化工热力学_Chapter3_习题-02
- 格式:pdf
- 大小:43.56 KB
- 文档页数:1
习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。
V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。
3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。
需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。
而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。
因此,流体的p –V –T 关系的研究是一项重要的基础工作。
2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。
严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。
理想气体状态方程是最简单的状态方程:2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r srTp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=s r p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。
《化⼯热⼒学》(第⼆、三版_陈新志)课后习题答案第1章绪⾔⼀、是否题3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想⽓体的焓和热容仅是温度的函数。
(对)5. 理想⽓体的熵和吉⽒函数仅是温度的函数。
(错。
还与压⼒或摩尔体积有关。
)第2章P-V-T关系和状态⽅程⼀、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)3. 当压⼒⼤于临界压⼒时,纯物质就以液态存在。
(错。
若温度也⼤于临界温度时,则是超临界流体。
)4. 由于分⼦间相互作⽤⼒的存在,实际⽓体的摩尔体积⼀定⼩于同温同压下的理想⽓体的摩尔体积,所以,理想⽓体的压缩因⼦Z=1,实际⽓体的压缩因⼦Z<1。
(错。
如温度⼤于Boyle温度时,Z>1。
)7. 纯物质的三相点随着所处的压⼒或温度的不同⽽改变。
(错。
纯物质的三相平衡时,体系⾃由度是零,体系的状态已经确定。
)8. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的热⼒学能相等。
(错。
它们相差⼀个汽化热⼒学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的吉⽒函数相等。
(对。
这是纯物质的汽液平衡准则。
)10. 若⼀个状态⽅程能给出纯流体正确的临界压缩因⼦,那么它就是⼀个优秀的状态⽅程。
(错。
)11. 纯物质的平衡汽化过程,摩尔体积、焓、热⼒学能、吉⽒函数的变化值均⼤于零。
(错。
只有吉⽒函数的变化是零。
)12. ⽓体混合物的virial系数,如B,C…,是温度和组成的函数。
(对。
)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。
(错。
三对数对应态原理不能适⽤于任何流体,⼀般能⽤于正常流体normal fluid)14. 在压⼒趋于零的极限条件下,所有的流体将成为简单流体。
(错。
简单流体系指⼀类⾮极性的球形流,如Ar等,与所处的状态⽆关。
第三章习题
一、概念
剩余性质Poynting校正因子纯物质逸度及逸度系数
二、问题
1. 掌握热力学基本关系式、Maxwell关系式及其应用。
2. 热力学性质的有关推导及证明。
3. 热力学性质的计算方法有哪几种(熟练运用)。
4. 为什么要引入剩余性质?描述其定义及数学表达式。
5. 写出逸度及逸度系数的数学表达式,并解释其物理意义。
6. 逸度及逸度系数的计算方法有哪些?
7. 纯液体的逸度可由下式计算
试指出式中各个量的物理意义,若已知液体的温度、压力,简述上式各个量如何求取。
8. 两相系统的热力学性质计算,化工中常用的热力学性质图主要有哪些?
9. 物质热力学性质三种表示形式(方程式、图和表)的优缺点。
化工热力学(第三版)课后答案完整版_朱自强第二章流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1)理想气体方程;(2)RK 方程;(3)PR 方程;(4)维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1)根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --?+=== (2)用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ??== 53160.086648.314190.6 2.9846104.6010b m mol --??== 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -?=+?? 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----??-?-+? 3553311.381102.984610 2.1246101.389610m mol -----=?+?-?=?? 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------??-?=?+?-+?=?+?-?=??1V 和2V 已经相差很小,可终止迭代。
化工热力学(第三版)习题解答集朱自强、吴有庭、李勉编著前言理论联系实际是工程科学的核心。
化工热力学素以概念抽象、难懂而深深印在学生的脑海之中。
特别使他们感到困惑的是难以和实际问题进行联系。
为了学以致用,除选好教科书中的例题之外,很重要的是习题的安排。
凭借习题来加深和印证基本概念的理解和运用,补充原书中某些理论的推导,更主要的是使学生在完成习题时能在理论联系实际的锻炼上跨出重要的一步。
《化工热力学》(第三版)的习题就是用这样的指导思想来安排和编写的。
《化工热力学》自出版以来,深受国内同行和学生的关注和欢迎,但认为习题有一定的难度,希望有一本习题集问世,帮助初学者更有效地掌握基本概念,并提高分析问题和解决问题的能力。
为此我们应出版社的要求把该书第三版的习题解撰并付印,以飨读者。
在编写过程中除详尽地进行习题解答外,还对部分习题列出了不同的解题方法,便于读者进一步扩大思路,增加灵活程度;对部分有较大难度的习题前加上“*”号,如果教学时间较少,可以暂时不做,但对能力较强的学生和研究生也不妨一试。
使用本题解的学生,应该先对习题尽量多加思考,在自学和独自完成解题的基础上加以利用和印证,否则将与出版此书的初衷有悖。
参加本习题题解编写的人员是浙江大学化工系的朱自强教授、南京大学化工系的吴有庭教授、以及李勉博士等,浙江大学的林东强教授、谢荣锦老师等也对本习题编写提供了有益的帮助。
在此深表感谢。
由于编写时间仓促,有些地方考虑不周,习题题解的写作方法不善,甚至尚有解题不妥之处,希望读者能不吝赐教,提出宝贵意见,以便再版时予以修改完善。
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pit zer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ ﻩﻩﻩﻩﻩ ﻩ(E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa,将它们代入a , b表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
第三章纯流体的热力学性质
作业题(2)_(Apr. 2, 2010)
1.采用二元拟线性插值求484℃, 1.57MPa水蒸汽的焓值和熵值.
2.水蒸汽p=0.65MPa, S=7.3505 kJ·kg-1·K-1,采用二元拟线性插
值求H和T。
3.用普遍化方法计算正丁烷在460K和1.52MPa下的逸度。
4.在一刚性的容器中装有1kg水,其中汽相占90%(V),压力是
0.1985MPa,加热使液体水刚好汽化完毕,试确定终态的温
度和压力,计算所需的热量,内能、焓、熵的变化。
5.压力是3MPa的饱和蒸汽置于1000cm3的容器中,需要导出多
少热量方可使一半的蒸汽冷凝? (可忽视液体水的体积)
6.过热蒸汽的状态为1.034MPa和533K,通过喷嘴膨胀,出口
压力为0.2067MPa,如果是可逆绝热过程,并达到平衡,问蒸汽在喷嘴出口的状态如何?。