2015-2016年安徽省亳州市谯城区八年级(上)期末数学试卷和解析答案
- 格式:doc
- 大小:1.24 MB
- 文档页数:25
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
2015-2016学年安徽省亳州市谯城区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1) D.(0,﹣1)2.若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.103.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:14.下列函数中,y是x的一次函数的是()①y=x﹣6;②y=;③y=;④y=7﹣x.A.①②③B.①③④C.①②③④ D.②③④5.若直线y=mx+2m﹣3经过二、三、四象限,则m的取值范围是()A.m<B.m>0 C.m>D.m<06.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个8.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地,下列函数图象能表达这一过程的是()A. B.C.D.9.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30° B.45° C.55° D.60°10.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA二、填空题(本大题共6小题,每小题5分,共30分)11.函数y=中,自变量x的取值范围是.12.直线y=kx+b与直线y=﹣2x+1平行,且经过点(﹣2,3),则kb= .13.如图,一次函数y=x+6的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.14.y+2与x+1成正比例,且当x=1时,y=4,则当x=2时,y= .15.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,则△BEF 的面积:cm2.16.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.三、解答题17.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.18.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.19.如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数.20.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.22.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,利用(1)的结论,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系?并说明理由.23.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图(1)所示,S与x的函数关系图象如图(2)所示:(1)图中的a= ,b= .(2)求S关于x的函数关系式.(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E 加油站到甲地的距离.2015-2016学年安徽省亳州市谯城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1) D.(0,﹣1)【考点】坐标与图形变化-平移.【专题】动点型.【分析】直接利用平移中点的变化规律求解即可.【解答】解:点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位得到点B,坐标变化为(﹣3﹣3,﹣5+4);则点B的坐标为(﹣6,﹣1).故选C.【点评】本题考查点坐标的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.2.若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.10【考点】三角形三边关系.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边,分别求出x的最小值、最大值,进而判断出x的值可能是哪个即可.【解答】解:∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6.故选:B.【点评】此题主要考查了三角形的三边的关系,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)三角形的两边差小于第三边.3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:1【考点】三角形的外角性质.【分析】设三角形的三个外角的度数分别为3x、4x、5x,根据三角形的外角和等于360°列出方程,解方程得到答案.【解答】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,3x=90°,4x=120°,5x=150°,相应的外角分别为90°,60°,30°,则这个三角形内角之比为:90°:60°:30°=3:2:1,故选:C.【点评】本题考查的是三角形外角和定理,掌握三角形的外角和等于360°是解题的关键.4.下列函数中,y是x的一次函数的是()①y=x﹣6;②y=;③y=;④y=7﹣x.A.①②③B.①③④C.①②③④ D.②③④【考点】一次函数的定义.【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:①y=x﹣6符合一次函数的定义,故本选项正确;②y=是反比例函数;故本选项错误;③y=,属于正比例函数,是一次函数的特殊形式,故本选项正确;④y=7﹣x符合一次函数的定义,故本选项正确;综上所述,符合题意的是①③④;故选B.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.5.若直线y=mx+2m﹣3经过二、三、四象限,则m的取值范围是()A.m<B.m>0 C.m>D.m<0【考点】一次函数图象与系数的关系.【专题】计算题.【分析】根据一次函数图象的性质作答.【解答】解:∵直线y=mx+2m ﹣3经过第二,三,四象限;∴m <0,2m ﹣1<0,即m <0.故选D .【点评】本题考查了一次函数图象与系数的关系,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.6.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .【考点】三角形的角平分线、中线和高.【分析】根据三角形高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高,再结合图形进行判断.【解答】解:线段BE 是△ABC 的高的图是选项D .故选D .【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.7.如图,△ABC ≌△AEF ,AB=AE ,∠B=∠E ,则对于结论①AC=AF,②∠FAB=∠EAB ,③EF=BC,④∠EAB=∠FAC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个【考点】全等三角形的性质.【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键.8.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地,下列函数图象能表达这一过程的是()A. B.C.D.【考点】函数的图象.【专题】函数及其图象.【分析】因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案.【解答】解:∵400×5=2000(米)=2(千米),∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,故排除选项A与B又∵回到原出发地”表示终点的纵坐标为0,∴排除选项D,故:选C【点评】本题考查了函数的图象,解题的关键是理解函数图象的意义.9.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30° B.45° C.55° D.60°【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列式求出∠ABN,再根据角平分线的定义求出∠ABE 和∠BAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.【解答】解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选(B)【点评】本题怎样考查了三角形外角的性质,以及角平分线的定义,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.10.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.二、填空题(本大题共6小题,每小题5分,共30分)11.函数y=中,自变量x的取值范围是x<3 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得,3﹣x≥0且x﹣3≠0,解得,x≤3且x≠3,所以自变量x的取值范围是:x<3,故答案为:x<3.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.直线y=kx+b与直线y=﹣2x+1平行,且经过点(﹣2,3),则kb= 2 .【考点】两条直线相交或平行问题.【分析】由平行线的关系得出k=﹣2,再把点(﹣2,3)代入直线y=﹣2x+b,求出b,即可得出结果.【解答】解:∵直线y=kx+b与直线y=﹣2x+1平行,∴k=﹣2,∴直线y=﹣2x+b,把点(﹣2,3)代入得:4+b=3,∴b=﹣1,∴kb=2.故答案为:2.【点评】本题考查了两条直线平行的性质、直线解析式的求法;熟练掌握两条直线平行的性质,求出直线解析式是解决问题的关键.13.如图,一次函数y=x+6的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为36 .【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据一次函数图象上点的坐标特征得到b=a+6,d=c+6,即a﹣b=﹣6,c﹣d=﹣6,再利用因式分解得到a(c ﹣d)﹣b(c﹣d)=(c﹣d)(a﹣b),然后利用整体代入的方法计算即可.【解答】解:∵一次函数y=﹣x+6的图象经过点P(a,b)和Q(c,d),∴b=a+6,d=c+6,∴a﹣b=﹣6,c﹣d=﹣6,∴a(c﹣d)﹣b(c﹣d)=(c﹣d)(a﹣b)=(﹣6)×(﹣6)=36.故答案为36.【点评】本题考查了一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.解题时要注意因式分解与整体代入方法的运用.14.y+2与x+1成正比例,且当x=1时,y=4,则当x=2时,y= 7 .【考点】待定系数法求一次函数解析式.【分析】由y+2与x+1成正比例,设y+2=k(x+1),将x=1,y=4代入求出k的值,确定出y与x的函数关系式,将x=2代入即可求出对应y的值.【解答】解:根据题意设y+2=k(x+1),将x=1,y=4代入得:6=2k,即k=3,∴y+2=3(x+1),将x=2代入得:y+2=3×3,即y=7.故答案为:7,【点评】此题考查了利用待定系数法求正比例函数解析式,熟练掌握待定系数法是解本题的关键.15.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,则△BEF 的面积: 4 cm2.【考点】三角形的面积.【分析】首先根据点E是线段AD的中点,三角形的中线将三角形分成面积相等的两部分,可得△BDE的面积等于三角形△ABE的面积,△CDE的面积△等于三角形ACE的面积,所以△BCE的面积等于△ABC的面积的一半;然后根据点F是线段CE的中点,可得△BEF的面积等于△BCE的面积的一半,据此用△BCE的面积除以2,求出△BEF的面积是多少即可.【解答】解:∵AE=DE,∴S△BDE =S△ABE,S△CDE=S△ACE,∴S△BDE =S△ABD,S△CDE=S△ACD,∴S△BCE =S△ABC==8(cm2);∵EF=CF,∴SBEF =S△BCF,∴S△BEF =S△BCE==4(cm2),即△BEF的面积是4cm2.故答案为:4.【点评】此题主要考查了三角形的面积的求法,以及三角形的中线的特征,要熟练掌握,解答此题的关键要明确:三角形的中线将三角形分成面积相等的两部分.16.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是①③④.【考点】一次函数的应用.【专题】压轴题.【分析】根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.【解答】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=3,纵坐标为120﹣60×=75,(故③正确);④设快递车从乙地返回时的速度为y千米/时,则(y+60)(4﹣3)=75,y=90,(故④正确).故答案为;①③④.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.三、解答题17.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( 2 ,﹣1 )、B( 4 , 3 )(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0 ,0 )、B′( 2 , 4 )、C′(﹣1 , 3 ).(3)△ABC的面积为 5 .【考点】坐标与图形变化-平移.【专题】网格型.【分析】(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.【解答】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.【点评】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去若干直角三角形的面积表示.18.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式;两条直线相交或平行问题.【分析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.19.如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数.【考点】三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角的平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.【解答】解:∵∠A=30°,∠B=62°,∴∠ACB=180°﹣(∠A+∠B),=180°﹣(30°+62°),=180°﹣92°,=88°,∵CE平分∠ACB,∴∠ECB=∠ACB=44°,∵CD⊥AB于D,∴∠CDB=90°,∴∠BCD=90°﹣∠B=90°﹣62°=28°,∴∠ECD=∠ECB﹣∠BCD=44°﹣28°=16°,∵DF⊥CE于F,∴∠CFD=90°,∴∠CDF=90°﹣∠ECD=90°﹣16°=74°.【点评】本题考查了三角形的内角和等于180°以及角平分线的定义,是基础题,准确识别图形是解题的关键.20.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y关于x的函数解析式;(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【考点】一次函数的应用.【分析】(1)根据题意列出方程即可;(2)根据一次函数的增减性求解即可.【解答】解:(1)y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,(2)∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值为﹣5×25+2000=1875(元).【点评】本题主要考查了一次函数的应用,解题的关键是理解题意,正确列出方程.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD ﹣DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.22.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系∠A+∠D=∠C+∠B;;(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,利用(1)的结论,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系?并说明理由.【考点】三角形内角和定理;三角形的外角性质.【专题】阅读型.【分析】(1)∠A、∠B、∠C、∠D所在的两个三角形中,有一对对顶角相等,根据三角形的内角和定理得出数量关系;(2)先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义,得出∠DAP=∠PAB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B,进而求出∠P的度数;(3)根据(2)中的方法,即可求得∠P与∠D、∠B之间存在的数量关系.【解答】解:(1)根据三角形内角和定理以及对顶角相等,可得结论:∠A+∠D=∠C+∠B;故答案为:∠A+∠D=∠C+∠B;(2)由(1)可知,∠1+∠D=∠P+∠3,①∠4+∠B=∠2+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4,由①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B,又∵∠D=40°,∠B=36°,∴2∠P=40°+36°=76°,∴∠P=38°;(3)∠P与∠D、∠B之间存在的关系为2∠P=∠D+∠B.∵∠1+∠D=∠P+∠3,①∠4+∠B=∠2+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4,由①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B.【点评】本题主要考查了三角形内角和定理,以及角平分线的定义,考核了学生的阅读理解与知识的迁移能力.解决问题的关键是根据三角形内角和定理得出“8字形”中的角的规律,以及直接运用“8字形”中的角的规律解题.23.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图(1)所示,S与x的函数关系图象如图(2)所示:(1)图中的a= 6 ,b= .(2)求S关于x的函数关系式.(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地的距离.【考点】一次函数的应用.【专题】综合题.【分析】(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;(2)根据函数的图象可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.(3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.【解答】解:(1)由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=6,∴快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,∴b=600÷(100+60)=;(2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(,0)、(6,360)、(10,600),∴设线段AB所在直线解析式为:S=kx+b,∴,解得:k=﹣160,b=600,设线段BC所在的直线的解析式为:S=kx+b,∴,解得:k=160,b=﹣600,设直线CD的解析式为:S=kx+b,∴,解得:k=60,b=0∴;(3)当两车相遇前分别进入两个不同的加油站,此时:S=﹣160x+600=200,解得:x=,当两车相遇后分别进入两个不同的加油站,此时:S=160x﹣600=200,解得:x=5,∴当或5时,此时E加油站到甲地的距离为450km或300km.【点评】此题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围.。
安徽省亳州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)把分式方程 = 转化为一元一次方程时,方程两边需同乘()A . xB . 2xC . x+4D . x(x+4)2. (2分)在德国博物馆里收藏了一个世界上最小的篮子,它的高度只有0.007米,这个数用科学记数法可表示为()A .B .C .D .3. (2分) (2015八上·阿拉善左旗期末) 已知点P(1,a)与Q(b,2)关于x轴成轴对称,又有点Q(b,2)与点M(m,n)关于y轴成轴对称,则m﹣n的值为()A . 3B . ﹣3C . 1D . ﹣14. (2分) (2018七上·十堰期末) 把x2y-y分解因式,正确的是()A . y(x2-1)B . y(x+1)C . y(x-1)D . y(x+1)(x-1)5. (2分) (2016九上·营口期中) 在下列四个图案中,既是轴对称图形,又是中心对称图形是()A .B .C .D .6. (2分)下列各运算中,正确的是()A . 3a+2a=5a2B . (-3a3)2=9a6C . a4÷a2=a3D . (a+2)2=a2+47. (2分)下列各式中,可能取值为零的是()A .B .C .D .8. (2分) (2017八下·日照开学考) 如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A . 1个B . 2个C . 3个D . 4个9. (2分)如下图所示,在⊙O内有折线OABC,其中OA=8,,AB=12,∠A=∠B=60o ,则BC的长为()A . 19B . 16C . 18D . 2010. (2分) (2018八上·萧山月考) 在△ABC中,AD是∠BAC的角平分线,且AB=AC+CD.若∠BAC=60°则∠ABC=()A . 20°B . 30°C . 40°D . 50°二、填空题 (共8题;共9分)11. (1分)(2017·湖州模拟) 不等式组的解集是________.12. (1分)(2012·内江) 已知三个数x,y,z,满足,则=________.13. (1分) (2018七下·苏州期中) 五边形的内角和是________14. (1分) (2017七下·惠山期中) 若x2﹣ax+9是一个完全平方式,则a=________.15. (1分)若(3x+2y)2=(3x﹣2y)2+A,则代数式A为________ .16. (2分)(2018·凉州) 若正多边形的内角和是,则该正多边形的边数是________.17. (1分) (2017九上·合肥开学考) 如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有________.(填序号)18. (1分) (2019八下·武汉月考) 如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点.若点为边的中点,点为线段上以动点,则周长的最小值为________三、解答题 (共8题;共35分)19. (2分) (2020八上·河池期末) 化简:(1)(2) .20. (2分) (2017八下·邗江期中) 化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.21. (10分) (2019八上·武威月考) 因式分解(1)(2)(3)22. (2分) (2020九下·镇平月考) 解分式方程: .23. (2分)已知:线段a,b和∠α.(1)用尺规作△ABC,使BC=a,AC=b,∠C=∠α;(2)如题(1)所画的三角形中,若∠α=30°,a=10,b=6,求△ABC的面积.24. (10分) (2019八下·马山期末) 如图,在四边形中,,,是上一点,交于点,连结.(1)求证:;(2)若,试说明四边形是菱形;(3)在(2)的条件下,试确定点的位置,使得,并说明理由.25. (5分) (2018九下·绍兴模拟) 小明解方程 =1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.26. (2分) (2016九上·滨州期中) 如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB 是⊙O的直径,D是BC的中点.(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,当△ABC为正三角形时,点E是否AC的中点?为什么?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共35分)19-1、19-2、20-1、21、答案:略22-1、23-1、23-2、24-1、24-2、24-3、25-1、26-1、26-2、。
安徽省亳州市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共14题;共28分)1. (2分)下列运算正确的是()A . a3•a4=a12B . a3+a4=a7C . (a3)4=a7D . (a3)4=a122. (2分) (2019八上·蠡县期中) 在中,,中线,则边的取值范围是()A .B .C .D .3. (2分)多项式18a2b2﹣12a3b2c﹣6ab2的公因式是()A . ﹣6ab2B . ﹣6ab2cC . ﹣ab2D . ﹣6a3b2c4. (2分)计算·(-)·()的结果是()A . -B .C . -D . -5. (2分) (2017八上·武汉期中) 下列长度的三条线段首尾相连能组成三角形的是()A . 1,2,3B . 2,3,4C . 3,4,7D . 4,5,106. (2分)当x分别取﹣2015、﹣2014、﹣2013、…,、﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A . -1B . 1C . 0D . 20157. (2分)某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是()A . 200﹣60xB . 140﹣15xC . 200﹣15xD . 140﹣60x8. (2分)如图中,利用面积的等量关系验证的公式是()A . a2﹣b2=(a+b)(a﹣b)B . (a﹣b)2=a2﹣2ab+b2C . (a+2b)(a﹣b)=a2+ab﹣2b2D . (a+b)2=a2+2ab+b29. (2分)(2017·邓州模拟) 如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A . 10°B . 15°C . 25°D . 30°10. (2分) (2019八上·邯郸月考) 如图在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70∘,∠FAE=19∘,则∠C=()度.A . 19∘B . 24∘C . 35∘D . 16∘11. (2分)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5,AD平分∠BAC.则S△ACD:S△ABD=()A . 3:4B . 3:5C . 4:5D . 1:112. (2分)(2019·赤峰) 如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为().A .B .C .D .13. (2分)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为()A . 7B . 8C . 10D . 1214. (2分)(2016·开江模拟) 如图,AF是∠BAC的平分线,EF∥AC交AB于点E.若∠1=25°,则∠BAF的度数为()A . 15°B . 50°C . 25°D . 12.5°二、填空题: (共5题;共5分)15. (1分)(2018·建邺模拟) 分解因式a3﹣a的结果是________.16. (1分)(2020·黄冈) 计算:的结果是________.17. (1分)(2017·黄冈模拟) 如图,己知△ABC中,∠C=90°,∠A=30°,AC= .动点D在边AC上,以BD为边作等边△BDE(点E、A在BD的同侧).在点D从点A移动至点C的过程中,点E移动的路线长为________.18. (1分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=98°,∠C′=42°,则∠B的度数为________.19. (1分) (2017七下·徐州期中) 如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=________°.三、解答题: (共6题;共55分)20. (10分) (2016八上·桑植期中) 解下列分式方程:(1)(2).21. (5分)(2017·仪征模拟) 甲、乙两个公司为某敬老院各捐款300000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐款20元.则甲、乙两公司各有多少元?22. (10分) (2020八下·武汉期中) △ABC中,BC=8,以AC为边向外作等边△ACD.(1)如图①,△ABE是等边三角形,若AC=6,∠ACB=30°,求CE的长;(2)如图②,若∠ABC=60°,AB=4,求BD的长.23. (10分) (2019八上·潮南期末) 如图,在Rt△AOB中,∠AOB=90°,∠BAO=30°,以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.(1)连接BD,OE.求证:BD=OE;(2)连接DE交AB于F.求证:F为DE的中点.24. (10分) (2020七下·建宁期末) 如图,在四边形ABCD中,AD‖BC,点E在AD 边上,BD平分∠EBC.(1)请说明∠1=∠2;(2)若AE=BE,请说明AB⊥BD.25. (10分) (2019九上·海曙开学考) 如图,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形。
2015-2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。
A.1 B2 C.3 D.42.与3-2相等的是( ) A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( ) A.x <2 B.x >2 C.x ≠2 D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A.1,2,3 B.1,5,5 C.3,3,6 D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+B.632a a a =•C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。
A.2.5×106 B.2.5×105 C.2.5×10-5 D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()。
A.50°B.80°C.50°或80°D.40°或65°9.把多项式x32分解因式结果正确的是()x+x-2A.2)12(2xx- D.)1x C.)xx(-xx B.2)1(+x-xx)(1(+10.多项式x()22中,一定含下列哪个因式()。
x+x--2A.2x+1B.x(x+1)2C.x(x2-2x)D.x(x-1)11.如图,在△ABC中,∠BAC=110°,MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20°B.40°C.50°D.60°12.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为()A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12B.10C.8D.614. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是()cm2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。
2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案导读:就爱阅读网友为您分享以下“2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案”资讯,希望对您有所帮助,感谢您对的支持!义务教育八年级数学第1页(共11页)2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分120分,考试时间120分钟。
)第Ⅰ卷(选择题共30分)一、选择题(本大题10个小题,每小题3分,共30分。
请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。
)1.下列各数中,无理数的个数有( ) -0.2020020002,2,12π2,-4, 23 A .1个 B .2个 C .3个 D .4个2.下列说法正确的是() A .9的算术平方根是3 B .0.16的平方根是0.4 C .0没有立方根 D .1的立方根是±1 3.下列真命题中,逆命题也是真命题的是()A .全等三角形的对应角都相等; B .如果两个实数相等,那么这两个实数的平方相等; C .5,12,13是勾股数;D .如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.4.已知a 、b 、c 是△ABC 的三边,a 2-2ab +b 2=0且2b 2-2c 2=0,那么△ABC 的形状是()A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形5.下列运算中错误的是()A .3xy -(x 2-2xy ) =5xy -x 2B .5x (2x 2-y ) =10x 3-5xyC .5mn (2m +3n -1) =10m 2n +15mn 2-1D .[(a 2b ) 2-1](a +b ) =a 5b 2+a 4b 3-a -b 6.如图1,AB =AC ,CF ⊥AB 于F ,BE ⊥AC 于E ,CF 与BE 交于点D .有下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上;④点C 在AB 的中垂线上. 以上结论正确的有( )个. A .1B .2C .3D .47.若3x =4,9y =7,则3x -2y 的值为( ) A .47 B 74C .-3 D278.如图2是某商场销售雨伞的情况,从折线图中我们可以看到雨伞销售量最大的季度是() A .第一季度B .第二季度 C .第三季度D .第四季度9.如图3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是() A .2cm 2 B .2a cm 2 C .4a cm 2 D .(a 2-1)cm 210.如图图1义务教育八年级数学第3页(共11页)A .2m B .3m C .6m D .9m第Ⅱ卷(非选择题共90分)二、填空题(本大题6个小题,每小题3分,共18分。
安徽省亳州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016八上·锡山期末) 下列各数中,是无理数的是()A .B .C .D .2. (2分)下列代数式中,是分式的是()A .B .C .D .3. (2分)下列说法正确的是()A . a的平方根是±B . a的立方根是C . 的平方根是0.1D .4. (2分)下列四个式子中,字母a的取值可以是一切实数的是A .B . a0C . a2D .5. (2分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A . 2∠A=∠1+∠2B . ∠A=∠1+∠2C . 3∠A=2∠1+∠2D . 3∠A=2(∠1+∠2)6. (2分) (2018七下·深圳期中) 0.00108用科学记数法表示为()A .B .C .D .7. (2分) (2018八上·山东期中) 如果等腰三角形两边长是6cm和3cm,那么它的周长是()A . 15cmB . 12cmC . 15cm或12cmD . 9cm8. (2分)不等式4-3x≥2x-6的非负整数解有()A . 1 个B . 2 个C . 3个D . 4个9. (2分)(2018·仙桃) 如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A . 1B . 1.5C . 2D . 2.510. (2分) (2016七下·黄陂期中) 下列命题中属假命题的是()A . 两直线平行,内错角相等B . a,b,c是直线,若a⊥b,b⊥c,则a⊥cC . a,b,c是直线,若a∥,b∥c,则a∥cD . 无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示11. (2分) (2018八上·硚口期末) 有一项工程,甲单独做正好按期完成,乙单独做则要超期3天才能完成.现甲、乙合做2天,余下由乙单独做正好按期完成,设甲单独做需要天完成,则下列所列方程错误的是()A .B .C .D .12. (2分)根据图的流程图中的程序,当输入的数据x为-2时,输出的数值为()A . 4B . 6C . 8D . 10二、填空题 (共6题;共6分)13. (1分) (2017七下·南京期末) 若,,则的值为________.14. (1分)(2016·哈尔滨) 计算2 ﹣的结果是________.15. (1分)当x=________ 时,分式的值为零.16. (1分)如图,中AB=AC,,DE是腰AB的垂直平分线,的度数是________ 。
2015-2016第一学期八年级数学期末试题一、选择题(每小题4分,共40分)1、若分式11-2+x x 的值为零,则x 的值为( ) A. 1 B. -1 C. ±1 D. 02、下列运算正确的是( )A. x 4²x 3 =x 12B.(x 3)4 =x 7C. x 4÷x 3=x(x ≠0)D. x 4+x 4=x 83、已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是 ( )A. 4cmB. 5cmC. 6cmD.13cm4、如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于( )A.75°B.60°C.45°D.30(4题) (6题) (10题)5、若等腰三角形的一个内角为50°,则另两个角的度数为( )A.65°、65° B 、65°、65°或50°、80°C.50°、80° D 、50°、50°6、如图,MP 、NQ 分别垂直平分AB 、AC 且BC =6cm ,则△APQ 的周长为( )cmA.12B.6C.8D.无法确定7、下列运算中正确的是( )A .236X =X XB .1--=y+x y +x C .b a b +a =b a b +ab +a --22222 D . yx =+y +x 11 8、已知正n 边形的一个内角为135°,则边数n 的值是( )A.6B.7C.8D.109、将多项式x 3-xy 2分解因式,结果正确的是( )A.•x (x 2-y 2)B.x (•x -y )2C.x (x +y )2D.x (x+y )(x -y )10、如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 上F 处,若∠B =50°,则∠BDF 度数是( )A.80°B.70°C.60°D.不确定二、填空题(每小题3分,共18分)11、如图,在△ABC 中,∠C 是直角,AD 平分∠BAC ,交BC 于点D 。
安徽省亳州市谯城中学2014-2015学年度第一学期期末考试八年级试卷-数学学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共40.0分)1.在以下四个图形中,对称轴条数最多的一个图形是().A. B. C. D.2.将点A(−3,−1)先向右平移5个单位长度再向下移2个单位长度得到点B,则点B所处的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知三角形的三边长分别为3、x、16,若x为正整数,则这样的三角形的个数为()A. 2.B. 3C. 5D. 74.下列命题为真命题的是()A. △ABC中,若∠A=2∠B=3∠C,那么△ABC为直角三角形B. 有两边和一角分别相等的两个三角形全等C. 直线在轴上的截距为3D. 若两个图形沿某条直线对折后能够完全重合,那么这两个图形成轴对称5.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么()A., B. , C. , D. ,6.某村办工厂,今年前5个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图所示,则下列说法正确的是()A. 1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B. 1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平C. 1月至3月每月生产总量逐月增加,4、5两月停止生产D. 1月至3月每月生产总量不变,4、5两月均停止生产7.将点A(3,2)向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是( )A. (−3,2)B. (−1,2)C. (1,2)D. (1,−2)8.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A. 7cmB. 10cmC. 12cmD. 22cm9.如图,△ABC中AB、BC的垂直平分线相交于点O,∠A=70∘,则∠BOC的度数为()A. 125∘B. 140∘C. 110∘D. 130∘10.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )A. BC=EC,∠B=∠EB. BC=EC,AC=DCC. BC=DC,∠A=∠DD. ∠B=∠E,∠A=∠D二、填空题(本大题共4小题,共20.0分)11.直线与直线的交点坐标是12.已知一个等腰三角形两内角的度数之比为1∶2,则这个等腰三角形顶角的度数为.13.如图,在△ABC中,∠C=900,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离.14.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45∘;④∠BAE+∠DAC=180∘其中结论正确的有(把正确的结论序号填在横线上)三、解答题(本大题共9小题,共90.0分)15.如图,在△ABC中,∠A=20∘,∠B=60∘,CD平分∠ACB交AB边于点D,求∠CDB的度数。
安徽省亳州市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)在,,, 3.1415926,2+,3.212212221…,这些数中,无理数的个数为()A . 2B . 3C . 4D . 52. (2分)点P(a , b)关于x轴的对称点为P'(1,-6),则a , b的值分别为()A . -1,6B . -1,-6C . 1,-6D . 1,63. (2分)在同一平面直角坐标系中,直线y=kx+b与直线y=bx+k(k、b为常数,且kb≠0)的图象可能是()A .B .C .D .4. (2分) (2017九上·顺德月考) 如图,等腰△ABC中,AB=AC=3,BC=4,P是BC上不与B和C重合的一个动点,过点P分别作AB和AC的垂线,垂足为E,F. 则PE+PF=()A .B .C . 6D .5. (2分)利用加减消元法解方程组,下列做法正确的是()A . 要消去y,可以将①×5+②×2B . 要消去x,可以将①×3+②×(﹣5)C . 要消去y,可以将①×5+②×3D . 要消去x,可以将①×(﹣5)+②×26. (2分) (2020八上·天桥期末) 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数(人)124332这些运动员跳高成绩的中位数和众数分别是()A . 1.70m,1.65mB . 1.70m,1.70mC . 1.65m,1.65mD . 3人,4人7. (2分)如图,在四边形ABCD中,要得到AB∥CD,只需要添加一个条件,这个条件可以是()A . ∠1=∠3B . ∠2=∠4C . ∠B=∠DD . ∠1+∠2+∠B=180°8. (2分) (2017八上·滕州期末) 点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A . (0,2)B . (﹣2,0)C . (4,0)D . (0,﹣2)9. (2分)已知m=x+1,n=﹣x+2,若规定y=,则y的最小值为()A . 0B . 1C . -1D . 210. (2分) (2019八下·汕头月考) 下列计算正确的是()。
2015-2016学年安徽省亳州市谯城区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B地坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1)D.(0,﹣1)2.(4分)若三角形地三边长分别为3,4,x,则x地值可能是()A.1 B.6 C.7 D.103.(4分)一个三角形地三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:14.(4分)下列函数中,y是x地一次函数地是()①y=x﹣6;②y=;③y=;④y=7﹣x.A.①②③B.①③④C.①②③④D.②③④5.(4分)若直线y=mx+2m﹣3经过二、三、四象限,则m地取值范围是()A.m<B.m>0 C.m>D.m<06.(4分)下列四个图形中,线段BE是△ABC地高地是()A.B.C.D.7.(4分)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论地个数是()A.1个 B.2个 C.3个 D.4个8.(4分)小刚以400米/分地速度匀速骑车5分,在原地休息了6分,然后以500米/分地速度骑回出发地,下列函数图象能表达这一过程地是()A. B.C.D.9.(4分)如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE地反向延长线与∠BAO地平分线交于点C,则∠C地度数是()A.30°B.45°C.55°D.60°10.(4分)如图所示,亮亮书上地三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样地三角形,那么这两个三角形完全一样地依据是()A.SSS B.SAS C.AAS D.ASA二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)函数y=中,自变量x地取值范围是.12.(5分)直线y=kx+b与直线y=﹣2x+1平行,且经过点(﹣2,3),则kb=.13.(5分)如图,一次函数y=x+6地图象经过点P(a,b)和Q(c,d),则a (c﹣d)﹣b(c﹣d)地值为.14.(5分)y+2与x+1成正比例,且当x=1时,y=4,则当x=2时,y=.15.(5分)如图,点D是△ABC地边BC上任意一点,点E、F分别是线段AD、CE地中点,且△ABC地面积为16cm2,则△BEF地面积:cm2.16.(5分)某物流公司地快递车和货车同时从甲地出发,以各自地速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车地速度为60千米/时,两车之间地距离y(千米)与货车行驶时间x(小时)之间地函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地地速度为100千米/时;②甲、乙两地之间地距离为120千米;③图中点B地坐标为(3,75);④快递车从乙地返回时地速度为90千米/时,以上4个结论正确地是.三、解答题17.(10分)如图,直角坐标系中,△ABC地顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B地坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′地三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC地面积为.18.(10分)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB地解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C地坐标;(3)根据图象,写出关于x地不等式2x﹣4>kx+b地解集.19.(10分)如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF地度数.20.(12分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯地进价、售价如表所示:(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y 关于x地函数解析式;(2)若商场规定B型台灯地进货数量不超过A型台灯数量地3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?21.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE地长度.22.(12分)已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1地图形称之为“8字形”,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间地数量关系;(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD地平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,利用(1)地结论,试求∠P地度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B 之间存在着怎样地数量关系?并说明理由.23.(14分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地地距离为y1(km),快车离乙地地距离为y2(km),慢车行驶时间为x(h),两车之间地距离为S(km),y1,y2与x地函数关系图象如图(1)所示,S与x地函数关系图象如图(2)所示:(1)图中地a=,b=.(2)求S关于x地函数关系式.(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地地距离.2015-2016学年安徽省亳州市谯城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B地坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1)D.(0,﹣1)【解答】解:点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位得到点B,坐标变化为(﹣3﹣3,﹣5+4);则点B地坐标为(﹣6,﹣1).故选C.2.(4分)若三角形地三边长分别为3,4,x,则x地值可能是()A.1 B.6 C.7 D.10【解答】解:∵4﹣3=1,4+3=7,∴1<x<7,∴x地值可能是6.故选:B.3.(4分)一个三角形地三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:1【解答】解:设三角形地三个外角地度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,3x=90°,4x=120°,5x=150°,相应地外角分别为90°,60°,30°,则这个三角形内角之比为:90°:60°:30°=3:2:1,故选:C.4.(4分)下列函数中,y是x地一次函数地是()①y=x﹣6;②y=;③y=;④y=7﹣x.A.①②③B.①③④C.①②③④D.②③④【解答】解:①y=x﹣6符合一次函数地定义,故本选项正确;②y=是反比例函数;故本选项错误;③y=,属于正比例函数,是一次函数地特殊形式,故本选项正确;④y=7﹣x符合一次函数地定义,故本选项正确;综上所述,符合题意地是①③④;故选B.5.(4分)若直线y=mx+2m﹣3经过二、三、四象限,则m地取值范围是()A.m<B.m>0 C.m>D.m<0【解答】解:∵直线y=mx+2m﹣3经过第二,三,四象限;∴m<0,2m﹣3<0,即m<0.故选D.6.(4分)下列四个图形中,线段BE是△ABC地高地是()A.B.C.D.【解答】解:线段BE是△ABC地高地图是选项D.故选D.7.(4分)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论地个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确地是①③④共3个.故选C.8.(4分)小刚以400米/分地速度匀速骑车5分,在原地休息了6分,然后以500米/分地速度骑回出发地,下列函数图象能表达这一过程地是()A. B.C.D.【解答】解:∵400×5=2000(米)=2(千米),∴小刚以400米/分地速度匀速骑车5分行驶地路程为2千米而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,故排除选项A 与B又∵回到原出发地”表示终点地纵坐标为0,∴排除选项D,故:选C9.(4分)如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE地反向延长线与∠BAO地平分线交于点C,则∠C地度数是()A.30°B.45°C.55°D.60°【解答】解:根据三角形地外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选(B)10.(4分)如图所示,亮亮书上地三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样地三角形,那么这两个三角形完全一样地依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:根据题意,三角形地两角和它们地夹边是完整地,所以可以利用“角边角”定理作出完全一样地三角形.故选D.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)函数y=中,自变量x地取值范围是x<3.【解答】解:由题意得,3﹣x≥0且x﹣3≠0,解得,x≤3且x≠3,所以自变量x地取值范围是:x<3,故答案为:x<3.12.(5分)直线y=kx+b与直线y=﹣2x+1平行,且经过点(﹣2,3),则kb=2.【解答】解:∵直线y=kx+b与直线y=﹣2x+1平行,∴k=﹣2,∴直线y=﹣2x+b,把点(﹣2,3)代入得:4+b=3,∴b=﹣1,∴kb=2.故答案为:2.13.(5分)如图,一次函数y=x+6地图象经过点P(a,b)和Q(c,d),则a (c﹣d)﹣b(c﹣d)地值为36.【解答】解:∵一次函数y=﹣x+6地图象经过点P(a,b)和Q(c,d),∴b=a+6,d=c+6,∴a﹣b=﹣6,c﹣d=﹣6,∴a(c﹣d)﹣b(c﹣d)=(c﹣d)(a﹣b)=(﹣6)×(﹣6)=36.故答案为36.14.(5分)y+2与x+1成正比例,且当x=1时,y=4,则当x=2时,y=7.【解答】解:根据题意设y+2=k(x+1),将x=1,y=4代入得:6=2k,即k=3,∴y+2=3(x+1),将x=2代入得:y+2=3×3,即y=7.故答案为:7,15.(5分)如图,点D是△ABC地边BC上任意一点,点E、F分别是线段AD、CE地中点,且△ABC地面积为16cm2,则△BEF地面积:4cm2.【解答】解:∵AE=DE,=S△ABE,S△CDE=S△ACE,∴S△BDE∴S=S△ABD,S△CDE=S△ACD,△BDE=S△ABC==8(cm2);∴S△BCE∵EF=CF,=S△BCF,∴S△BEF=S△BCE==4(cm2),∴S△BEF即△BEF地面积是4cm2.故答案为:4.16.(5分)某物流公司地快递车和货车同时从甲地出发,以各自地速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车地速度为60千米/时,两车之间地距离y(千米)与货车行驶时间x(小时)之间地函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地地速度为100千米/时;②甲、乙两地之间地距离为120千米;③图中点B地坐标为(3,75);④快递车从乙地返回时地速度为90千米/时,以上4个结论正确地是①③④.【解答】解:①设快递车从甲地到乙地地速度为x千米/时,则3(x﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间地距离,不是甲、乙两地之间地距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B地横坐标为3+=3,纵坐标为120﹣60×=75,(故③正确);④设快递车从乙地返回时地速度为y千米/时,则(y+60)(4﹣3)=75,y=90,(故④正确).故答案为;①③④.三、解答题17.(10分)如图,直角坐标系中,△ABC地顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B地坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′地三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC地面积为5.【解答】解:(1)写出点A、B地坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′地三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC地面积=3×4﹣2××1×3﹣×2×4=5.18.(10分)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB地解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C地坐标;(3)根据图象,写出关于x地不等式2x﹣4>kx+b地解集.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB地解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.19.(10分)如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF地度数.【解答】解:∵∠A=30°,∠B=62°,∴∠ACB=180°﹣(∠A+∠B),=180°﹣(30°+62°),=180°﹣92°,=88°,∵CE平分∠ACB,∴∠ECB=∠ACB=44°,∵CD⊥AB于D,∴∠CDB=90°,∴∠BCD=90°﹣∠B=90°﹣62°=28°,∴∠ECD=∠ECB﹣∠BCD=44°﹣28°=16°,∵DF⊥CE于F,∴∠CFD=90°,∴∠CDF=90°﹣∠ECD=90°﹣16°=74°.20.(12分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯地进价、售价如表所示:(1)设商场购进A型节能台灯为x盏,销售完这批台灯时可获利为y元,求y 关于x地函数解析式;(2)若商场规定B型台灯地进货数量不超过A型台灯数量地3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【解答】解:(1)y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,(2)∵B型台灯地进货数量不超过A型台灯数量地3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值为﹣5×25+2000=1875(元).21.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE地长度.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角地余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE地长度是2cm.22.(12分)已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1地图形称之为“8字形”,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间地数量关系∠A+∠D=∠C+∠B;;(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD地平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,利用(1)地结论,试求∠P地度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B 之间存在着怎样地数量关系?并说明理由.【解答】解:(1)根据三角形内角和定理以及对顶角相等,可得结论:∠A+∠D=∠C+∠B;故答案为:∠A+∠D=∠C+∠B;(2)由(1)可知,∠1+∠D=∠P+∠3,①∠4+∠B=∠2+∠P,②∵∠DAB和∠BCD地平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4,由①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B,又∵∠D=40°,∠B=36°,∴2∠P=40°+36°=76°,∴∠P=38°;(3)∠P与∠D、∠B之间存在地关系为2∠P=∠D+∠B.∵∠1+∠D=∠P+∠3,①∠4+∠B=∠2+∠P,②∵∠DAB和∠BCD地平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4,由①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B.23.(14分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地地距离为y1(km),快车离乙地地距离为y2(km),慢车行驶时间为x(h),两车之间地距离为S(km),y1,y2与x地函数关系图象如图(1)所示,S与x地函数关系图象如图(2)所示:(1)图中地a=6,b=.(2)求S关于x地函数关系式.(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地地距离.【解答】解:(1)由S与x之间地函数地图象可知:当位于C点时,两车之间地距离增加变缓,∴由此可以得到a=6,∴快车每小时行驶100千米,慢车每小时行驶60千米,两地之间地距离为600,∴b=600÷(100+60)=;(2)∵从函数地图象上可以得到A、B、C、D点地坐标分别为:(0,600)、(,0)、(6,360)、(10,600),∴设线段AB 所在直线解析式为:S=kx +b , ∴,解得:k=﹣160,b=600,设线段BC 所在地直线地解析式为:S=kx +b , ∴,解得:k=160,b=﹣600, 设直线CD 地解析式为:S=kx +b , ∴,解得:k=60,b=0∴;(3)当两车相遇前分别进入两个不同地加油站, 此时:S=﹣160x +600=200, 解得:x=,当两车相遇后分别进入两个不同地加油站, 此时:S=160x ﹣600=200, 解得:x=5, ∴当或5时,此时E 加油站到甲地地距离为450km 或300km .赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。