽△ABC(相似比不为1),且点A 1、B 1、C 1都在单位正方形的顶点上. 21.(本题12分)如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠.试卷第8页,总9页………装……请※※不※※要※※在※……(1)判断直线BD 和O ⊙的位置关系,并给出证明;(2)当108AB BC ==,时,求BD 的长.22.(本题12分)如图,直线y=x+m 和抛物线y=x 2+bx+c 都经过点A(1,0),B(3,2).(1)求m 的值和抛物线的解析式;(2)求不等式x 2+bx+c>x+m 的解集(直接写出答案);(3)若M(a,y 1),N(a+1,y 2)两点都在抛物线y=x 2+bx+c 上,试比较y 1与y 2的大小.试卷第9页,总9页 23.(本题14分)(2013山东泰安)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点. (1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ; (3)若AD =4,AB =6,求AC AF 的值.参考答案1..【解析】试题分析:根据题意表示出x=3a,y=4a,z=5a,进而代入原式求出即可.解:∵==≠0,∴设x=3a,y=4a,z=5a,∴==.故答案为:.考点:比例的性质.2.楼高CD是7.5m【解析】试题分析:先根据题意得出△ABE∽△ACD,再根据相似三角形的对应边成比例即可求出CD的值.解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.2,AB=1.6,BC=8.4,∴AC=10,∴=,∴CD=7.5.答:楼高CD 是7.5m . 考点:相似三角形的应用. 3.D . 【解析】试题分析:由sin A=45,设∠A 的对边是3k ,则斜边是5k ,∠A 的邻边是4k .再根据正切值的定义,得tanA=4433k k . 故选D .考点:锐角三角函数. 4.D 【解析】试题分析:如图,OA 为正三角形外接圆的半径,OD 为正三角形内切圆的半径,∴∠ADO=90°,∠OAD=30°,∴OA :OD=2:1; 故选D.考点:三角形的外接圆与内切圆. 5.C . 【解析】试题分析:由题意可知△ABC 是等腰直角三角形,△ADC 是30度的直角三角形,由45度的正弦值求出AC 长,再由30度的正弦值求出AD长.因为sin45°=AB AC =22,AB 的长为3m ,所以AC=22×3=223,又因为∠D=30°,所以sin30°=AD AC =21,所以AD=2AC=2×223=32,故本题选C .考点:特殊角的三角函数值. 6.A . 【解析】试题分析:由题意得:Rt △ABC 中,∠A=∠α,∠C=90°,BC=1500m ,∴sinA=sin α=ABBC, ∴AB=αsin BC =αsin 1500m .故选A .考点:解直角三角形的应用-仰角俯角问题. 7.A【解析】∵y=x ²−6x+3=x ²−6x+9−9+3, =(x −3)²−6,∴抛物线顶点坐标为(3,−6). 故选A. 8.A【解析】体育活动包含踢足球,看课外书包括看小说选项重复,所以选取合理的 ①②③,故选A. 9.C【解析】试题分析:根据平均数和方差的特点,一组数都加上或减去同一个非零的常数后,方差不变,平均数改变,即可得出答案. 解:一组数都加上同一个非零常数后,平均数变大, 一组数都减去同一个非零常数后,平均数变小,则一组数都加上或减去同一个非零的常数后,平均数改变,但是方差不变; 故选:C .考点:方差;算术平均数. 10.C . 【解析】试题分析:如图,两平行线分别为GH 、PQ ,与AD 交于E 、F 两点,∵GH ∥PQ ∥BC ,∴△AGH ∽△APQ ∽△ABC ,∵E 、F 把AD 三等分,∴12AG AE AP AF ==,13AG AE AC AD ==,∴11214S S S =+,112319S S S S =++,解得S 2=3S 1,S 3=5S 1,∴S 1:S 2:S 3=1:3:5,故选C .考点:相似三角形的判定与性质. 11.3. 【解析】试题分析:要求零件的厚度,由题可知只需求出AB 即可.因为CD 和AB 平行,可得△AOB ∽△COD,可以根据相似三角形对应边成比例即可解答:∵两条尺长AC和BD相等,OC=OD,∴OA=OB.∵OC:OA=1:2,∴OD:OB=OC:OA=1:2.∵∠COD=∠AOB,∴△AOB∽△COD.∴CD:AB=OC:OA=1:2.∵CD=12mm,∴AB=24mm∴2x+24=30。
上海市黄浦区2017-2018学年度第一学期九年级数学期末试卷(考试时间:100分钟 总分:150分)一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.已知二次函数2y ax bx c =++的图像大致如图所示,则下列关系式中成立的是( ▲ ) (A )0a >;(B )0b <;(C )0c <;(D )20b a +>.2.若将抛物线向右平移2个单位后,所得抛物线的表达式为22y x =,则原来抛物线的表达式为( ▲ ) (A )222y x =+;(B )222y x =-;(C )()222y x =+;(D )()222y x =-.3.在△ABC 中,∠C =90°,则下列等式成立的是( ▲ )(A )sin ACA AB =; (B )sin BCA AB =; (C )sin ACA BC=;(D )sin BCA AC=.4.如图,线段AB 与CD 交于点O ,下列条件中能判定AC ∥BD 的是( ▲ ) (A )OC =1,OD =2,OA =3,OB =4; (B )OA =1,AC =2,AB =3,BD =4;(C )OC =1,OA =2,CD =3,OB =4;(D )OC =1,OA =2,AB =3,CD =4.5.如图,向量OA uu r 与OB uu u r均为单位向量,且OA ⊥OB ,令n OA OB =+r u u r u u u r ,则n r =( ▲ )(A )1;(B(C(D )2.6.如图,在△ABC 中,∠B =80°,∠C =40°,直线l 平行于BC .现将直线l 绕点A 逆时针旋转,所得直线分别交边AB 和AC 于点M 、N ,若△AMN 与△ABC 相似,则旋转角为( ▲ ) (A )20°; (B )40°; (C )60°; (D )80°.二、填空题:(本大题共12题,每题4分,满分48分) 7.已知a 、b 、c 满足346a b c ==,则a bc b+-= ▲ . 8.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD ∶DB =3∶2,那么BF ∶FC = ▲ .9.已知向量e r 为单位向量,如果向量n r 与向量e r 方向相反,且长度为3,那么向量n r= ▲ .(用单位向量e r表示)10.已知△ABC ∽△DEF ,其中顶点A 、B 、C 分别对应顶点D 、E 、F ,如果∠A =40°,∠E =60°,那么∠C = ▲ 度.11.已知锐角α,满足tan α=2,则sin α= ▲ .12.已知点B 位于点A 北偏东30°方向,点C 位于点A 北偏西30°方向,且AB =AC =8千米,那么BC = ▲ 千米.13.已知二次函数的图像开口向下,且其图像顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为 ▲ (表示为2()y a x m k =++的形式).14.已知抛物线2y ax bx c =++开口向上,一条平行于x 轴的直线截此抛物线于M 、N 两点,那么线段MN 的长度随直线向上平移而变 ▲ .(填“大”或“小”)15.如图,矩形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知AC =6,AB =8,BC =10,设EF =x ,矩形DEFG 的面积为y ,则y 关于x 的函数关系式为 ▲ .(不必写出定义域)EDB AF (第8题)(第15题) (第16题)16.如图,在△ABC 中,∠C =90°,BC =6,AC =9,将△ABC 平移使其顶点C 位于△ABC 的重心G 处,则平移后所得三角形与原△ABC 的重叠部分面积是 ▲ . 17.如图,点E 为矩形ABCD 边BC 上一点,点F 在边CD 的延长线上,EF 与AC 交于点O , 若CE ∶EB =1∶2,BC ∶AB =3∶4,AE ⊥AF ,则CO ∶OA = ▲ .(第17题) (第18题)18.如图,平面上七个点A 、B 、C 、D 、E 、F 、G ,图中所有的连线长均相等,则cos ∠BAF = ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:2cot452cos 30sin60tan301︒︒+-︒︒+.20.(本题满分10分)用配方法把二次函数2264y x x =-++化为()k m x a y ++=2的形式,再指出该函数图像的开口方向、对称轴和顶点坐标. 21.(本题满分10分)如图,在△ABC 中,∠ACB =90°,AC =4,BC =3,D 是边AC 的中点,CE ⊥BD 交AB 于点E .AGFEDCBDOE CBAFGABBDFECAG(1)求tan ∠ACE 的值; (2)求AE ∶EB .22.(本题满分10分)如图,坡AB 的坡比为1∶2.4,坡长AB =130米,坡AB 的高为BT .在坡AB 的正面有一栋建筑物CH ,点H 、A 、T 在同一条地平线MN 上.(1)试问坡AB 的高BT 为多少米?(2)若某人在坡AB 的坡脚A 处和中点D 处,观测到建筑物顶部C 处的仰角分别为60°和30°,试求建筑物的高度CH .≈1.73≈1.41)23.(本题满分12分)如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项. (1)求证:∠CDE =12∠ABC ; (2)求证:AD •CD =AB •CE .24.(本题满分12分)在平面直角坐标系xOy 中,对称轴为直线x =1的抛物线28y ax bx =++过点(﹣2,0).NMDCBAHTECBA(1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y 轴方向平移若干个单位,所得抛物线的顶点为D ,与y 轴的交点为B ,与x 轴负半轴交于点A ,过B 作x 轴的平行线交所得抛物线于点C ,若AC ∥BD ,试求平移后所得抛物线的表达式.25.(本题满分14分)如图,线段AB =5,AD =4,∠A =90°,DP ∥AB ,点C 为射线DP 上一点,BE 平分∠ABC 交线段AD 于点E (不与端点A 、D 重合).(1)当∠ABC 为锐角,且tan ∠ABC =2时,求四边形ABCD 的面积; (2)当△ABE 与△BCE 相似时,求线段CD 的长;(3)设CD =x ,DE =y ,求y 关于x 的函数关系式,并写出定义域.参考答案一、选择题(本大题6小题,每小题4分,满分24分)O xyBE DPCAPDA1.D ;2.C ;3.B ;4.C ;5.B ;6.B . 二、填空题:(本大题共12题,每题4分,满分48分)7.72; 8.3∶2; 9.3e - ; 10.80;11.5; 12.8; 13.()211y x =--+等; 14.大; 15.24.80.48y x x =-; 16.3; 17.11∶30; 18.56. 三、解答题:(本大题共7题,满分78分)19.解:原式=2222⎛⨯- ⎝⎭4分)=32————————————————————————(4分)=32分)20. 解:2264y x x =-++=29923442x x ⎛⎫--+++ ⎪⎝⎭————————————————————(3分) =22317317222222x x ⎡⎤⎛⎫⎛⎫--+=-+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦—————————————(2分)开口向下,对称轴为直线32x =,顶点317,22⎛⎫⎪⎝⎭————————————(5分) 21. 解:(1)由∠ACB =90°,CE ⊥BD ,得∠ACE =∠CBD .———————————————————————(2分)在△BCD 中,BC =3,CD =12AC =2,∠BCD =90°, 得tan ∠CBD =23,———————————————————————(2分) 即tan ∠ACE =23.———————————————————————(1分)(2)过A 作AC 的垂线交CE 的延长线于P ,—————————————(1分)则在△CAP 中,CA =4,∠CAP =90°,tan ∠ACP =23, 得AP =28433⨯=,——————————————————————(2分) 又∠ACB =90°,∠CAP =90°,得BC ∥AP ,得AE ∶EB =AP ∶BC =8∶9. —————————————————(2分)22. 解:(1)在△ABT 中,∠ATB =90°,BT ∶AT =1∶2.4,AB =130,——————(1分) 令TB =h ,则AT =2.4h ,————————————————————(1分)有()2222.4130h h +=,————————————————————(1分)解得h =50(舍负).——————————————————————(1分) 答:坡AB 的高BT 为50米. —————————————————————(1分) (2)作DK ⊥MN 于K ,作DL ⊥CH 于L , 在△ADK 中,AD =12AB =65,KD =12BT =25,得AK =60,——————(1分) 在△DCL 中,∠CDL =30°,令CL =x ,得LD,———————(1分) 易知四边形DLHK 是矩形,则LH =DK ,LD =HK ,在△ACH 中,∠CAH =60°,CH =x +25,得AH,—————(1分)60=+,解得12.564.4x =≈,—————(1分) 则CH =64.42589.489+=≈.—————————————————(1分)答:建筑物高度为89米.23. 证:(1)∵BD 是AB 与BE 的比例中项,∴BA BDBD BE=,————————————————————————(1分) 又BD 是∠ABC 的平分线,则∠ABD =∠DBE , ——————————(1分)∴△ABD ∽△DBE ,——————————————————————(2分)∴∠A =∠BDE . ———————————————————————(1分) 又∠BDC =∠A +∠ABD , ∴∠CDE =∠ABD =12∠ABC ,即证. ———————————————(1分) (2)∵∠CDE =∠CBD ,∠C =∠C , ——————————————————(1分) ∴△CDE ∽△CBD ,——————————————————————(1分)∴CE DECD DB=.————————————————————————(1分) 又△ABD ∽△DBE ,∴DE ADDB AB =—————————————————————————(1分) ∴CE ADCD AB=,————————————————————————(1分) ∴AD CD AB CE ⋅=⋅.———— —————————————————(1分)24. 解:(1)由题意得:428012a b b a-+=⎧⎪⎨-=⎪⎩,—————————————————(2分)解得:12a b =-⎧⎨=⎩,—————————————————————————(1分)所以抛物线的表达式为228y x x =-++,其顶点为(1,9). —————(2分) (2)令平移后抛物线为()21y x k =--+,——————————————(1分) 易得D (1,k ),B (0,k -1),且10k ->,由BC 平行于x 轴,知点C 与点B 关于对称轴x =1对称,得C (2,k -1). (1分)由()201x k =--+,解得1x =(舍正),即()1A .————(2分) 作DH ⊥BC 于H ,CT ⊥x 轴于T , 则在△DBH 中,HB =HD =1,∠DHB =90°, 又AC ∥BD ,得△CTA ∽△DHB ,所以CT =AT ,即(121k -=-,————————————————(2分) 解得k =4,所以平移后抛物线表达式为()221423y x x x =--+=-++. —————(1分)25. 解:(1)过C 作CH ⊥AB 与H ,—————————————————(1分)由∠A =90°,DP ∥AB ,得四边形ADCH 为矩形.在△BCH 中,CH =AD =4,∠BHC =90°,tan ∠CBH =2,得HB =CH ÷2=2,(1分) 所以CD =AH =5-2=3,———————————————————————(1分) 则四边形ABCD 的面积=()()113541622AB CD AD +⋅=⨯+⨯=.———(1分) (2)由BE 平分∠ABC ,得∠ABE =∠EBC , 当△ABE ∽△EBC 时,① ∠BCE =∠BAE =90°,由BE =BE ,得△BEC ≌△BEA ,得BC =BA =5,于是在△BCH 中,BH 3==,所以CD =AH =5-3=2. ———————————————————————(2分) ② ∠BEC =∠BAE =90°,延长CE 交BA 延长线于T ,由∠ABE =∠EBC ,∠BEC =∠BET =90°,BE =BE ,得△BEC ≌△BET ,得BC =BT , 且CE =TE ,又CD ∥AT ,得AT =CD .令CD =x ,则在△BCH 中,BC =BT =5+x ,BH =5-x ,∠BHC =90°,所以222BC BH CH =+,即()()222554x x +=-+,解得45x =.———(2分) 综上,当△ABE ∽△EBC 时,线段CD 的长为2或45.—————————(1分)(3)延长BE 交CD 延长线于M ,——————————————————(1分) 由AB ∥CD ,得∠M =∠ABE =∠CBM ,所以CM =CB .在△BCH 中,BC ===.则DM =CM -CD x ,又DM ∥AB ,得DE DM EA AB =,即4yy=-2分)解得()0 4.1y x =<<——————————(2分)。