绝缘材料(详解)
- 格式:pdf
- 大小:347.00 KB
- 文档页数:12
绝缘材料有哪些绝缘材料是指具有良好绝缘性能的材料,主要用于电气设备和电子产品中,以阻止电流的流动或减少电流的泄漏。
绝缘材料的种类繁多,下面我们来了解一下常见的几种绝缘材料。
首先,我们来介绍一下常见的有机绝缘材料。
有机绝缘材料是指以天然或合成的有机高分子材料为主要成分的绝缘材料。
常见的有机绝缘材料包括聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯等。
这些材料具有良好的绝缘性能,同时具有较高的机械强度和耐热性能,适用于各种电气设备中的绝缘结构。
其次,无机绝缘材料也是常见的一类绝缘材料。
无机绝缘材料主要包括氧化铝、氧化锌、氧化镁等。
这些材料具有良好的耐高温性能和化学稳定性,适用于高温电气设备的绝缘结构。
此外,无机绝缘材料还具有较好的耐湿性和耐腐蚀性能,适用于潮湿或腐蚀性环境中的电气设备。
另外,还有复合绝缘材料,它是由有机绝缘材料和无机绝缘材料按一定比例混合而成的绝缘材料。
复合绝缘材料综合了有机材料和无机材料的优点,具有良好的绝缘性能、机械强度和耐热性能,适用于各种特殊环境下的电气设备。
此外,还有陶瓷绝缘材料,它是一种具有良好耐高温性能和化学稳定性的绝缘材料。
陶瓷绝缘材料主要包括氧化铝陶瓷、氧化锆陶瓷等,适用于高温电气设备的绝缘结构。
最后,还有纸质绝缘材料,它是由特殊工艺处理的纤维素纸制成的绝缘材料。
纸质绝缘材料具有良好的柔韧性和绝缘性能,适用于各种电气设备中的绝缘结构。
综上所述,绝缘材料的种类繁多,不同的绝缘材料具有不同的特点和适用范围。
在选择绝缘材料时,需要根据具体的使用环境和要求来进行选择,以确保电气设备具有良好的绝缘性能和安全性能。
希望本文能够帮助您更好地了解绝缘材料的种类和特点。
绝缘材料有哪几种绝缘材料是一种能够阻止电流通过的材料,它在电气设备和电子器件中起着至关重要的作用。
在不同的应用场景下,需要选择不同种类的绝缘材料来满足特定的要求。
目前,市面上常见的绝缘材料主要包括以下几种:1. 塑料绝缘材料。
塑料绝缘材料是一种常见的绝缘材料,它具有良好的绝缘性能、机械性能和耐热性能。
常见的塑料绝缘材料包括聚乙烯、聚丙烯、聚氯乙烯等。
这些材料通常用于电线电缆、绝缘套管、绝缘板等电气设备中。
2. 橡胶绝缘材料。
橡胶绝缘材料具有良好的弹性和耐磨性,能够在不同温度下保持良好的绝缘性能。
常见的橡胶绝缘材料包括丁腈橡胶、丙烯橡胶、硅橡胶等。
这些材料通常用于电缆绝缘、电机绝缘、密封件等领域。
3. 玻璃绝缘材料。
玻璃绝缘材料具有优异的耐高温性能和耐化学腐蚀性能,能够在恶劣环境下保持稳定的绝缘性能。
常见的玻璃绝缘材料包括玻璃纤维布、玻璃绝缘纸、玻璃绝缘带等。
这些材料通常用于电机绝缘、变压器绝缘、电力设备绝缘等领域。
4. 陶瓷绝缘材料。
陶瓷绝缘材料具有优异的耐高温性能和耐电弧性能,能够在高压、高温环境下保持稳定的绝缘性能。
常见的陶瓷绝缘材料包括氧化铝陶瓷、氧化锆陶瓷、氮化硼陶瓷等。
这些材料通常用于高压开关、避雷器、绝缘子等领域。
5. 复合绝缘材料。
复合绝缘材料是将不同种类的绝缘材料通过复合工艺进行组合而成,能够充分发挥各种材料的优点,提高绝缘性能和机械性能。
常见的复合绝缘材料包括聚酯玻璃纤维带、聚四氟乙烯玻璃纤维布、聚酰亚胺玻璃纤维布等。
这些材料通常用于特殊电气设备、航空航天领域、高速列车等领域。
综上所述,绝缘材料的种类繁多,每种材料都具有特定的优点和适用场景。
在实际应用中,需要根据具体的要求和环境条件选择合适的绝缘材料,以确保电气设备和电子器件的安全可靠运行。
七种常见绝缘材料绝缘材料是一种在电气设备中起着非常重要作用的材料,它能够阻止电流的流动,从而保护设备和人员的安全。
在实际应用中,我们常见的绝缘材料有很多种类,每种材料都有其独特的特性和适用场景。
在本文中,我们将介绍七种常见的绝缘材料,分别是橡胶、塑料、玻璃、陶瓷、云母、绝缘漆和绝缘纸。
首先,我们来介绍橡胶。
橡胶是一种常见的绝缘材料,具有良好的柔韧性和耐磨性。
它通常用于电线电缆的绝缘层,能够有效地阻止电流的泄漏,保护电线电缆不受外界环境的影响。
此外,橡胶还常用于制作绝缘手套和绝缘垫片,用于维修和安装电气设备。
其次,塑料也是一种常见的绝缘材料。
塑料具有轻质、耐腐蚀、绝缘性能好等特点,因此被广泛应用于电气设备的绝缘部件制造中。
常见的塑料材料有聚乙烯、聚氯乙烯、聚丙烯等,它们不仅可以用于制作绝缘件,还可以制作电气设备的外壳和支架。
接下来是玻璃。
玻璃是一种优良的绝缘材料,具有优异的耐高温性能和化学稳定性。
在电气设备中,玻璃常用于制作绝缘子、绝缘管和绝缘垫片等部件,能够有效地隔离电流,保护设备的安全运行。
除了上述材料,陶瓷也是一种常见的绝缘材料。
陶瓷具有优异的耐高温性能和机械强度,因此在高压、高温的环境下表现出色。
在电气设备中,陶瓷常用于制作绝缘子、绝缘套管等部件,能够有效地阻止电流的泄漏,保护设备的安全运行。
另外,云母也是一种常见的绝缘材料。
云母具有优良的绝缘性能和耐高温性能,因此被广泛应用于电气设备的绝缘部件制造中。
常见的云母制品有云母片、云母管等,能够有效地隔离电流,保护设备的安全运行。
此外,绝缘漆也是一种重要的绝缘材料。
绝缘漆具有优异的绝缘性能和耐腐蚀性能,常用于电机、变压器等设备的绝缘处理。
它能够形成均匀的绝缘膜,有效地隔离电流,提高设备的绝缘性能。
最后,我们来介绍绝缘纸。
绝缘纸是一种常见的绝缘材料,具有优异的绝缘性能和机械强度。
它常用于电气设备的绝缘层和绝缘垫片等部件制造中,能够有效地隔离电流,保护设备的安全运行。
绝缘材料介绍1 . 1 绝缘材料概论绝缘材料又称电介质,是电阻率高、导电能力低的物资。
绝缘材料可用于隔离带电或不同电位的导体,使电流按一定方向流通。
在变压器产品中,绝缘材料还起着散热、冷却、支撑、固定、灭弧、改善电位梯度、防潮、防霉和保护导体等作用。
绝缘材料按电压等级分类:一般分为: Y (90 ℃ )、 A ( 105 )、 E (120 ℃ )、B (130 ℃ )、 F (155 ℃ )、 H (180 ℃ )、 C (大于180 ℃ )。
变压器绝缘材料的耐热等级是指绝缘材料在变压器所允许承受的最高温度。
如果正确地使用绝缘材料,就能保证材料 20 年的使用寿命。
否则就会依据8 ℃ 定律( A 级绝缘温度每升高8 ℃ ,使用寿命降低一半、 B 级绝缘是10 ℃ , H 级是12 ℃ 。
这一规律被称为热老化的8 ℃ 规律)降低使用寿命。
由高聚物组成的绝缘材料的耐热性一半比无机电介质低。
绝缘材料性能与其分子组成和分子结构密切相关。
变压器绝缘材料品种很多,按其形态一般可分气体绝缘材料、液体绝缘材料和固体绝缘材料。
2 、变压器绝缘材料电器性能的四个基本参数。
变压器绝缘材料电气性能的四个基本参数包括绝缘电阻、介电系数、介质损耗因数和绝缘强度。
2.1 绝缘电阻2.1.1 绝缘电阻的概念绝缘材料的电阻是指绝缘材料在直流电压的作用下,加压时间较长,且使线路上的充电电流和吸收电流消失,只有漏电电流通过时的电阻值 / 一般规定为电压加上一分钟后,所测得的电阻值即绝缘电阻值。
对于高电压大容量的变压器,测量绝缘电阻时规定为加压 10 分钟。
2.1.2 影响绝缘电阻的因素2.1.2.1 温度与绝缘电阻的关系随着温度的升高,电阻率呈指数下降,这是因为当温度升高时,分子热运动加剧,分子得平均动能增大,使分子动能达到活化能得几率增加,离子容易转移。
2.1.2.2 湿度与绝缘电阻得关系水分浸入电介质中,增加了导电离子,又能促进杂质及极性分子离解。
常用绝缘材料绝缘材料是用于隔离电流和保护电路免受电击和电气故障的材料。
它们在电力系统、电子设备、通信系统和其他电气设备中广泛应用。
以下是一些常用的绝缘材料:1. PVC(聚氯乙烯):PVC是一种常见的绝缘材料,具有良好的绝缘性能和机械强度。
它的优点包括低成本、易加工、耐化学品和耐磨损。
2. PE(聚乙烯):PE是一种高度可塑性的绝缘材料,用于制造电线和电缆的绝缘层。
它具有良好的绝缘性能、耐冲击性和耐化学性。
3. XLPE(交联聚乙烯):XLPE是一种具有良好电气性能和机械强度的高压绝缘材料。
它经过特殊处理,使其分子链之间交联,提高了其耐热性和耐老化性能。
4. EPR(乙丙橡胶):EPR是一种耐热、耐臭氧和耐老化的绝缘材料,常用于高温和高电压应用中。
它具有良好的柔韧性和弯曲性能。
5. 硅胶:硅胶是一种绝缘性能优秀的高温绝缘材料。
它在高温环境下仍能保持良好的绝缘性能,具有很好的耐热性和耐电弧性能。
6. 纸板:纸板是一种低成本、易加工的绝缘材料,广泛应用于电力设备的绝缘装置。
它可以通过浸渍油或涂覆绝缘漆来提高其绝缘性能。
7. 云母:云母是一种具有优良绝缘性能和高耐温性的天然矿物材料。
它通常用于绝缘垫片、绝缘管和绝缘板等电气设备中。
8. 玻璃纤维:玻璃纤维是一种具有良好电气性能和机械强度的绝缘材料。
它通常用于制造绝缘导线、绝缘管和电机绝缘材料等。
总之,绝缘材料的选择取决于应用的具体条件和要求。
不同的绝缘材料具有不同的优点和适用范围,因此在选用绝缘材料时需要考虑到电压等级、环境温度、化学性质和机械性能等因素。
绝缘体材料
绝缘体材料指的是对电流几乎不导电的材料。
在电子电路、电子设备中,绝缘体材料起到了起到了隔离电流、保护电路的作用。
下面将介绍一些常见的绝缘体材料及其特点。
一、塑料类绝缘材料
常见的塑料类绝缘材料有聚烯烃类、聚氯乙烯、聚氯乙烯、聚苯乙烯等。
这些材料具有绝缘性好、机械性能优良、成型加工方便等特点,被广泛应用于电子产品、家用电器等领域。
二、橡胶类绝缘材料
橡胶类绝缘材料是一种天然或合成的高分子有机聚合物,具有较好的绝缘性能、耐热性能和耐老化性能。
常见的橡胶类绝缘材料有天然橡胶、丁苯橡胶、丁腈橡胶、硅橡胶等。
它们可以用于制造电线电缆、绝缘套管等电子元器件。
三、陶瓷类绝缘材料
陶瓷类绝缘材料具有尺寸稳定性好、绝缘性能优异、耐高温、耐腐蚀等特点。
常见的陶瓷类绝缘材料有瓷砖、陶瓷电容器等。
它们被广泛应用于电子器件中,如电容器、绝缘子等。
四、玻璃类绝缘材料
玻璃类绝缘材料是一种无定形非晶质物质,具有较好的绝缘性能、耐高温性能和耐腐蚀性能。
常见的玻璃类绝缘材料有硼硅酸玻璃、电子玻璃等。
它们被广泛应用于光纤通信、电子器件的绝缘层等领域。
以上是绝缘体材料中的一些常见类型,每种绝缘体材料都有其各自的特点和适用范围。
在选择和应用绝缘体材料时,需要根据具体的需求和使用环境来进行判断和选择,以确保电路和电子设备的安全运行。
第一章绪论一、绝缘材料在电机中的应用1.绝缘材料:能够阻止电流通过的材料,体积电阻率通常大于109Ω.cm2.绝缘材料的作用:将带电的部分与不带电的部分或带不同电位的部分相互隔离开来,使电流能够按照一定的路径流动。
3.电机:进行能量转换的电磁机械设备4.电机分类:变压器、直流电机、交流电机、控制电机、脉流电机5、电机的基本结构:静止部分(定子):产生磁场,构成磁路,机械支撑。
间隙(空气隙):保证电机安全运行磁路的重要组成部分、旋转部分(转子):感应电势,产生电磁转矩,实现能量转换。
定子的结构:机座、主磁极、换向极、端盖、电刷装置。
转子的结构:转轴、电枢铁芯、电枢绕组、换向器。
5、电枢绕组:由一定数目的电枢线圈按一定的规律连接组成;是直流电机的电路部分,也是感生电动势,产生电磁转矩进行机电能量转换的部分6.、制造电机使用的主要材料:导电材料(绕组、换向器、电刷)、绝缘材料(将带电部分与铁心、机座等接地部件以及电位不同的带电部分在电气上分离)、导磁材料(制造磁系统的各个部件如铁心、机座等)。
7、电机绝缘结构:匝间绝缘、层间绝缘、对地绝缘、外包绝缘。
还有三个,填充绝缘、衬垫绝缘、换向器绝缘。
匝间绝缘:主极线圈和换向极线圈的匝间绝缘、电枢线圈的匝间绝缘、换向片、片间绝缘、同一线圈的各个线匝之间的绝缘层间绝缘;分层平绕的主极线圈各层间的绝缘、电枢绕组前后端节部分、槽内部分上、下层之间的绝缘、线圈上、下层之间的绝缘对地绝缘:是指电机各绕组对机座和其他不带电部件之间的绝缘、主极线圈换向极线圈的对地绝缘、电枢绕组的对地绝缘、换向器的对地绝缘,把电机中带电部件和机座、铁心等不带电部件隔离,以免发生对地击穿。
外包绝缘:包在对地绝缘外面的绝缘,主要是保护对地绝缘免受机械损伤并使整个线圈结实平整,也起到了对地绝缘的补强作用填充绝缘:填充线圈的空隙,使整个线圈牢固地形成一个整体,减少振动,也使线圈成型规矩、平整,以利于包扎对地绝缘,也有利于散热衬垫绝缘:保护绝缘结构在工艺操作时免受机械损伤换向器绝缘:换向片片间绝缘换、向片组对地绝缘、换向片组和压圈间的V形云母环及云母套筒、多层优质虫胶塑性云母8、定子线棒导线绝缘:排间绝缘、换位绝缘、换位填充。
9、水轮发电机转子绝缘:匝间绝缘、磁极托板、极身绝缘。
二、绝缘材料的耐热等级根据耐热性,划分耐热等级温度通常是对绝缘材料和绝缘结构老化起支配作用的因素温度指数(temperature index,TI):对应于绝缘材料热寿命图上给定时间(通常为2万小时)的摄氏温度值相对温度指数(relative temperature index,RTI):将一种温度指数未知的材料试样与温度指数已知的材料试样放在一起,按规定的试验方法作比较试验时,从对应于已知材料的已被公认的运行的温度的时间得到的未知材料的温度指数。
三、绝缘材料的分类:1730 :聚酯漆包线漆,3表示耐热等级B,用于涂制温度指数130℃的聚酯漆包线代号 温 度 指 数 耐热等级1 不低于105 A2 不低于120 E3 不低于130 B4 不低于155 F5 不低于180 H6 不低于200 C7 不低于220 C四、绝缘材料的常见性能参数1、电流由三部分组成:瞬时充电电流(由介质的几何电容的位移极化产生,随着时间的增加逐渐衰减,用ic表示)、吸收电流(由缓慢极化、导电离子产生的体积电荷等产生,也是随着时间的增加逐渐衰减的,用ia表示。
)、泄漏电流(泄漏电流的大小与绝缘材料本身含离子量有着密切的关系,用ib表示)。
2、绝缘电阻:加在与绝缘体或试样相接触的两个电极之间的直流电压除以通过两电极的总电流所得的商。
3、体积电阻:在试样的相对二表面上放置的两个电极之间施加的直流电压除以这两个电极之间形成的稳态电流所得的商;即绝缘材料相对两表面之间的电阻。
4、体积电阻率:在试样内的直流电场强度除以稳态电流密度所得的商,可看为一个单位立方体积里的体积电阻。
绝缘材料的体积电阻率通常在109~1021 Ω.cm5、表面电阻:加在绝缘体或试样的同一表面上的两个电极之间的直流电压除以经一定的电化时间后的该两个电极间的电流所得的商。
6、表面电阻率:在绝缘材料表面的直流电场强度除以电流线密度所得的商。
7.、影响电阻率的因素:温度、湿度、杂质、电场强度。
(1)温度随着温度的升高,其电阻率呈指数式下降。
原因—— 这是因为当温度升高时,分子热运动加剧,分子的平均动能增大,使分子动能达到活化能的几率增加,离子容易迁移的缘故。
(2) 湿度——绝缘电阻随湿度的增大而降低。
对多孔性材料(如纸)的影响特别显著,电介质表面的电阻对其表面水分的影响很敏感。
电器设备特别是户外设备,定期检查设备绝缘电阻的变化,可以预防事故的发生。
(3)杂质——杂质增加,电阻率下降表面受杂质污染并吸附水分杂质在电介质内部直接增加了导电离子杂质特别容易混人极性材料中,混人后又能促使极性分子的离解8、电介质——在电场作用下,能建立极化的一切物质。
绝缘材料是电介质中的一种。
9、在外电场下,电介质表面产生感应电荷(束缚电荷),称为电介质的极化。
10、极化的基本形式:位移极化、松弛极化、转向极化、空间电荷极化,自发极化。
11、介电常数:ε—介电常数,表征电介质的极化性能。
ε0-真空时介电常数,又称绝对介电常数。
其值为8.854187817×10-12法/米。
εr -相对介电常数,无量纲,通常简称为介电常数。
气体的介电常数基本略大于1 (1.00*),液体的介电常数一般在1.8~2.8,非极性固体介电常数一般在2.0~2.5,极性固体一般>3。
12、介电损耗:电介质单位时间内引起的能量损耗,即引起电介质发热的能量,称为电介质的损耗。
13、高聚物的介电常数与结构的关系:(1)高聚物极性大小是介电常数的主要决定因素(非极性 2.0~2.3弱极性 2.3~3.0中极性 3.0~4.0强极性 4.0~7.0)(2)极性基团对高聚物的介电常数的贡献大小强烈决定于高聚物所处物理状态(玻璃化温度以上聚氯乙烯从3.5增大到15,聚酰胺从4.0增大到50。
)(3)极性基团在分子链上的位置(主链上介电常数小侧链上介电常数大)(4)分子的对称性(对称性高介电常数小,对称性低介电常数大)(5)交联、拉伸、支化(介电常数升高)14、高聚物的介电损耗:1、电导损耗2、松弛损耗(偶极子滞后于电场变化)3、变形损耗(红外吸收、紫外吸收)4、影响因素a.分子结构b.频率影响c.温度影响d.电压e.杂质五、绝缘材料的老化15、老化:电气设备中的绝缘材料在运行过程中,由于受到各种因素的长期作用,会发生一系列不可逆的变化,从而导致其物理、化学、电和机械等性能的劣化,这种不可逆的变化通称为老化。
15、聚合物老化的主要表现:(1)表观变化:材料变色、变粘、变形、龟裂、脆化(2)物理化学性能变化:相对分子量、相对分子质量分布、熔点、溶解度、耐热性、耐寒性、透气性、透光性等;(3)机械性能:弹性、硬度、强度、伸长率、附着力、耐磨性等;(4)电性能:绝缘电阻、介电常数、介电损耗角正切、击穿强度等16合物老化的本质:(1)交联:交联至一定程度前能改善聚合物的物理机械性能和耐热性能,但随着分子间交联的增多,逐渐形成网络结构,聚合物变成硬、脆、不溶不熔的产物;(2)降解:分子量减小,导致机械性能和电性能降低,出现发粘和粉化。
内因化学结构:链节的组成和结构,大分子中链节的排列方式,端基的性质,支链的长短和多少。
与合成反应的历程和合成条件有关;物理结构:高分子的聚集态,如无定形态、结晶态、取向态以及高聚物与其它材料(增塑剂、填充剂等)的混溶状态等;成型加工条件和外来杂质影响外因影响:能量作用使高分子的共价键发生均裂(生成自由基)或异裂(生成离子),引起降解和交联反应;外来物质(即化学因素)与高分子发生化学反应引起高分子的降解、交联或其他反应最主要的:电老化,热老化,综合性的环境老化。
17、环境老化:含有酸、碱、盐类成分的污秽尘埃(或与雨、露、霜、雪相结合)对绝缘物的长期作用,显然会对绝缘物(特别是有机绝缘物)产生腐蚀。
环境老化原因:阳光紫外线的能量大于多数有机绝缘物中主价键的键能,多数有机绝缘物在紫外光的作用下会逐渐老化。
高分子电介质吸收紫外光能量后,有部分分子被激励,当存在氧气或臭氧时,还会引发高分子的氧化降解反应,称为光认化反应。
光氧化反应是环境老化中的重要过程之一。
延缓环境老化的方法主要是改善绝缘材料本身的性能:——添加光稳定剂(反射或吸收紫外光)——抗氧化剂、抗臭氧剂以及使用防护蜡——加强高压电气装置的防晕、防局部放电措施18、电老化:绝缘材料在电场的长时间作用下,物理、化学变化性能发生变化,最终导致介质被击穿,这个过程称为电老化。
主要有三种类型:电离性老化(交流电压);电导性老化(交流电压);电解性老化(直流电压)19、电离性老化:(1)绝缘材料中存在气泡或气隙(工艺缺陷、冷热收缩、材料分解、材料受潮)(2)气体介质的介电常数接近为1,比固体介质的介电常数小得多,在交变电场下,气隙中的场强比邻近的固体介质中的场强大得多,而其起始游离场强(常压)通常又比固体介质的小得多,所以,游离基最容易在这些气隙中发生,在某些气隙中,甚至可能存在稳定的火花放电。
(3)气隙的游离基将导致20、电导性老化:在两电极之间的绝缘层中(最常见的是在电极与绝缘的交界面处),存在某些液态的导电物质(最常见的是水)当该处场强超过某定值时,这些导电物质便会沿电场方向逐渐渗入绝缘层深处,形成近似树状的痕迹称入水树枝。
水树枝的累积发展将最终导致绝缘层的击穿。
产生水树枝的机理可能是:水或其他电解液中的离子在交变电场作用下反复冲击绝缘物,使其发生疲劳损坏和化学分解;电解液逐渐渗透、扩散到深处,形成水树枝。
产生和发展水树枝所需的场强,比产生和发展电树枝所需的场强低得多。
21、电解性老化:在直流电压长期作用下,即使所加电压远低于局部放电起始电压,由于介质内部近行着电化学过程,介质也会逐渐老化,最终导致击穿。
22、热老化:在较高温度下,电介质发生热裂解、氧化分解、交联、以及低分子挥发物的逸出,导致电介质失去弹性、变脆、发生龟裂,机械强度降低,也有些介质表现为变软、发粘、失去定形,同时,介质电性能变坏。
热老化的程度主要决定于温度及热作用时间。
此外,诸如空气中的湿度、压力、氧的含量、空气的流通程度等对热老化的速度也有一定影响。
23、高分子材料的防老化原理和方法:(1)改进聚合物本身结构,减少成型加工造成的材料弱点;(2)加入特定添加剂或防护方法来抑制光、热氧等外因对聚合物的降解;(3)改进聚合工艺:选择合适的聚合方法,采用优良的引发剂、催化剂并确认合理用量,消除不稳定的端基,尽量减少聚合过程中在聚合物内产生的杂质(4)采用共聚、共混、交联等物理、化学措施,从根本上克服导致聚合物老化的弱点;(5)改进聚合物成型加工工艺,减少加工过程中杂质的引入量,尽量消除聚合物中的内应力,适当控制聚合物的聚集态结构;(6)采用物理方法进行防护,如使用防护蜡;(7)加入稳定剂24、热稳定剂,8类:碱式铅盐、金属皂、有机锡、环氧化合物、亚磷酸酯、多元醇、纯有机化合物和复合稳定剂稳定剂的作用:防止聚合物材料在热成型加工和使用过程中受热而发生降解、交联或其它化学反应,延长寿命;25、主稳定剂:含有金属的热稳定剂;辅助稳定剂:环氧化合物、亚磷酸酯、多元醇等纯有机化合物26 PVC的热降解:PVC热降解生成HCl,加速降解,生产共轭多烯结构对策:(1)阻止脱HCl的反应或推迟这一作用(预防作用)(2)稳定或饱和在降解开始阶段出现的双键结构(钝化作用):金属有机盐、环氧衍生物和有机胺能与HCl反应;二烷基马来酸锡等能与多烯反应,稳定降解的双键27、氧化降解和抗氧剂主抗氧剂:链终止剂或自由基捕获剂。