山东省烟台市2017届中考数学试卷(附答案解析)
- 格式:docx
- 大小:666.14 KB
- 文档页数:34
2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。
2023年山东省烟台市中考数学试卷一、选择题1. 23-的倒数是( ) A.23 B. 23-C.32D. 32-2. 下列二次根式中,是同类二次根式的是( )A.B.C.D.3. 下列四种图案中,是中心对称图形的是( )A. B. C. D.4. 下列计算正确的是( ) A. 2242a a a += B. ()32626a a = C. 235a a a ⋅= D. 824a a a ÷=5. 不等式组321,23m m -≥⎧⎨->⎩的解集在同一条数轴上表示正确的是( )A. B. C.D.6. 如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为( )A. B. C. D.7. 长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A. 甲班视力值的平均数大于乙班视力值的平均数B. 甲班视力值的中位数大于乙班视力值的中位数C. 甲班视力值的极差小于乙班视力值的极差D. 甲班视力值的方差小于乙班视力值的方差8. 如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为1P ,停在空白部分的概率为2P ,则1P 与2P 的大小关系为( )A. 12P P <B. 12P P =C. 12P P >D. 无法判断9. 如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫- ⎪⎝⎭,与x轴的一个交点位于0合和1之间,则以下结论:⑤0abc >;⑤20b c +>;⑤若图象经过点()()123,,3,y y -,则12yy >;⑤若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A. 1B. 2C. 3D. 410. 如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为( )A. ()31.34B. ()31,34-C. ()32,35D. ()32,0二、填空题11. “北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为________. 12. 一杆古秤在称物时的状态如图所示,已知1102∠=︒,则2∠的度数为_____.13. 如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD ∠的度数为_______.14. 如图,利用课本上的计算器进行计算,其按键顺序及结果如下:⑤按键的结果为4;⑤按键的结果为8; ⑤按键的结果为0.5;⑤按键的结果为25.以上说法正确的序号是___________. 15. 如图,在直角坐标系中,A 与x 轴相切于点,B CB 为A 的直径,点C 在函数(0,0)k y k x x=>>的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为________.16. 如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.三、解答题17. 先化简,再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭,其中a 是使不等式112a -≤成立的正整数.18. “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知A,B,C,D,E五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D所在的扇形的圆心角的度数为_________;若该市有1000名中学生参加本次活动,则选择A大学的大约有_________人;(3)甲、乙两位同学计划从A,B,C三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.19. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30︒的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD长16米,在地面点A处测得风力发电机塔杆顶端P点的仰角为45︒,利用无人机在点A的正上方53米的点B处测得P点的俯角为18︒,求该风力发电机塔杆PD的高度.(参考数据:sin180.309≈︒,cos180.951≈︒,tan180.325≈︒)20. 【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD进行如下操作:⑤分别以点,B C为圆心,以大于12BC的长度为半径作弧,两弧相交于点E,F,作直线EF交BC于点O,连接AO;⑤将ABO沿AO翻折,点B的对应点落在点P处,作射线AP交CD于点Q.【问题提出】在矩形ABCD 中,53AD AB ==,,求线段CQ 的长. 【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ ,如图2.经过推理、计算可求出线段CQ 的长;方案二:将ABO 绕点O 旋转180︒至RCO △处,如图3.经过推理、计算可求出线段CQ 的长. 请你任选其中一种方案求线段CQ 的长.21. 中华优秀传统文化源远流长、是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书、许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本. (1)求两种图书的单价分别为多少元?(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求两种图书分别购买多少本时费用最少?22. 如图,在菱形ABCD 中,对角线,AC BD 相交于点,E O 经过,A D 两点,交对角线AC 于点F ,连接OF交AD 于点G ,且AG GD =.(1)求证:AB 是O 的切线;(2)已知O 的半径与菱形的边长之比为5:8,求tan ADB ∠的值.23. 如图,点C 为线段AB 上一点,分别以,AC BC 为等腰三角形的底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠.在线段EC 上取一点F ,使EF AD =,连接,BF DE .(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点G ,求BE 的长.24. 如图,抛物线25y ax bx =++与x 轴交于,A B 两点,与y 轴交于点,4C AB =.抛物线的对称轴3x =与经过点A 的直线1y kx =-交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为B 上一个动点,请求出12+PC PA 的最小值.2023年山东省烟台市中考数学试卷答案一、选择题1. D2. C3. B4. C5. A6. A7. D8. B解:如图所示,连接AE BD ,交于O .由题意得,A B C D ,,,分别是正方形四条边的中点. ⑤点O 为正方形的中心. ⑤AOBF AODC S S =四边形四边形.根据题意,可得扇形OAB 的面积等于扇形CAD 的面积. ⑤AOBF OAB AODC AOC S S S S -=-四边形扇形四边形扇形.⑤阴影部分面积等于空白部分面积,即阴影部分面积等于正方形面积的一半 ⑤12P P =. 故选:B . 9. C解:⑤⑤该抛物线开口向下. ⑤a<0.⑤该抛物线的对称轴在y 轴左侧. ⑤0b <.⑤该抛物线于y 轴交于正半轴. ⑤0c >. ⑤0abc >. 故⑤正确,符合题意; ⑤⑤1,2A m ⎛⎫-⎪⎝⎭. ⑤该抛物线的对称轴为直线122b x a,则a b =. 当1x =时,y a b c =++.把a b =得:当1x =时,2y b c =+. 由图可知:当1x =时,0y <. ⑤20b c +<.故⑤不正确,不符合题意;⑤⑤该抛物线的对称轴为直线12x =-. ⑤()13,y -到对称轴的距离为()15322---=,()23,y 到对称轴的距离为17322⎛⎫--= ⎪⎝⎭. ⑤该抛物线开口向下.⑤在抛物线上的点离对称轴越远,函数值越小. ⑤5722<. ⑤12y y >. 故⑤正确,符合题意;⑤将方程230ax bx c ++-=移项可得23ax bx c ++=. ⑤230ax bx c ++-=无实数根.⑤抛物线2y ax bx c =++与直线3y =没有交点. ⑤1,2A m ⎛⎫-⎪⎝⎭. ⑤3m <.故⑤正确综上:正确的有:⑤⑤⑤,共三个.故选:C . 10. A解:⑤()121A -,,()412A -,,()703A ,,()1014A ,. ⑤()323n A n n --,.⑤1003342=⨯-,则34n =.⑤()1003134A ,, 故选:A .二、填空题11. 113.610⨯ 12. 78︒ 13. 52.5︒ 14. ⑤⑤ 15. 24解:设,k C a a ⎛⎫ ⎪⎝⎭. ⑤A 与x 轴相切于点B⑤BC x ⊥轴. ⑤,kOB a AC a==,则点D 到BC 的距离为a . ⑤CB 为A 的直径.⑤122kAC BC a ==. ⑤16224ACDk k Sa a =⋅⋅==. 解得:24k =. 故答案为:24.16.解:如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小.⑤7BC =,4,3BQ QC ==在Rt ABQ 中,8,4AB BQ ==⑤AQ == ⑤1122ABC S AB CG AQ BC =⨯=⨯.⑤BC AQ CG AB ⨯===,. 三、解答题17. 33a a -+;12- 18. (1)见解析 (2)14.4︒;200 (3)13 【小问1详解】解:总人数为1428%50÷=(人)⑤选择B 大学的人数为5010142816----=,补全统计图如图所示.【小问2详解】在扇形统计图中,D 所在的扇形的圆心角的度数为236014.450︒⨯=︒. 选择A 大学的大约有101000=20050⨯(人) 故答案为:14.4︒;200.【小问3详解】共有9种等可能结果,其中有3种符合题意.⑤甲,乙两人恰好选取同一所大学的概率为13. 19. 该风力发电机塔杆PD 的高度为32米解:过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E .根据题意可得:AB ,PD 垂直于水平面,30DCE ∠=︒,45PAC ∠=︒,18GBP ∠=︒.⑤PE AE ⊥.⑤16CD =米⑤1116822DE CD ==⨯=(米). 设PD x =米,则()8PE PD DE x =+=+米.⑤45PAC ∠=︒,PE AE ⊥.⑤()8tan 45PE AE x ==+︒米. ⑤AB AE ⊥,PE AE ⊥,PF AB ⊥.⑤四边形FAEP 为矩形.⑤()8PF AE x ==+米,()8AF PE x ==+米.⑤53AB =米.⑤()()53845BF AB AF x x =-=-+=-米.⑤18GBP ∠=︒.⑤18BPF ∠=︒. ⑤tan18BF PF =︒,即450.3258x x-≈+. 解得:32x ≈.答:该风力发电机塔杆PD 的高度为32米.20. 线段CQ 的长为2512. 解:方案一:连接OQ ,如图2.⑤四边形ABCD 是矩形.⑤3AB CD ==,5AD BC ==. 由作图知1 2.52BO OC BC ===. 由翻折的不变性,知3AP AB ==, 2.5OP OB ==,90APO B ∠=∠=︒.⑤ 2.5OP OC ==,90QPO C ∠=∠=︒,又OQ OQ =.⑤()HL QPO QCO ≌△△. ⑤PQ CQ =.设PQ CQ x ==,则3AQ x =+,3DQ x =-.在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +-=+. 解得2512x =. ⑤线段CQ 的长为2512; 方案二:将ABO 绕点O 旋转180︒至RCO △处,如图3.⑤四边形ABCD 是矩形.⑤3AB CD ==,5AD BC ==. 由作图知1 2.52BO OC BC ===. 由旋转的不变性,知3CR AB ==,BAO R ∠=∠,90B OCR ∠=∠=︒.则9090180OCR OCD ∠+∠=︒+︒=︒.⑤D C R 、、共线.由翻折的不变性,知BAO OAQ ∠=∠.⑤OAQ R ∠=∠.⑤QA QR =.设CQ x =,则3QA QR x ==+,3DQ x =-.在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +-=+. 解得2512x =. ⑤线段CQ 的长为2512. 21. (1)《周髀算经》单价为40元,则《孙子算经》单价是30元;(2)当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元.【小问1详解】解:设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元. 依题意得,600600534x x =+. 解得40x =.经检验,40x =是原方程的解,且符合题意.340304⨯=. 答:《周髀算经》单价为40元,则《孙子算经》单价是30元;【小问2详解】解:设购买的《周髀算经》数量m 本,则购买的《孙子算经》数量为()80m -本.依题意得,()1802m m ≥-. 解得2263m ≥. 设购买《周髀算经》和《孙子算经》的总费用为y (元).依题意得,()400.8300.88081920y m m m =⨯+⨯-=+.⑤80k =>.⑤y 随m 的增大而增大.⑤当27m =时,有最小值,此时82719202316y =⨯+=(元).802753-=(本)答:当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元. 22. (1)见解析 (2)tan 2ADB ∠=.【小问1详解】证明:连接OA .⑤AG GD =,由垂径定理知OF AD ⊥.⑤90OGA FGA ∠=∠=︒.⑤四边形ABCD 是菱形.⑤GAF BAF ∠=∠.⑤90GAF AFG BAF AFG ∠+∠=︒=∠+∠. ⑤OA OF =.⑤OAF OFA ∠=∠.⑤90OAF BAF OAB ∠+∠=∠=︒.又⑤OA 为O 的半径. ⑤AB 是O 的切线;【小问2详解】解:⑤四边形ABCD 是菱形,AG GD =. ⑤设4AG GD a ==.⑤O 的半径与菱形的边长之比为5:8.⑤在Rt OAG △中,:5:4OA AG =.⑤5OA a =,3OG a ==.⑤2FG OF OG a =-=.⑤四边形ABCD 是菱形.⑤BD AC ⊥,即90DEA FGA ∠=︒=∠. ⑤ADB AFG ∠=∠. ⑤4tan tan 22AG a ADB AFG FG a∠=∠===.23. (1)见解析 (2)2BE =【小问1详解】证明:⑤等腰ACD 和等腰BCE .⑤AD CD =,EC EB =,A DCA ∠=∠.⑤A CBE ∠=∠.⑤DCA CBE ∠=∠.⑤CD BE ∥.⑤DCE BEF ∠=∠.⑤EF AD =.⑤EF CD =.在DCE △和FEB 中,CD EF DCE FEB EC EB =⎧⎪∠=∠⎨⎪=⎩.⑤()SAS DCE FEB ≌△△. ⑤DE BF =;【小问2详解】解:取CF 的中点H ,连接GH .⑤点G 是DE 的中点.⑤GH 是FCD 的中位线. ⑤11122GH CD AD ===,GH CD ∥. 设BE a =,则111222CH EH CE BE a ====. ⑤2EF AD ==. ⑤122FH a =-. ⑤CD BE ∥.⑤GH BE ∥.⑤FGH FBE ∽△△. ⑤GH FH BE EF =,即12122a a -=. 整理得2440a a --=.解得2a =+.经检验2a =+,且符合题意.⑤2BE =24. (1)直线AD 的解析式为1y x =-;抛物线解析式为265y x x =-+(2)存在,点M 的坐标为()4,3-或()0,5 或()5,0(3【小问1详解】解:⑤抛物线的对称轴3x =,4AB =.⑤()()1,0,5,0A B .将1,0A 代入直线1y kx =-,得10k -=. 解得1k =.⑤直线AD 的解析式为1y x =-;将()()1,0,5,0A B 代入25y ax bx =++,得 5025550a b a b ++=⎧⎨++=⎩,解得16a b =⎧⎨=-⎩. ⑤抛物线的解析式为265y x x =-+;【小问2详解】存在点M .⑤直线AD 的解析式为1y x =-,抛物线对称轴3x =与x 轴交于点E . ⑤当3x =时,12y x =-=.⑤()3,2D .⑤当90DAM ∠=︒时.设直线AM 的解析式为y x c =-+,将点A 坐标代入. 得10c -+=.解得1c =.⑤直线AM 的解析式为1+-=x y .解方程组2165y x y x x =-+⎧⎨=-+⎩.得10x y =⎧⎨=⎩或43x y =⎧⎨=-⎩. ⑤点M 的坐标为()4,3-;⑤当90ADM ∠=︒时.设直线DM 的解析式为y x d =-+,将()3,2D 代入.得32d -+=.解得5d =.⑤直线DM 的解析式为5y x =-+.解方程组2565y x y x x =-+⎧⎨=-+⎩.解得05x y =⎧⎨=⎩或50x y =⎧⎨=⎩. ⑤点M 的坐标为()0,5 或()5,0综上,点M 的坐标为()4,3-或()0,5 或()5,0;【小问3详解】如图,在AB 上取点F ,使1BF =,连接CF . ⑤2PB =. ⑤12BF PB =. ⑤2142PB AB == ⑤BF PB PB AB=. 又⑤PBF ABP ∠=∠.⑤PBF ABP ∽. ⑤12PF BF PA PB ==,即12PF PA =. ⑤12PC PA PC PF CF +=+≥. ⑤当点C ,P ,F 三点共线时,12+PC PA 的值最小,即为线段CF 的长. ⑤5,1514OC OF OB ==-=-=.⑤CF =⑤12+PC PA。
2017年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.﹣的相反数是()A.B.﹣C.2017 D.﹣20172.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°3.下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b44.不等式组中,不等式①和②的解集在数轴上表示正确的是()A. B.C.D.5.如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C.D.6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.7.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:部门人数每人创年利润(万元)A110B38C75D43这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,510.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D.+π11.将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是()A.11 B.12 C.13 D.1412.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.414.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.2二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:m3﹣9m=.16.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.17.计算:÷(x﹣)=.18.在中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则ABCD的面积是.19.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是(填上所有正确答案的符号).三、解答题(本大题共7小题,共63分)20.(7分)计算:|1﹣|+2cos45°﹣+()﹣121.(7分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.(7分)如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.23.(9分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.24.(9分)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?25.(11分)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.26.(13分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题1.A.2.A.3.D.4.B.5.D.6.C.7.C.8.B.9.D.10.C.解:∵BT是⊙O的切线;设AT交⊙O于D,连结BD,∵AB是⊙O的直径,∴∠ADB=90°,而∠ATB=45°,∴△ADB、△BDT都是等腰直角三角形,∴AD=BD=TD=AB=,∴弓形AD的面积等于弓形BD的面积,=××=1.∴阴影部分的面积=S△BTD11.B.解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=个小圆;∵第n个图形中“○”的个数是78,∴78=,解得:n1=12,n2=﹣13(不合题意舍去),12.D.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;13.B.解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,14.C.解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,二、填空题(本大题共5小题,每小题3分,共15分)15.m(m+3)(m﹣3).16.4.17..18.24.解:作OE⊥CD于E,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD=BD=5,CD=AB=4,∵sin∠BDC==,∴OE=3,∴DE==4,∵CD=4,∴点E与点C重合,∴AC⊥CD,OC=3,∴AC=2OC=6,∴▱ABCD的面积=CD•AC=4×6=24;19.①③④.解:①因为2×(﹣1)+1×2=0,所以与互相垂直;②因为cos30°×1+tan45°•sin60°=×1+1×=≠0,所以与不互相垂直;③因为(﹣)(+)+(﹣2)×=3﹣2﹣1=0,所以与互相垂直;④因为π0×2+2×(﹣1)=2﹣2=0,所以与互相垂直.综上所述,①③④互相垂直.三、解答题(本大题共7小题,共63分)20.解:|1﹣|+2cos45°﹣+()﹣1=﹣1+2×﹣2+2=﹣1+﹣2+2=1.21.解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30m,∠EAD=30°,∴ED=AEtan30°=10m,在Rt△ABC中,∠BAC=30°,BC=30m,∴AB=30m,则CD=EC﹣ED=AB﹣ED=30﹣10=20m.23.(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.24.解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,15k=27,得k=1.8,即当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,,得,即当x>15时,y与x的函数关系式为y=2.4x﹣9,由上可得,y与x的函数关系式为y=;(2)设二月份的用水量是xm3,当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,解得,x无解,当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,解得,x=12,∴40﹣x=28,答:该用户二、三月份的用水量各是12m3、28m3.25.解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+C D=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.26.解:(1)由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1);(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF ⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=3或a=﹣2,∴M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).。
专题01浅议列举法解中考概率题的策略【专题综述】考查学生用列举法解决随机事件发生的概率是近几年中考数学命题的热点之一.用列举法求概率必须满足两个条件:一是一次试验中,可能出现的结果是有限多个;二是各种结果发生的可能性相等.常用的公式是:如果在一次实验中,有n种可能的结果,并且它们发生的可能性相同,事件A出现m种结果,那么事件A发生的概率为()mP An=.列举法有直接列举法.列表法和画树状图法.而中考数学中概率型应用题与学生的生活紧密联系,问题背景丰富,包括掷骰子游戏、摸球游戏、手心手背游戏、纸牌游戏、转盘实验等等.解题的关键是读懂并领会题意,分清数量之间的关系,把实际问题转化为数学问题.具体做法是准确建立概率模型,用列表法或画树状图列举出所有可能的结果,再利用概率公式计算每个事件发生的概率,最后比较概率的大小.概率相等就公平,否则就不公平,从而求得答案.【方法解读】一、田忌赛马中的概率问题—用直接列举法例1:田忌赛马的故事为人熟知.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强.(1)如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)错解:P∴ (田忌获胜)31 93 ==.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:双方马的对阵中,共有6种等可能的结果,只有1种对抗情况田忌能赢,所以田忌获胜的概率16P .【解读】 (1)直接列举法就是把要数的对象一一列举出来分析求解的方法,求解的关键在于正确列举出试验结果的各种可能性.正确理解题意,将齐王与田忌的马的对阵排序一一列举出来即可求得.(2)要恰当列表,写出双方对阵的所有情况,可求得结果.注意:列表法或画树状图法并非求概率的万能解法,有的题用直接列举法解很为简便.学#科网【举一反三】用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A. B. C. D.【来源】2017年山东省烟台市芝罘区九年级(上)期末数学试卷(五四学制)【答案】B【解析】列表如下:红红蓝红紫蓝紫紫共有9种情况,其中配成紫色的有3种,所以恰能配成紫色的概率=故选B.二、考查简单事件发生的概率—用列表法(树状图法)例2:某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500mI)、红茶(500mI)和可乐(600ml).抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样.②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”).③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”.④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样,∴一次“有效随机转动”可获得“乐”字的概率为15.(2)如图,画树状图,得:共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2 25.【解读】 (1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案.(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案. 本题的考点是列表法或树状图法;概率公式. 注意此题是放回实验,用到的知识点为概率公式:()mP An=.【举一反三】一个不透明的箱子里只有 2 个白球和1个红球,它们除颜色外其他均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,再摸出一个球,用画出树状图或列表的方法,求两次摸出的球都是白球的概率.【来源】广东省深圳高级中学2017-2018学年初三上期末数试题【答案】(1).(2).【解析】试题分析:(1)根据概率公式列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解.(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以,P(两次摸出的球都是白球)==.点睛:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.三、判断游戏的公平性—用列表法(树状图法)求出概率例3:某中学要在全校学生中举办“中国梦我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由(骰子:六个面上分别刻有1 ,2,3,4,5,6个小圆点的小正方体).解:(1)因为,向上一面的点数为奇数有3种情况,所以,小亮掷得向上一面的点数为奇数的概率是: 31 62 .(2)填表如下:由表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. 所以,P (小亮胜)=91364=,P (小丽胜)= 91364=,因此,游戏是公平的.’ 【解读】(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平.此题主要考查了判断游戏公平性问题.首先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平. 而用列举法(树形图法)求出概率,解答此类问题的关键在于列举出所有可能的结果. 【举一反三】在学习概率的课堂上,老师提出问题:一口袋装有除颜色外均相同的2个红球1个白球和1个篮球,小刚和小明想通过摸球来决定谁去看电影,同学甲设计了如下的方案:第一次随机从口袋中摸出一球(不放回);第二次再任意摸出一球,两人胜负规则如下:摸到“一红一白”,则小刚看电影;摸到“一白一蓝”,则小明看电影.(1)同学甲的方案公平吗?请用列表或画树状图的方法说明;(2)你若认为这个方案不公平,那么请你改变一下规则,设计一个公平的方案. 【来源】2017-2018学年天津市宁河县九年级(上)期末数学试卷【答案】(1)不公平,理由见解析;(2)拿出一个红球或放进一个蓝球,其他不变.游戏就公平了.解:(1)同学甲的方案不公平.理由如下:由树状图可以看出:共有12种可能,摸到“一红一白”有4种,摸到“一白一蓝”的概率有2种,故小刚获胜的概率为412=13,小明获胜的概率为212=16,所以这个游戏不公平.(2)拿出一个红球或放进一个蓝球,其他不变.游戏就公平了.【强化训练】1.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,然后放回,再随机摸出一个小球,两次摸出的小球标号的和为5的概率是()A.16B.29C.13D.12【来源】2016届辽宁大连市中考模拟数学试卷(一)(带解析)【答案】B【解析】试题分析:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号的和为5的有2种,因此两次摸出的小球标号的和为5的概率是29.故选:B.学3科4网考点:列表法与树状图法2.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A. 23B.110C.15D.14【来源】2017年中考真题精品解析数学(贵州黔西南州卷)【答案】B【解析】解:∵20个球中红球有2个,∴任意摸出一个球是红球的概率是220=110,故选B.点睛:本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3.某同学家长应邀参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是_____.班级节次1班第1节语文第2节英语第3节数学第4节音乐【来源】2017年初中毕业升学考试(湖南湘潭卷)数学(带解析)【答案】1 4考点:简单的概率计算4.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了_______名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【来源】2015年初中毕业升学考试(四川资阳卷)数学(带解析)【答案】(1)20;(2)详见解析;(3)12.【解析】试题解析:(1)20.(2)如图列表如下:A 类中的两名男生分别记为A1和A2 男A1 男A2 女A 男D 男A1男D 男A2男D 女A 男D 女D男A1女D男A2女D女A 女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:2163 考点:条形统计图;扇形统计图;用列表法求概率.5.如图,转盘中6个扇形的面积都相等,任意转动转盘一次,当转盘停止转动时,指针指向奇数的概率是______.【来源】2017年中考真题精品解析 数学(江苏镇江卷) 【答案】23. 【解析】解:图中共有6个相等的区域,含奇数的有1,1,3,3共4个,转盘停止时指针指向奇数的概率是46=23.故答案为: 23. 点睛:此题主要考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=mn.6.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=-x+5的图象上的概率;(3)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.【来源】辽宁省盖州市东城中学2017届九年级中考模拟数学试题【答案】(1)画树状图见解析;(2)13;(3)不公平,理由见解析.本题解析:(1)画树状图得:则点Q所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),2,4),(3,1),(3,2),(3,4)(4,1),(4,2),(4,3)共12种;(2)这个游戏不公平.因为点(x,y)在函数y=﹣x+5的图象上的概率为:41123=;共有12种等可能的结果,在函数y=﹣x+5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x,y)在函数y=﹣x+5的图象上的概率为:41 123=;(3)∵x、y满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y满足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况,∴P(小明胜)=41123=,P(小红胜)=61122=,∴P(小明胜)≠P(小红胜),∴不公平;公平的游戏规则为:若x、y满足xy≥6则小明胜,若x、y满足xy<6则小红胜.7.为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格【来源】2017年初中毕业升学考试(江苏盐城卷)数学(带解析)【答案】(1)12;(2)14(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.考点:列表法与树状图法;概率公式.学!科2网8.传统节日“端午节”的早晨,小文妈妈为小文准备了四个粽子作早点:一个枣馅粽,一个肉馅粽,两个花生馅粽,四个粽子除内部馅料不同外,其它一切均相同.(1)小文吃前两个粽子刚好都是花生馅粽的概率为;(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请说明理由.【来源】2017年中考真题精品解析 数学(辽宁锦州卷)【答案】(1)16;(2)会增大. (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小文吃前两个都是花生的情况,再利用概率公式即可求得给小文再增加一个花生馅的粽子,比较大小即可. 试题解析:解:(1)分别用A ,B ,C 表示一个枣馅粽,一个肉馅粽,两个花生馅粽,画树状图得:∵共有12种等可能的结果,小文吃前两个粽子刚好都是花生馅的有2种情况,∴小文吃前两个粽子刚好都是花生馅粽的概率: 212=16,故答案为: 16; (2)会增大,理由:分别用A ,B ,C 表示一个枣馅粽,一个肉馅粽,三个花生馅粽,画树状图得:∵共有20种等可能的结果,两个都是花生的有6种情况,∴都是花生的概率为: 620 =310>16; ∴给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性会增大.点睛:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.图1是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数1-, 2-, 3-,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为A (如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止).图2是背面完全一样、牌面数字分别是2, 3, 4, 5的四张扑克牌,把四张扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一张牌的牌面数字记为B .计算A B +的值.(1)用树状图或列表法求0A B +=的概率.(2)甲乙两人玩游戏,规定:当A B +是正数时,甲胜;否则,乙胜,你认为这个游戏规则对甲乙双方公平吗?请说明理由.【来源】【全国百强校】陕西省西安市高新第一中学2017届九年级下学期模拟四数学试题【答案】(1)树状图见解析;(2)这个游戏规则对甲乙双方不公平,理由见解析.【解析】试题分析:(1)根据题意可以写出所有的可能性,从而可以求得A +B =0的概率;(2)根据题意可以写出所有的可能性,从而可以求得甲获胜的概率和乙获胜的概率.(2)这个游戏规则对甲乙双方不公平,理由:由题意可得,A +B 的所有可能性是:﹣1+2=1,﹣1+3=2,﹣1+4=3,﹣1+5=4,﹣2+2=0,﹣2+3=1,﹣2+4=2,﹣2+5=3,﹣3+2=﹣1,﹣3+3=0,﹣3+4=1,﹣3+5=2,∴A +B 的和为正数的概率是: 93124= ,∴甲获胜的概率为34,乙获胜的概率为14,∵34≠14,∴这个游戏规则对甲乙双方不公平. 点睛:本题考查游戏公平性、列表法和树状图法,解答此类问题的关键是明确题意,写出所有的可能性.10.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A :自带白开水;B :瓶装矿泉水;C :碳酸饮料;D :非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.【来源】2017年中考真题精品解析数学(辽宁盘锦卷)精编word版(解析版)【答案】(1)50;(2)2.6;(3)104000元;(4)35.试题解析:解:(1)∵抽查的总人数为:20÷40%=50人,∴C类人数=50﹣20﹣5﹣15=10人,补全条形统计图如下:(2)该班同学用于饮品上的人均花费=(5×0+20×2+3×10+4×15)÷50=2.6元;(3)我市初中生每天用于饮品上的花费=40000×2.6=104000元.(4)列表得:或画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)=1220=35.点睛:本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.学~科1网。
2017年山东省菏泽市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.()﹣2的相反数是()A.9 B.﹣9 C.D.﹣2.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣83.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.4.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是()A.平均数是﹣2 B.中位数是﹣2 C.众数是﹣2 D.方差是75.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°6.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣17.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2) D.(0,)8.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:x3﹣x=.10.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.11.菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为cm2.12.一个扇形的圆心角为100°,面积为15π cm2,则此扇形的半径长为.13.直线y=kx(k>0)与双曲线y=交于A(x1,y1)和B(x2,y2)两点,则3x1y2﹣9x2y1的值为.14.如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O1的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去…若点B的坐标是(0,1),则点O12的纵坐标为.三、解答题(共10小题,共78分)15.计算:﹣12﹣|3﹣|+2sin45°﹣(﹣1)2.16.先化简,再求值:(1+)÷,其中x是不等式组的整数解.17.如图,E是▱ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.18.如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算⑪号楼的高度CD.19.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?20.如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A、B两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.21.今年5月,某大型商业集团随机抽取所属的部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了A、B、C、D四个等级,并绘制了如图不完整的扇形统计图和条形统计图.根据以上信息,解答下列问题:(1)本次评估随即抽取了多少甲商业连锁店?(2)请补充完整扇形统计图和条形统计图,并在图中标注相应数据;(3)从A、B两个等级的商业连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.22.如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.(1)求证:∠BAC=∠CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin∠PAB的值.23.正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x 轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.2017年山东省菏泽市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.()﹣2的相反数是()A.9 B.﹣9 C.D.﹣【考点】6F:负整数指数幂;14:相反数.【分析】先将原数求出,然后再求该数的相反数.【解答】解:原数=32=9,∴9的相反数为:﹣9;故选(B)2.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000032=3.2×10﹣7;故选:C.3.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图是两个正方形,俯视图是三个正方形,不符合题意;B、左视图与俯视图不同,不符合题意;C、左视图与俯视图相同,符合题意;D左视图与俯视图不同,不符合题意,故选:C.4.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是()A.平均数是﹣2 B.中位数是﹣2 C.众数是﹣2 D.方差是7【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据平均数、中位数、众数及方差的定义,依次计算各选项即可作出判断.【解答】解:A、平均数是﹣2,结论正确,故A不符合题意;B、中位数是﹣2,结论正确,故B不符合题意;C、众数是﹣2,结论正确,故C不符合题意;D、方差是9,结论错误,故D符合题意;故选:D.5.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B=20°=∠BAC∴∠BAA′=180°﹣70°﹣45°=65°,故选:C.6.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1【考点】FD:一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故选D.7.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2) D.(0,)【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质;LB:矩形的性质.【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0),∵D是OB的中点,∴D(﹣2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选B.8.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象;H2:二次函数的图象.【分析】根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y 轴负半轴.故选A.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).10.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是0.【考点】A3:一元二次方程的解.【分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.【解答】解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:011.菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为18cm2.【考点】L8:菱形的性质.【分析】根据菱形的性质以及锐角三角函数关系得出BE的长,即可得出菱形的面积.【解答】解:如图所示:过点B作BE⊥DA于点E∵菱形ABCD中,∠A=60°,其周长为24cm,∴∠C=60°,AB=AD=6cm,∴BE=AB•sin60°=3cm,∴菱形ABCD的面积S=AD×BE=18cm2.故答案为:18.12.一个扇形的圆心角为100°,面积为15π cm2,则此扇形的半径长为3.【考点】MO:扇形面积的计算.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=15π,解得R=3.即该扇形的半径为3cm.故答案是:3.13.直线y=kx(k>0)与双曲线y=交于A(x1,y1)和B(x2,y2)两点,则3x1y2﹣9x2y1的值为36.【考点】G8:反比例函数与一次函数的交点问题.【分析】由反比例函数图象上点的坐标特征,两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入3x1y2﹣9x2y1得出答案.【解答】解:由图象可知点A(x1,y1),B(x2,y2)关于原点对称,∴x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=,得x1y1=6,∴3x1y2﹣9x2y1=﹣3x1y1+9x1y1=﹣18+54=36.故答案为:36.14.如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O1的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去…若点B的坐标是(0,1),则点O12的纵坐标为(﹣9﹣9,9+3).【考点】R7:坐标与图形变化﹣旋转;D2:规律型:点的坐标;F8:一次函数图象上点的坐标特征.【分析】观察图象可知,O12在直线y=﹣x时,OO12=6•OO2=6(1++2)=18+6,由此即可解决问题.【解答】解:观察图象可知,O12在直线y=﹣x时,OO12=6•OO2=6(1++2)=18+6,∴O12的横坐标=﹣(18+6)•cos30°=﹣9﹣9,O12的纵坐标=OO12=9+3,∴O12(﹣9﹣9,9+3).故答案为(﹣9﹣9,9+3).三、解答题(共10小题,共78分)15.计算:﹣12﹣|3﹣|+2sin45°﹣(﹣1)2.【考点】79:二次根式的混合运算;T5:特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和完全平方公式分别化简求出答案.【解答】解:原式=﹣1﹣(﹣3)+2×﹣=﹣1+3﹣+﹣2018+2=﹣2016+2.16.先化简,再求值:(1+)÷,其中x是不等式组的整数解.【考点】6D:分式的化简求值;CC:一元一次不等式组的整数解.【分析】解不等式组,先求出满足不等式组的整数解.化简分式,把不等式组的整数解代入化简后的分式,求出其值.【解答】解:不等式组解①,得x<3;解②,得x>1.∴不等式组的解集为1<x<3.∴不等式组的整数解为x=2.∵(1+)÷==4(x﹣1).当x=2时,原式=4×(2﹣1)=4.17.如图,E是▱ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出AB=CD=6,AB∥CD,由平行线的性质得出∠F=∠DCE,由AAS证明△AEF≌△DEC,得出AF=CD=6,即可求出BF的长.【解答】解:∵E是▱ABCD的边AD的中点,∴AE=DE,∵四边形ABCD是平行四边形,∴AB=CD=6,AB∥CD,∴∠F=∠DCE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD=6,∴BF=AB+AF=12.18.如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算⑪号楼的高度CD.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AE⊥CD,用BD可以分别表示DE,CD的长,根据CD﹣DE=AB,即可求得BCD长,即可解题.【解答】解:作AE⊥CD,∵CD=BD•tan60°=BD,CE=BD•tan30°=BD,∴AB=CD﹣CE=BD,∴BC=21m,CD=BD•tan60°=BD=63m.答:乙建筑物的高度CD为63m.19.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?【考点】AD:一元二次方程的应用.【分析】根据单件利润×销售量=总利润,列方程求解即可.【解答】解:设销售单价为x元,由题意,得:(x﹣360)[160+2]=20000,整理,得:x2﹣920x+211600=0,解得:x1=x2=460,答:这种玩具的销售单价为460元时,厂家每天可获利润20000.20.如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A、B两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式式,进而求出AG,用三角形的面积公式即可得出结论.【解答】解:(1)如图,过点A作AF⊥x轴交BD于E,∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵B(3,2),∴EF=2,∵BD⊥y轴,OC=CA,∴AE=EF=AF,∴AF=4,∴点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(2,),∵A(3,4),∴AG=4﹣=,∴S △AOB =S △AOG +S △ABG =××3=4.21.今年5月,某大型商业集团随机抽取所属的部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了A 、B 、C 、D 四个等级,并绘制了如图不完整的扇形统计图和条形统计图.根据以上信息,解答下列问题:(1)本次评估随即抽取了多少甲商业连锁店?(2)请补充完整扇形统计图和条形统计图,并在图中标注相应数据;(3)从A 、B 两个等级的商业连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.【考点】X6:列表法与树状图法;VB :扇形统计图;VC :条形统计图. 【分析】(1)根据A 级的人数和所占的百分比求出总人数; (2)求出B 级的人数所占的百分比,补全图形即可;(3)画出树状图,由概率公式即可得出答案.【解答】解:(1)2÷8%=25(家),即本次评估随即抽取了25家商业连锁店;(2)25﹣2﹣15﹣6=2,2÷25×100%=8%,补全扇形统计图和条形统计图,如图所示:(3)画树状图,共有12个可能的结果,至少有一家是A等级的结果有10个,∴P(至少有一家是A等级)==.22.如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.(1)求证:∠BAC=∠CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin∠PAB的值.【考点】S9:相似三角形的判定与性质;MC:切线的性质;T7:解直角三角形.【分析】(1)根据已知条件得到∠ACB=∠ABP=90°,根据余角的性质即可得到结论;(2)根据相似三角形的判定和性质即可得到结论;(3)根据三角函数的定义即可得到结论.【解答】解:(1)∵AB是⊙O的直径,PB与⊙O相切于点B,∴∠ACB=∠ABP=90°,∴∠A+∠ABC=∠ABC+∠CBP=90°,∴∠BAC=∠CBP;(2)∵∠PCB=∠ABP=90°,∠P=∠P,∴△ABP∽△BCP,∴,∴PB2=PC•PA;(3)∵PB2=PC•PA,AC=6,CP=3,∴PB2=9×3=27,∴PB=3,∴sin∠PAB===.23.正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.【考点】LO:四边形综合题.【分析】(1)根据四边形的性质得到AD=AB,∠BAD=90°,由垂直的定义得到∠AHM=90°,由余角的性质得到∠BAF=∠AMH,根据全等三角形的性质即可得到结论;(2)①根据勾股定理得到BD=6,由题意得,DM=t,BE=t,求得AM=6﹣t,DE=6﹣t,根据相似三角形的判定和性质即可得到结论;②根据已知条件得到AN=2,BN=4,根据相似三角形的性质得到BF=,由①求得BF=,得方程=,于是得到结论.【解答】解:(1)∵四边形ABCD 是正方形,∴AD=AB,∠BAD=90°,∵MN⊥AF,∴∠AHM=90°,∴∠BAF+∠MAH=∠MAH+∠AMH=90°,∴∠BAF=∠AMH,在△AMN与△ABF中,,∴△AMN≌△ABF,∴AF=MN;(2)①∵AB=AD=6,∴BD=6,由题意得,DM=t,BE=t,∴AM=6﹣t,DE=6﹣t,∵AD∥BC,∴△ADE∽△FBE,∴,即,∴y=;②∵BN=2AN,∴AN=2,BN=4,由(1)证得∠BAF=∠AMN,∵∠ABF=∠MAN=90°,∴△ABF∽△AMN,∴=,即=,∴BF=,由①求得BF=,∴=,∴t=2,∴BF=3,∴FN==5.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x 轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把B(4,0),点D(3,)代入y=ax2+bx+1即可得出抛物线的解析式;(2)先用含t的代数式表示P、M坐标,再根据三角形的面积公式求出△PCM 的面积与t的函数关系式,然后运用配方法可求出△PCM面积的最大值;(3)若四边形BCMN为平行四边形,则有MN=DC,故可得出关于t的二元一次方程,解方程即可得到结论.【解答】解:(1)把点B(4,0),点D(3,),代入y=ax2+bx+1中得,,解得:,∴抛物线的表达式为y=﹣x2+x+1;(2)设直线AD的解析式为y=kx+b,∵A(0,1),D(3,),∴,∴,∴直线AD的解析式为y=x+1,设P(t,0),∴M(t,t+1),∴PM=t+1,∵CD⊥x轴,∴PC=3﹣t,=PC•PM=(3﹣t)(t+1),∴S△PCM=﹣t2+t+=﹣(t﹣)2+,∴S△PCM∴△PCM面积的最大值是;(3)∵OP=t,∴点M,N的横坐标为t,设M(t,t+1),N(t,﹣t2+t+1),∴MN=﹣t2+t+1﹣t﹣1=﹣t2+t,CD=,如果以点M、C、D、N为顶点的四边形是平行四边形,∴MN=CD,即﹣t2+t=,∵△=﹣39,∴方程﹣t2+t=无实数根,∴不存在t,使以点M、C、D、N为顶点的四边形是平行四边形.。
2017年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•青岛)﹣的相反数是()A.8 B.﹣8 C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2017•青岛)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•青岛)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【解答】解:这组数据的众数为6吨,平均数为5吨,中位数为5。
5吨,方差为.故选C.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数、中位数.4.(3分)(2017•青岛)计算6m6÷(﹣2m2)3的结果为()A.﹣m B.﹣1 C.D.﹣【考点】4H:整式的除法;47:幂的乘方与积的乘方.【分析】根据整式的除法法则即可求出答案.【解答】解:原式=6m6÷(﹣8m6)=﹣故选(D)【点评】本题考查整式的除法,解题的关键是熟练运用整式的除法法则,本题属于基础题型.5.(3分)(2017•青岛)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为()A.(﹣4,2)B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)【考点】R7:坐标与图形变化﹣旋转.【分析】利用网格特征和旋转的性质,分别作出A、B、C的对应点A1、B1、C1,于是得到结论.【解答】解:如图,点B1的坐标为(﹣2,4),故选B.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等.6.(3分)(2017•青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115° D.120°【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选B.【点评】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(3分)(2017•青岛)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A.B.C.D.【考点】L5:平行四边形的性质.【分析】由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD 的面积即可求出.【解答】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC===S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选D.【点评】本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.8.(3分)(2017•青岛)一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为()A.2 B.4 C.8 D.不确定【考点】G5:反比例函数系数k的几何意义;F8:一次函数图象上点的坐标特征.【分析】根据待定系数法,可得k,b,根据反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k|的一半,可得答案.【解答】解:将A(﹣1,﹣4),B(2,2)代入函数解析式,得,解得,P为反比例函数y=图象上一动点,反比例函数的解析式y=,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为|k|=2,故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k|的一半二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)(2017•青岛)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为6。
2017年山东省潍坊市中考数学试卷(解析版)一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4D.(a2)2=a4【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式运算法则即可求出答案.【解答】解:(A)原式=a5,故A错误;(B)原式=a2,故B错误;(C)原式=2a2,故C错误;故选(D)2.如图所示的几何体,其俯视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,內圆是虚线,故选:D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1000亿用科学记数法表示为:1×1011.故选:C.4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【考点】P6:坐标与图形变化﹣对称;D3:坐标确定位置.【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故选B.5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B【考点】25:计算器—数的开方;29:实数与数轴.【分析】此题实际是求﹣的值.【解答】解:在计算器上依次按键转化为算式为﹣=;计算可得结果介于﹣2与﹣1之间.故选A.6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°【考点】JA:平行线的性质.【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选B.7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数98方差11A.甲B.乙C.丙D.丁【考点】W7:方差;VD:折线统计图;W2:加权平均数.【分析】求出丙的平均数、方差,乙的平均数,即可判断.【解答】解:丙的平均数==9,丙的方差=[1+1+1=1]=0.4,乙的平均数==8.2,由题意可知,丙的成绩最好,故选C.8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a﹣b确定符号,确定双曲线的位置.【解答】解:A、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B、由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a﹣b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D、由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.9.若代数式有意义,则实数x的取值范围是()A.x≥1B.x≥2C.x>1D.x>2【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出x的范围;【解答】解:由题意可知:∴解得:x≥2故选(B)10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°【考点】M6:圆内接四边形的性质.【分析】根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:,则∠DBC=2∠EAD=80°.【解答】解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD=80°.故选C.11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()#N.A.0或B.0或2C.1或D.或﹣【考点】A8:解一元二次方程﹣因式分解法;2A:实数大小比较;E6:函数的图象.【分析】根据新定义和函数图象讨论:当1≤x≤2时,则x2=1;当﹣1≤x≤0时,则x2=0,当﹣2≤x<﹣1时,则x2=﹣1,然后分别解关于x的一元二次方程即可.【解答】解:当1≤x≤2时,x2=1,解得x1=,x2=﹣;当﹣1≤x≤0时,x2=0,解得x1=x2=0;当﹣2≤x<﹣1时,x2=﹣1,方程没有实数解;所以方程[x]=x2的解为0或.12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2【考点】M4:圆心角、弧、弦的关系;L8:菱形的性质.【分析】过B作直径,连接AC交AO于E,①如图①,根据已知条件得到BD=×2×3=2,如图②,BD=×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,①如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OD,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OD,∵CE===2,∴边CD===2,故选D.二、填空题(共6小题,每小题3分,满分18分。
2017年##省东营市中考数学试卷一、选择题〔本大题共10小题,每小题3分,共30分〕1.下列四个数中,最大的数是〔 〕A .3B .3C .0D .π 2.下列运算正确的是〔 〕 A .〔x ﹣y 〕2=x 2﹣y 2B .|3﹣2|=2﹣3C .8﹣3=5D .﹣〔﹣a+1〕=a+13.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为〔 〕A .3B .4C .6D .94.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s 〔m 〕与时间t 〔min 〕的大致图象是〔 〕A .B .C .D .5.已知a ∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于〔 〕A .100°B.135°C.155°D.165°6.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是〔 〕A .47B .37C .27D .177.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=8,AB=5,则AE 的长为〔 〕A .5B .6C .8D .128.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为〔 〕A .60°B.90°C.120°D.180°9.如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半,若BC=,则△ABC 移动的距离是〔 〕A .32B .33C .62D .3﹣6210.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F,连接BD 、DP,BD 与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是〔〕A.①②③④B.②③C.①②④D.①③④二、填空题〔本大题共8小题,共28分〕11.《"一带一路"贸易合作大数据报告〔2017〕》以"一带一路"贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.分解因式:﹣2x2y+16xy﹣32y=.13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数与其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派去.14.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是.15.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.我国古代有这样一道数学问题:"枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?"题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.如图,在平面直角坐标系中,直线l:y=33x﹣33与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题〔本大题共7小题,共62分〕19.〔1〕计算:6cos45°+〔13〕﹣1+〔3﹣1.73〕0+|5﹣32|+42017×〔﹣0.25〕2017〔2〕先化简,再求值:〔31a+﹣a+1〕÷244412a aa a-+++-﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.为大力弘扬"奉献、友爱、互助、进步"的志愿服务精神,传播"奉献他人、提升自我"的志愿服务理念,东营市某中学利用周末时间开展了"助老助残、社区服务、生态环保、网络文明"四个志愿服务活动〔每人只参加一个活动〕,九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:〔1〕求该班的人数;〔2〕请把折线统计图补充完整;〔3〕求扇形统计图中,网络文明部分对应的圆心角的度数;〔4〕小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.〔1〕求证:DE⊥AC;〔2〕若DE+EA=8,⊙O的半径为10,求AF的长度.22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=nx的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.〔1〕求一次函数与反比例函数的解析式;〔2〕直接写出当x>0时,kx+b﹣nx<0的解集.23.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.〔1〕改扩建1所A类学校和1所B类学校所需资金分别是多少万元?〔2〕该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点〔不与B、C重合〕,在AC 上取一点E,使∠ADE=30°.〔1〕求证:△ABD ∽△DCE ;〔2〕设BD=x,AE=y,求y 关于x 的函数关系式并写出自变量x 的取值范围;〔3〕当△ADE 是等腰三角形时,求AE 的长.25.如图,直线y=33x 轴、y 轴交于B 、C 两点,点A 在x 轴上,∠ACB=90°,抛物线y=ax 23A,B 两点.〔1〕求A 、B 两点的坐标;〔2〕求抛物线的解析式;〔3〕点M 是直线BC 上方抛物线上的一点,过点M 作MH ⊥BC 于点H,作MD ∥y 轴交BC 于点D,求△DMH 周长的最大值.一、选择题〔本大题共10小题,每小题3分,共30分〕1.下列四个数中,最大的数是〔 〕A .3B 3.0D .π[答案]D[解析]试题分析:根据在数轴上表示的两个实数,右边的总比左边的大可得03<3<π,故选:D .考点:实数的比较大小2.下列运算正确的是〔 〕A .〔x ﹣y 〕2=x 2﹣y 2B .32|=23835D .﹣〔﹣a+1〕=a+1[答案]B[解析]考点:1、二次根式的加减法,2、实数的性质,3、完全平方公式,4、去括号3.若|x 2﹣4x+4|23x y --,则x+y 的值为〔 〕A .3B .4C .6D .9[答案]A试题分析:根据相反数的定义得到|x 2﹣4x+4|+23x y --=0,再根据非负数的性质得x 2﹣4x+4=0,2x ﹣y ﹣3=0,然后利用配方法求出x=2,再求出y=1,最后计算它们的和x+y=3.故选A .考点:解一元二次方程﹣配方法4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s 〔m 〕与时间t 〔min 〕的大致图象是〔 〕A .B .C .D .[答案]C[解析]又随时间t 的增长而增长,学#科网故选:C .考点:函数图象5.已知a ∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于〔 〕A .100°B.135°C.155°D.165° [答案]D[解析]试题分析:先过P 作PQ ∥a,则PQ ∥b,根据平行线的性质即可得到∠3=180°﹣∠APQ=165°,再根据对顶角相等即可得出∠1=165°,故选:D .考点:平行线的性质6.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是〔 〕A .47B .37C .27D .17[解析]考点:概率7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为〔〕A.5B.6C.8D.12[答案]B[解析]试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=6.故选B.考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质8.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为〔〕A.60°B.90°C.120°D.180°[答案]C[解析]故选:C.学#科网考点:有关扇形和圆锥的相关计算9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=3,则△ABC移动的距离是〔〕A.32B.33C.62D.3﹣62[答案]D[解析]试题分析:移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:2,推出EC=62,利用线段的差求BE=BC﹣EC=3﹣62.故选:D.考点:1、相似三角形的判定和性质,2、平移的性质10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC 其中正确的是〔〕A.①②③④B.②③C.①②④D.①③④[答案]C[解析]∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP,∴DP2=PHPC,故④正确;故选C.考点:1、正方形的性质,2、等边三角形的性质,3、相似三角形的判定和性质二、填空题〔本大题共8小题,共28分〕11.《"一带一路"贸易合作大数据报告〔2017〕》以"一带一路"贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.[答案]1.2×108[解析]故答案为:1.2×108.学#科网考点:科学记数法12.分解因式:﹣2x2y+16xy﹣32y=.[答案]﹣2y〔x﹣4〕2[解析]试题分析:根据提取公因式以与完全平方公式即可求出:原式=﹣2y〔x2﹣8x+16〕=﹣2y〔x﹣4〕2故答案为:﹣2y〔x﹣4〕2考点:因式分解13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数与其方差s 2如下表所示:甲 乙 丙 丁1′05″33 1′04″26 1′04″26 1′07″29 S 2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派去.[答案]乙[解析]试题分析:首先比较平均数,可得=x x x x 丁甲乙丙>>,然后在平均数相同的情况下,根据平均数相同的两个运动员的方差22S S 乙丙<,可知选择方差较小的运动员参加,即选择乙参赛,故答案为:乙.学#科网考点:1、平均数,2、方差14.如图,AB 是半圆直径,半径OC ⊥AB 于点O,D 为半圆上一点,AC ∥OD,AD 与OC 交于点E,连结CD 、BD,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CECO,其中正确结论的序号是.[答案]①②③[解析]考点:1、圆周角定理,2、平行线的性质,3、圆的性质,4、圆心角与弦的关系定理的运用,5、相似三角形的判定与性质15.如图,已知菱形ABCD 的周长为16,面积为3,E 为AB 的中点,若P 为对角线BD 上一动点,则EP+AP 的最小值为.[答案3[解析]故答案为3考点:1、轴对称﹣最短问题,2、菱形的性质16.我国古代有这样一道数学问题:"枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?"题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是尺.[答案]25[解析]试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为2220+15=25〔尺〕.故答案为:25.考点:平面展开最短路径问题17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.[答案]tan tan tan tans αββα⋅⋅-[解析]故答案为:tan tantan tansαββα⋅⋅-.考点:解直角三角形的应用﹣仰角俯角问题18.如图,在平面直角坐标系中,直线l:y=33x﹣33与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.[答案]2017 212-[解析]故答案为:2017212-.考点:1、一次函数图象上点的坐标特征,2、等边三角形的性质三、解答题〔本大题共7小题,共62分〕19.〔1〕计算:6cos45°+〔13〕﹣1+3 1.73〕0+|5﹣2|+42017×〔﹣0.25〕2017〔2〕先化简,再求值:〔31a+﹣a+1〕÷244412a aa a-+++-﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.[答案]〔1〕8〔2〕﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1[解析]试题分析:〔1〕根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;〔2〕根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.=﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.考点:1、分式的化简求值,2、实数的运算,3、殊角的三角函数值,4、负整数指数幂,5、零指数幂,6、绝对值,7、幂的乘方20.为大力弘扬"奉献、友爱、互助、进步"的志愿服务精神,传播"奉献他人、提升自我"的志愿服务理念,东营市某中学利用周末时间开展了"助老助残、社区服务、生态环保、网络文明"四个志愿服务活动〔每人只参加一个活动〕,九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:〔1〕求该班的人数;〔2〕请把折线统计图补充完整;〔3〕求扇形统计图中,网络文明部分对应的圆心角的度数;〔4〕小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.[答案]〔1〕48〔2〕图形见解析〔3〕45°〔4〕1 4[解析]〔2〕48×50%=24,折线统计如图所示:学#科网〔3〕648×360°=45°.〔4〕分别用"1,2,3,4"代表"助老助残、社区服务、生态环保、网络文明"四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P=416=14.考点:1、折线图,2、扇形统计图,3、列表法,4、概率21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.〔1〕求证:DE⊥AC;〔2〕若DE+EA=8,⊙O的半径为10,求AF的长度.[答案]〔1〕证明见解析〔2〕8[解析]∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;∵OH⊥AF,∴AH=FH=12 AF,∴AF=2AH=2×8=16.学科&网考点:1、切线的性质,2、勾股定理,3、矩形的判定与性质22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=nx的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.〔1〕求一次函数与反比例函数的解析式;〔2〕直接写出当x>0时,kx+b﹣nx<0的解集.[答案]〔1〕y=23x﹣2,y=12x〔2〕0<x<6[解析]试题分析:〔1〕根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把D的坐标代入反比例函数的解析式求出即可;〔2〕根据图象即可得出答案.∴C〔6,2〕,∴n=6×2=12,∴反比例函数的解析式是y=12x;〔2〕当x>0时,kx+b﹣nx<0的解集是0<x<6.考点:1、待定系数法求出函数的解析式,2、一次函数和和反比例函数的交点问题,3、函数的图象的应用23.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.〔1〕改扩建1所A类学校和1所B类学校所需资金分别是多少万元?〔2〕该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?[答案]〔1〕改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元〔2〕共有3种方案[解析]试题分析:〔1〕可根据"改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元",列出方程组求出答案;〔2〕设今年改扩建A类学校a所,则改扩建B类学校〔10﹣a〕所,由题意得:(1200300)(1800500)(10)11800 300500(10)400a aa a-+--≤⎧⎨+-≥⎩,解得3aa≥⎧⎨≤⎩,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.考点:1、一元一次不等式组的应用,2、二元一次方程组的应用24.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点〔不与B、C重合〕,在AC 上取一点E,使∠ADE=30°.〔1〕求证:△ABD ∽△DCE ;〔2〕设BD=x,AE=y,求y 关于x 的函数关系式并写出自变量x 的取值范围;〔3〕当△ADE 是等腰三角形时,求AE 的长.[答案]〔1〕证明见解析〔2〕y=2132x -x+2〔0<x <23〕〔3〕当△ADE 是等腰三角形时,AE=4﹣23或23.[解析]∴∠EDC=∠DAB,∴△ABD ∽△DCE ;〔2〕如图1,∵AB=AC=2,∠BAC=120°,过A 作AF ⊥BC 于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=12AB=1,∴BF=3,∴BC=2BF=23,则DC=23﹣x,EC=2﹣y,∵△ABD ∽△DCE,∴ABDCBD CE =,∴2232xx y -=-,化简得:y=2132x -x+2〔0<x <23〕;〔3〕当AD=DE 时,如图2,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=12EC,即y=12〔2﹣y 〕,解得:y=23,即AE=23,考点:1、三角形相似的性质和判定,2、等腰三角形的性质,3、直角三角形30°角的性质25.如图,直线y=﹣33x+3分别与x轴、y轴交于B、C两点,点A在x 轴上,∠ACB=90°,抛物线y=ax2+bx+3经过A,B两点.〔1〕求A、B两点的坐标;〔2〕求抛物线的解析式;〔3〕点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.[答案]〔1〕〔﹣1,0〕〔2〕y=﹣33x2+233x+3〔3〕93+98[解析]试题分析:〔1〕由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt △AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;〔2〕由A、B两点坐标,利用待定系数法可求得抛物线解析式;〔3〕由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.∴AOCO=tan30°=33,即3AO=33,解得AO=1,学科网∴A〔﹣1,0〕;〔2〕∵抛物线y=ax2+bx+3经过A,B两点,∴309330a ba b⎧-+=⎪⎨++=⎪⎩,解得33233ab⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为y=﹣33x2+233x+3;〔3〕∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DM H=30°,∴DH=12∴△DMH 的周长=DM+DH+MH=DM+12DM+2DM=2DM, ∴当DM 有最大值时,其周长有最大值,∵点M 是直线BC 上方抛物线上的一点,考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想。
2017年中考数学真题卷及答案详解一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=14﹣1=﹣34,故选C 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【考点】平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)化简:xx−y ﹣yx+y,结果正确的是()A.1 B.x2+y2x−yC.x−yx+yD.x2+y2【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x2+xy−xy+y2x2−y2=x2+y2x2−y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.33 B.6 C.32 D.21【考点】勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=AC2+BC2=32,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=32,∴∠CAB′=90°,∴B′C=CA2+B′A2=33,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【考点】两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴y=−2x+4y=kx+2k解得x=4−2kk+2y=8kk+2∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴4−2kk+2>08kk+2>0解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.355【考点】相似三角形的判定与性质;LB:矩形的性质.【分析】根据S△ABE =12S矩形ABCD=3=12•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE=AD2+DE2=32+12=10,∵S△ABE =12S矩形ABCD=3=12•AE•BF,∴BF=310 5.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.532C.52 D.53【考点】三角形的外接圆与外心;KH:等腰三角形的性质.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=32×5=532,∴AP=2PD=53,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【考点】二次函数的性质.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣3,0,π,6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π> 6>0>− 3>﹣5,故实数﹣5,− 3,0,π, 6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .B. 173tan38°15′≈ .(结果精确到0.01)【考点】计算器—三角函数;25:计算器—数的开方;K7:三角形内角和定理.【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB ); B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=12∠ABC 、∠2=12∠ACB , 则∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB )=64°, 故答案为:64°;B 、 173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 【考点】反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.【分析】设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】解:设A (a ,b ),则B (a ,﹣b ),依题意得: b =3m a −b =2m−5a, 所以3m +2m−5a =0,即5m ﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得3m +2m−5a =0,即5m ﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .【考点】全等三角形的判定与性质.【分析】作辅助线;证明△ABM ≌△ADN ,得到AM=AN ,△ABM 与△ADN 的面积相等;求出正方形AMCN 的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,∠BAM=∠DAN∠AMB=∠ANDAB=AD,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣2)×6+|3﹣2|﹣(12)﹣1.【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣12+2﹣3﹣2=﹣23﹣3=﹣33【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)解方程:x+3x−3﹣2x+3=1.【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【考点】正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中AD=CD∠ADF=∠CDE DF=DE,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,∠GAE=∠GCF ∠AGE=∠CGF AE=CF,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:316.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA 是⊙O 的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC ⊥PB ,PB 过圆心O ,∴AD=DC在Rt △ODA 中,AD=OA•sin60°=5 32∴AC=2AD=5 3(2)∵AC ⊥PB ,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC ∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)在同一直角坐标系中,抛物线C 1:y=ax 2﹣2x ﹣3与抛物线C 2:y=x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式;(2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m ,MB=10m ,△AMB 的面积为96m 2;过弦AB 的中点D作DE ⊥AB 交AB于点E ,又测得DE=8m . 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【考点】圆的综合题.【分析】(1)构建Rt △AOD 中,利用cos ∠OAD=cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图1,过O 作OD ⊥AC 于D ,则AD=12AC=12×12=6, ∵O 是内心,△ABC 是等边三角形,∴∠OAD=12∠BAC=12×60°=30°, 在Rt △AOD 中,cos ∠OAD=cos30°=AD OA, ∴OA=6÷ 32=4 3, 故答案为:4 3;(2)存在,如图2,连接AC 、BD 交于点O ,连接PO 并延长交BC 于Q ,则线段PQ 将矩形ABCD 的面积平分,∵点O 为矩形ABCD 的对称中心,∴CQ=AP=3,过P 作PM ⊥BC 于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ= PM 2+MQ 2= 122+122=12 2;(3)如图3,作射线ED 交AM 于点C∵AD=DB ,ED ⊥AB ,AB是劣弧, ∴AB所在圆的圆心在射线DC 上, 假设圆心为O ,半径为r ,连接OA ,则OA=r ,OD=r ﹣8,AD=12AB=12, 在Rt △AOD 中,r 2=122+(r ﹣8)2,解得:r=13,∴OD=5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB=24,∴12AB•MN=96, 12×24×MN=96, ∴MN=8,NB=6,AN=18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC MN =AD AN, ∴DC 8=1218, ∴DC=163, ∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交AB于点F ,则MF 为草坪上的点到M 点的最大距离, ∵在AB上任取一点异于点F 的点G ,连接GO ,GM , ∴MF=OM +OF=OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH=DN=6,MH=3,∴OM=MH2+OH2=32+62=35,∴MF=OM+r=35+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF.。
2024年山东省烟台市中考数学试卷(附答案)一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。
1.(3分)下列实数中的无理数是()A.B.3.14C.D.【分析】无理数即无限不循环小数,据此即可求得答案.【解答】解:是分数,3.14是有限小数,=4是整数,它们不是无理数;是无限不循环小数,它是无理数;故选:C.2.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.a3+a3D.(a2)3【答案】D.3.(3分)如图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走()A.①B.②C.③D.④【答案】A.4.(3分)实数a,b,c在数轴上的位置如图所示,下列结论正确的是()A.b+c>3B.a﹣c<0C.|a|>|c|D.﹣2a<﹣2b【答案】B.5.(3分)目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是A4纸厚度的六分之一.已知1毫米=1百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为()A.0.15×103纳米B.1.5×104纳米C.15×10﹣5纳米D.1.5×10﹣6纳米【答案】B.6.(3分)射击运动队进行射击测试,甲、乙两名选手的测试成绩如图,其成绩的方差分别记为S甲2和S乙2,则S甲2和S乙2的大小关系是()A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定【答案】A.7.(3分)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP为∠AOB的平分线的有()A.1个B.2个C.3个D.4个【答案】D.8.(3分)如图,在正方形ABCD中,点E,F分别为对角线BD,AC的三等分点,连接AE并延长交CD 于点G,连接EF,FG.若∠AGF=α,则∠FAG用含α的代数式表示为()A.B.C.D.【分析】先证明△EOF∽△DOC,得出∠OFE=45°,再证明△ABE∽△GDE,得出,由此推出△DEG≌△CFG(SAS),得到GE=GF,据此求解即可.【解答】解:设AC与BD的交点为O,∵正方形ABCD中,点E,F分别为对角线BD,AC的三等分点,∴OD=OC,∠ODC=∠OCD=45°,DE=CF,∴OE=OF,∵∠EOF=∠DOC,,∴△EOF∽△DOC,∴∠OFE=∠OCD=45°,∵点E,F分别为对角线BD,AC的三等分点,∴,∵正方形ABCD,∴AB∥CD,AB=CD,∴△ABE∽△GDE,∴,∴,∴△DEG≌△CFG(SAS),∴GE=GF,∴,∴,故选:B.9.(3分)《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织讫.问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同,第一天织了五尺布,最后一天仅织了一尺布,30天完工,问一共织了多少布?()A.45尺B.88尺C.90尺D.98尺【答案】C.10.(3分)如图,水平放置的矩形ABCD中,AB=6cm,BC=8cm,菱形EFGH的顶点E,G在同一水平线上,点G与AB的中点重合,EF=2cm,∠E=60°,现将菱形EFGH以1cm/s的速度沿BC方向匀速运动,当点E运动到CD上时停止.在这个运动过程中,菱形EFGH与矩形ABCD重叠部分的面积S(cm2)与运动时间t(s)之间的函数关系图象大致是()A.B.C.D.【答案】D.二、填空题(本大题共6个小题,每小题3分,满分18分)11.(3分)若代数式在实数范围内有意义,则x的取值范围为.【分析】根据二次根式及分式有意义的条件即可求得答案.【解答】解:∵代数式在实数范围内有意义,∴x﹣1>0,解得:x>1,故答案为:x>1.12.(3分)关于x的不等式m﹣≤1﹣x有正数解,m的值可以是(写出一个即可).【分析】解含m的一元一次不等式,根据题意求得m的取值范围,然后写出一个符合题意的m的值即可.【解答】解:原不等式整理得:x≤1﹣m,解得:x≤2﹣2m,∵原不等式有正数解,∴2﹣2m>0,解得:m<1,则m的值可以是0,故答案为:0(答案不唯一).13.(3分)若一元二次方程2x2﹣4x﹣1=0的两根为m,n,则3m2﹣4m+n2的值为.【分析】直接根据根与系数的关系求解.【解答】解:∵一元二次方程2x2﹣4x﹣1=0的两根为m,n,∴2m2﹣4m=1,m+n=﹣=2,mn=﹣,∴3m2﹣4m+n2=2m2﹣4m+m2+n2=1+(m+n)2﹣2mn=1+22﹣2×(﹣)=6.故答案为:6.14.(3分)如图,在边长为6的正六边形ABCDEF中,以点F为圆心,以FB的长为半径作,剪如图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为.【分析】根据正六边形的性质求出阴影部分扇形的圆心角度数,再根据直角三角形的边角关系求出半径,由弧长的计算方法进行计算即可.【解答】解:如图,过点A作AM⊥BF,垂足为M,则BM=FM,∵六边形ABCDEF是正六边形,∴∠BAF=∠E==120°,AB=AF=EF=DE=6,∴∠ABF=∠AFB=∠DFE==30°,∴∠BFD=120°﹣30°﹣30°=60°,在Rt△ABM中,AB=6,∠ABM=30°,∴BM=AB=3,∴BF=2BM=6,设这个圆锥的底面半径为r,由题意可得,2πr=,解得r=.故答案为:.【点评】本题考查正多边形和圆,弧长的计算,掌握正六边形的性质,等腰三角形的性质以及弧长的计算方法是正确解答的关键.15.(3分)如图,在▱ABCD中,∠C=120°,AB=8,BC=10,E为边CD的中点,F为边AD上的一动点,将△DEF沿EF翻折得△D′EF,连接AD',BD',则△ABD′面积的最小值为.【解答】解:∵在▱ABCD中,∠C=120°,AB=8,∴∠ABC=60°,CD=8,∵E为边CD的中点,F为边AD上的一动点,将△DEF沿EF翻折得△D′EF,∴D'E=DE=CE=CD=4,∴点D'是以E为圆心,CD为直径圆周上的一点,作出⊙E,如图,过点E作EH⊥AB交直线AB于点H,交⊙E于点G,过点D'作D'M⊥AB于点M,连接EM,∵△ABD′面积=AB•D'M,AB=8,∴△ABD′面积=4D'M,要求△ABD′面积的最小值,只要求D'M的最小值即可,∵D'M=D'M+D'E﹣4≥EM﹣4≥EH﹣4,∴D'M的最小值为EH﹣4,过点C作CN⊥AB于点N,则EH=CN,在Rt△BCN中,∵BC=10,∠ABC=60°,∴CN=BC•sin60°=10×=5,∴EH=5,∴D'M的最小值为5﹣4,∴△ABD′面积=4(5﹣4)=20﹣16,故答案为:20﹣16.16.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣4﹣3﹣115y0595﹣27下列结论:①abc>0;②关于x的一元二次方程ax2+bx+c=9有两个相等的实数根;③当﹣4<x<1时,y的取值范围为0<y<5;④若点(m,y1),(﹣m﹣2,y2)均在二次函数图象上,则y1=y2;⑤满足ax2+(b+1)x+c<2的x的取值范围是x<﹣2或x>3.其中正确结论的序号为.【分析】利用待定系数法求出a、b、c的值即可判断①;利用根的判别式即可判断②;利用二次函数的性质可判断③;利用对称性可判断④;画出函数图形可判断⑤.【解答】解:把(﹣4,0),(﹣1,9),(1,5)代入y=ax2+bx+c得:,解得∴abc>0,故①正确;∵a=﹣1,b=﹣2,c=8,∴y=﹣x2﹣2x+8,当y=9时,﹣x2﹣2x+8=9,∴x2+2x+1=0,∵Δ=22﹣4×1×1=0,∴关于x的一元二次方程ax2+bx+c=9有两个相等的实数根,故②正确;∵抛物线的对称轴为直线,∴抛物线的顶点坐标为(﹣1,9),又∵a<0,∴当x<﹣1时,y随x的增大而增大;当x>﹣1时,y随x的增大而减小;当x=﹣1时,函数取最大值9,∵x=﹣3与x=1时函数值相等,等于5,∴当﹣4<x<1时,y的取值范围为0<y≤9,故③错误;∵,∴点(m,y1),(﹣m﹣2,y2)关于对称轴x=﹣1对称,∴y1=y2,故④正确;由ax2+(b+1)x+c<2得ax2+bx+c<﹣x+2,即﹣x2﹣2x+8<﹣x+2,画函数y=﹣x2﹣2x+8和y=﹣x+2图象如下:由,∴A(2,0),B(﹣3,5),由图形可得,当x<﹣3或x>2时,﹣x2﹣2x+8<﹣x+2,即ax2+(b+1)x+c<2,故⑤错误;综上,正确的结论为①②④,故答案为:①②④.三、解答题(本大题共8个小题,满分72分)17.(6分)利用课本上的计算器进行计算,按键顺序如下:,若m是其显示结果的【分析】先利用分式的相应的法则对式子进行化简,再根据计算器计算出m的值,代入运算即可.【解答】解:(+)÷=(﹣)•=•=,根据计算器可得m=±=±=±2,∵4﹣2m≠0,∴m≠2,当m=﹣2时,原式==﹣.【点评】本题主要考查分式的化简求值和计算器—数的开方,解答的关键是对相应的运算法则的掌握.18.(7分)“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动.为了解学生参与情况,随机抽取部分学生对研学活动时长(用t表示,单位:h)进行调查.经过整理,将数据分成四组(A组:0≤t<2;B组:2≤t<4;C组:4≤t<6;D组:6≤t<8),并绘制了如下不完整的条形统计图和扇形统计图.(1)请补全条形统计图;(2)扇形统计图中,a的值为32,D组对应的扇形圆心角的度数为28.8°;(3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.【分析】(1)用A组的人数除以它所占的百分比得到调查的总人数,然后求出C组的人数,从而补全统计图;(2)用B组的人数除以总人数,求出a,再用360°乘以D组所占的百分比,从而得出D组对应的扇形圆心角的度数;(3)画树状图展示所有12种等可能的结果数,找出所选的两人恰好是一名男生和一名女生的结果数,然后利用概率公式求解.【解答】解:(1)抽取额的人数有:10÷20%=50(人),C组的人数有:50﹣10﹣16﹣4=20(人),补全统计图如下:D组对应的扇形圆心角的度数为:360°×=28.8°;故答案为:32,28.8°;(3)画树状图为:共有12种等可能的结果数,其中所选的两人恰好是一名男生和一名女生的结果数为8,【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.19.(8分)根据收集的素材,探索完成任务.探究太阳能热水器的安装能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.素材二某市位于北半球,太阳光sin14°≈0.24,cos14°≈0.97,tan14°≈0.25线与水平线的夹角为α,冬至日时,14°≤α≤29°;夏至日时,43°≤α≤76°.sin29°≈0.48,cos29°≈0.87,tan29°≈0.55sin43°≈0.68,cos43°≈0.73,tan43°=0.94sin76°≈0.97,cos76°≈0.24,tan76°≈4.01素材三如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼AB 共11层,乙楼CD 共15层,一层从地面起,每层楼高皆为3.3米.AE 为某时刻的太阳光线.问题解决任务一确定使用数据要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择冬至日(填冬至或夏至)时,α为14°(填14°,29°,43°,76°中的一个)进行计算.任务二探究安装范围利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.【分析】任务一:根据题意直接求解即可;任务二:过E 作EF ⊥AB 于F ,利用正切定义求得.【解答】解:任务一:根据题意,要判断乙楼哪些楼层不能安装该品牌太阳能板,只需α为冬至日时的最小角度,即α=14°,故答案为:冬至,14°;任务二:过E 作EF ⊥AB 于F ,则∠AFE =90°,EF =54米,BF =DE ,在Rt△AFE中,,∴AF=EF•tan14°≈54×0.25=13.5(米),∵AB=11×3.3=36.3(米),∴DE=BF=AB﹣AF=36.3﹣13.5=22.8(米),∴22.8÷3.3≈7(层),答:乙楼中7层(含7层)以下不能安装该品牌太阳能热水器.想法二:题干中说品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装,而冬至日时,14°≤α≤29°,指一天当中的变化,所以任务一选择29°,任务二结果为一、二层不能照到.【点评】本题考查了解直角三角形的应用,理解题意是解答的关键.20.(8分)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”.康宁公司新研发了一批便携式轮椅,计划在该月销售.根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元.设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?【分析】(1)根据单价每降低10元,每天可多售出4辆.可得单价每降低1元,每天可多售出0.4辆,那么单价每降低x元,每天可多售出0.4x辆.销售利润=每辆轮椅的销售利润×(原销售量+增加的销售量),把得到的函数关系式整理为顶点式,进而根据每辆轮椅的利润不低于180元得到自变量的取值范围,代入到函数关系式可得最大利润;(2)取y=12160,代入(1)中得到的函数关系式,求得合适的x的解即可.【解答】解:(1)y=(200﹣x)(60+4×)=﹣0.4x2+20x+12000.=﹣0.4(x2﹣50x+625)+12250=﹣0.4(x﹣25)2+12250.∵200﹣x≥180,∴x≤20.∴当x=20时,利润最大,最大利润为:﹣0.4(20﹣25)2+12250=12240(元).答:y与x的函数关系式为:y=﹣0.4x2+20x+12000;每辆轮椅降价20元时,每天的销售利润最大,最大利润为12240元;(2)12160=﹣0.4(x﹣25)2+122500.4(x﹣25)2=12250﹣121600.4(x﹣25)2=90(x﹣25)2=225.解得:x1=40(不合题意,舍去),x2=10.∴售出轮椅的辆数为:60+4×=64(辆).答:这天售出了64辆轮椅.【点评】本题考查二次函数的应用,一元二次方程的应用,得到降价后的销售量是解决本题的关键;根据取值范围得到函数的最大值是解决本题的易错点.21.(9分)如图,正比例函数y=x与反比例函数y=的图象交于点A(,a).将正比例函数图象向下平移n(n>0)个单位后,与反比例函数图象在第一、三象限交于点B,C,与x轴,y轴交于点D,E,且满足BE:CE=3:2,过点B作BF⊥x轴,垂足为点F,G为x轴上一点,直线BC与BG关于直线BF成轴对称,连接CG.(1)求反比例函数的表达式;(2)求n的值及△BCG的面积.【分析】(1)待定系数法求出反比例函数解析式即可;(2)作BG⊥y轴,CH⊥y轴,正比例函数向下平移n个单位后得到直线BC的解析式为y=x﹣n.证明△GBE∽△HCE后利用相似比得到点B(3a,),则C(﹣2a,),根据一次函数图象上点的坐标特征列出方程组求出a、n,得到E(0,﹣1),D(1,0),B(3,2),G(5,0),C(﹣2,﹣3),=S△BDG+S△CDG计算即可.依据S△BCG【解答】解:(1)∵点A(,a)在直线y=x的图象上,∴A(,),∵点A(,)在反比例函数y=的图象上,∴k=6,∴反比例函数解析式为y=;(2)正比例函数向下平移n个单位后得到直线BC的解析式为y=x﹣n(n>0).如图,作BQ⊥y轴,CH⊥y轴,∴BQ∥CH,∴△QBE∽△HCE,∵BE:CE=3:2,∴,设点B(3m,),则C(﹣2m,),∵点B、C在直线y=x﹣n的图象上,,解得,∴直线BC解析式为y=x﹣1,∵直线BC与BG关于直线BF成轴对称,∴E(0,﹣1),D(1,0),B(3,2),G(5,0),C(﹣2,﹣3),∴GD=4,=S△BDG+S△CDG==10.∴S△BCG【点评】本题考查了反比例函数与一次函数的交点问题,交点坐标满足两个函数解析式是关键.22.(10分)在等腰直角△ABC中,∠ACB=90°,AC=BC,D为直线BC上任意一点,连接AD.将线段AD绕点D按顺时针方向旋转90°得线段ED,连接BE.【尝试发现】(1)如图1,当点D在线段BC上时,线段BE与CD的数量关系为;【类比探究】(2)当点D在线段BC的延长线上时,先在图2中补全图形,再探究线段BE与CD的数量关系并证明;【联系拓广】(3)若AC=BC=1,CD=2,请直接写出sin∠ECD的值.【分析】(1)过点E作EM⊥CB延长线于点M,利用一线三垂直全等模型证明△ACD≌△DME,再证明BM=EM即可;(2)同(1)中方法证明△ACD≌△DME,再证明BM=EM即可;(3)过点E作EM⊥CB,求出EM,CE即可.【解答】解:(1)如图,过点E作EM⊥CB延长线于点M,由旋转得AD=DE,∠ADE=90°,∴∠ADC+∠EDM=90°,∵∠ACB=90°,∴∠ACD=∠DME,∠ADC+∠CAD=90°,∴∠CAD=∠EDM,∴△ACD≌△DME(AAS),∴CD=EM,AC=DM,∵AC=BC,∴BM=DM﹣BD=AC﹣BD=BC﹣BD=CD,∴BM=EM,∵EM⊥CB,∴,故答案为:;(2)补全图形如图,,理由如下:过点E作EM⊥BC于点M,由旋转得AD=DE,∠ADE=90°,∴∠ADC+∠EDM=90°,∵∠ACB=90°,∴∠ACD=∠DME,∠ADC+∠CAD=90°,∴∠CAD=∠EDM,∴△ACD≌△DME(AAS),∴CD=EM,AC=DM,∵AC=BC,∴DM=BC,∴DM﹣CM=BC﹣CM,∴CD=BM,∴EM=BM,∵EM⊥CB,∴;(3)如图,当点D在CB延长线上时,过点E作EM⊥CB延长线于点M,由(2)得DM=AC=1,EM=CD=2,∴CM=CD+DM=3,∴,∴;当点D在BC延长线上时,过点E作EM⊥CB于点M,同理可得:△ACD≌△DME,∴DM=AC=1,ME=CD=2,∴CM=2﹣1=1,∴CE=,∴sin∠ECD=,综上,sin∠ECD=或.【点评】本题考查三角形全等的判定与性质,三角函数,掌握一线三垂直全等模型是解题的关键.23.(11分)如图,AB是⊙O的直径,△ABC内接于⊙O,点I为△ABC的内心,连接CI并延长交⊙O于点D,E是上任意一点,连接AD,BD,BE,CE.(1)若∠ABC=25°,求∠CEB的度数;(2)找出图中所有与DI相等的线段,并证明;(3)若CI=2,DI=,求△ABC的周长.【分析】(1)利用圆周角定理得到∠ACB=90°,再根据三角形的内角和定理求出∠CAB=65°,然后利用圆内接四边形的对角互补求解即可;(2)连接AI,由三角形的内心性质得到内心,∠CAI=∠BAI,∠ACI=∠BCI,然后利用圆周角定理得到∠DAB=∠DCB=∠ACI,AD=BD,利用三角形的外角性质证得∠DAI=∠DIA,然后利用等角对等边可得结论;(3)过I分别作IQ⊥AB,IF⊥AC,IP⊥BC,垂足分别为Q、F、P,根据内切圆的性质和切线长定理得到AQ=AF,CF=CP,BQ=BP,利用解直角三角形求得CF=2=CP,AB=13,进而可求解.【解答】解:(1)∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,又∵∠ABC=25°,∴∠CAB=90°﹣25°=65°,∵四边形ABEC是⊙O内接四边形,∴∠CEB+∠CAB=180°,∴∠CEB=180°﹣∠CAB=115°;(2)DI=AD=BD,连接AI,∵点I为△ABC的内心,∴∠CAI=∠BAI,,∴,∴∠DAB=∠DCB=∠ACI,AD=BD,∵∠DAI=∠DAB+∠BAI,∠DIA=∠ACI+∠CAI,∴∠DAI=∠DIA,∴DI=AD=BD;(3)过I分别作IQ⊥AB,IF⊥AC,IP⊥BC,垂足分别为Q、F、P,∵点I为△ABC的内心,即为△ABC的内切圆的圆心,∴Q、F、P分别为该内切圆与△ABC三边的切点,∴AQ=AF,CF=CP,BQ=BP,∵,∠IFC=90°,∠ACI=45°,∴CF=CI•cos45°=2=CP,∵DI=AD=BD,,∠ADB=90°,∴,∴△ABC的周长为AB+AC+BC=AB+AF+CF+CP+BP=AB+AQ+BQ+2CF=2AB+2CF=2×13+2×2=30.【点评】本题考查了圆周角定理、圆内接四边形的性质、三角形的内角和定理、三角形的内心性质、三角形的外角性质、等腰三角形的判定、切线长定理以及解直角三角形,熟练掌握相关知识的联系与运用是解答的关键.24.(13分)如图,抛物线与x轴交于A,B两点,与y轴交于点C,OC=OA,AB=4,对称轴为直线l1:x=﹣1.将抛物线y1绕点O旋转180°后得到新抛物线y2,抛物线y2与y轴交于点D,顶点为E,对称轴为直线l2.(1)分别求抛物线y1和y2的表达式;(2)如图1,点F的坐标为(﹣6,0),动点M在直线l1上,过点M作MN∥x轴与直线l2交于点N,连接FM,DN,求FM+MN+DN的最小值;(3)如图2,点H的坐标为(0,﹣2),动点P在抛物线y2上,试探究是否存在点P,使∠PEH=2∠DHE?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)由待定系数法即可求解;(2)证明四边形FF′NM平行四边形,则FM+MN+DN=F′N+ND′+MN=F′D′+2=+2=3+2为最小;(3)当点P(P′)在BE的右侧时,∠PEH=2∠DHE,则EP′和HE关对称轴l2对称,求出直线EP′的表达式为:y=2(x﹣1)﹣4,即可求解;当点P在BE的左侧时,由NH=NE,求出N(0,﹣),即可求解.【解答】解:(1)设点A、B的坐标分别为:(t,0)、(t+4,0),则x=﹣1=(t+t+4),解得t=﹣3,即点A、B的坐标分别为:(﹣3,0)、(1,0),∵OC=OA,则点C(0,3),则抛物线y1得表达式为:y1=a(x+3)(x﹣1)=a(x2+2x﹣3),则﹣3a=3,则a=﹣1,则y1=﹣x2﹣2x+3;根据图形的对称性,y2=x2﹣2x﹣3;(2)作点D关于l2的对称点D′(2,﹣3),将点F向右平移2个单位(MN=2),连接D′F′交直线l2于点N,过点N作NM⊥l1交于点M,连接FM,∵F′F∥MN,FF′=MN,则四边形FF′NM平行四边形,则FM=F′N,则FM+MN+DN=F′N+ND′+MN=F′D′+2=+2=3+2为最小;(3)由抛物线y2的表达式知,点D(0,﹣3)、点E(1,﹣4),由点H、E的坐标得,直线HE的表达式为:y=﹣2x﹣2,当点P(P′)在BE的右侧时,∵∠PEH=2∠DHE,则EP′和HE关对称轴l2对称,则直线EP′的表达式为:y=2(x﹣1)﹣4,联立上式和抛物线y2得表达式得:2(x﹣1)﹣4=x2﹣2x﹣3,解得:x=1(舍去)或3,即点P′(3,0);当点P在BE的左侧时,见如图右侧放大图,设直线PE交y轴于点N,∵∠PEH=2∠DHE,过点E(1,﹣4)作∠PEH的角平分线EK交HD于点K,作HE的中垂线JK,交HD于点J,交HE于点L,过点E作EW⊥HD交于点W 则∠JHL=∠JEH=∠EHJ=α,由点H、E的坐标得,直线HE的表达式为:y=﹣2x﹣2,则点L(,﹣3),直线JL的表达式为:y=(x﹣)﹣3=x﹣,则点J(0,﹣),则HJ=JF=,∵∠JHL=∠JEH=∠EHJ=α,∠EKJ=∠HKF,∴△EKJ∽△HKE,则=,设KJ=m,则KE=4m,则点K(0,﹣﹣m),在Rt△KEW中,KW2+WE2=KE2,即(﹣﹣m+4)2+1=4m2,解得:m=,则点K(0,﹣),由点K、E的坐标得,直线KE的表达式为:y=﹣x﹣,联立上式和抛物线的表达式得:x2﹣2x﹣3=﹣x﹣,解得:x=,则点P(,﹣);综上,点P的坐标为:(3,0)或(,﹣).。
2017年山东省烟台市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个正确的.1.(3分)下列实数中的无理数是()A.B.πC.0 D.2.(3分)下列国旗图案是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为()A.4.6×109B.46×108 C.0.46×1010D.4.6×10104.(3分)如图所示的工件,其俯视图是()A.B.C.D.5.(3分)某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°6.(3分)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果应为()A.B.C.D.7.(3分)用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+38.(3分)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是()A.两地气温的平均数相同B.甲地气温的中位数是6℃C.乙地气温的众数是4℃D.乙地气温相对比较稳定9.(3分)如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()A.πB.πC.πD.π10.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m的值为()A.﹣1或2 B.1或﹣2 C.﹣2 D.111.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④12.(3分)如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A.34.14米 B.34.1米C.35.7米D.35.74米二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)30×()﹣2+|﹣2|=.14.(3分)在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.15.(3分)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是.16.(3分)如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是.17.(3分)如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为.18.(3分)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为.三、解答题(本大题共7小题,共66分)19.(6分)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.20.(8分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有人;(2)表中a=,b=;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.21.(9分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用,经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?22.(9分)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度﹣20℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到﹣4℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至﹣20℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录了44min内15个时间点冷柜中的温度y(℃)随时间x(min)的变化情况,制成下表:(1)通过分析发现,冷柜中的温度y是时间x的函数.①当4≤x<20时,写出一个符合表中数据的函数解析式;②当20≤x<24时,写出一个符合表中数据的函数解析式;(2)a的值为;(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当4≤x≤44时温度y随时间x变化的函数图象.23.(10分)【操作发现】(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.24.(11分)如图,菱形ABCD中,对角线AC,BD相交于点O,AC=12cm,BD=16cm,动点N从点D出发,沿线段DB以2cm/s的速度向点B运动,同时动点M从点B 出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为t(s)(t>0),以点M为圆心,MB长为半径的⊙M与射线BA,线段BD分别交于点E,F,连接EN.(1)求BF的长(用含有t的代数式表示),并求出t的取值范围;(2)当t为何值时,线段EN与⊙M相切?(3)若⊙M与线段EN只有一个公共点,求t的取值范围.25.(13分)如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.(1)求抛物线的解析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.2017年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个正确的.1.(3分)(2017•烟台)下列实数中的无理数是()A.B.πC.0 D.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,0,是有理数,π是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)(2017•烟台)下列国旗图案是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•烟台)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为()A.4.6×109B.46×108 C.0.46×1010D.4.6×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:46亿=4600 000 000=4.6×109,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•烟台)如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.(3分)(2017•烟台)某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°【分析】先根据平行线的性质,由AB∥CD得到∠1=∠BAE=45°,然后根据三角形外角性质计算∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠BAE=48°,∵∠1=∠C+∠E,∵CF=EF,∴∠C=∠E,∴∠C=∠1=×48°=24°.故选D.【点评】本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.(3分)(2017•烟台)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果应为()A.B.C.D.【分析】根据2ndf键是功能转换键列式算式,然后解答即可.【解答】解:依题意得:+=.故选:C.【点评】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.7.(3分)(2017•烟台)用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+3【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:∵第一个图需棋子3+3=6;第二个图需棋子3×2+3=9;第三个图需棋子3×3+3=12;…∴第n个图需棋子3n+3枚.故选:D.【点评】本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.(3分)(2017•烟台)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是()A.两地气温的平均数相同B.甲地气温的中位数是6℃C.乙地气温的众数是4℃D.乙地气温相对比较稳定【分析】分别计算出甲乙两地的平均数、中位数、众数和方差,然后对各选项进行判断.【解答】解:甲乙两地的平均数都为6℃;甲地的中位数为6℃;乙地的众数为4℃和8℃;乙地气温的波动小,相对比较稳定.故选C.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数和中位数.9.(3分)(2017•烟台)如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O 交CD于点E,则的长为()A.πB.πC.πD.π【分析】连接OE,由平行四边形的性质得出∠D=∠B=70°,AD=BC=6,得出OA=OD=3,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.【解答】解:连接OE,如图所示:∵四边形ABCD是平行四边形,∴∠D=∠B=70°,AD=BC=6,∴OA=OD=3,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的长==;故选:B.【点评】本题考查了弧长公式、平行四边形的性质、等腰三角形的性质等知识;熟练掌握平行四边形的性质,求出∠DOE的度数是解决问题的关键.10.(3分)(2017•烟台)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m的值为()A.﹣1或2 B.1或﹣2 C.﹣2 D.1【分析】根据根与系数的关系结合x1+x2=1﹣x1x2,即可得出关于m的一元二次方程,解之即可得出m的值,再根据方程有实数根结合根的判别式,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,从而可确定m的值.【解答】解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1•x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,∴2m=1﹣(m2﹣m﹣1),即m2+m﹣2=(m+2)(m﹣1)=0,解得:m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选D.【点评】本题考查了根与系数的关系以及根的判别式,根据根与系数的关系以及x1+x2=1﹣x1x2,找出关于m的一元二次方程是解题的关键.11.(3分)(2017•烟台)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④【分析】由抛物线开口方向得到a>0,然后利用抛物线抛物线的对称轴得到b 的符合,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=﹣2a,加上x=﹣1时,y>0,即a﹣b+c>0,则可对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,而x=﹣1时,y>0,即a﹣b+c>0,∴a+2a+c>0,所以④错误.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数有△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3分)(2017•烟台)如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A.34.14米 B.34.1米C.35.7米D.35.74米【分析】过B作BF⊥CD于F,于是得到AB=A′B′=CF=1.6米,解直角三角形即可得到结论.【解答】解:过B作BF⊥CD于F,∴AB=A′B′=CF=1.6米,在Rt△DFB′中,B′F=,在Rt△DFB中,BF=DF,∵BB′=AA′=20,∴BF﹣B′F=DF﹣=20,∴DF≈34.1米,∴CD=DF+CF=35.7米,答:楼房CD的高度约为35.7米,故选C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•烟台)30×()﹣2+|﹣2|=6.【分析】本题涉及零指数幂、负整数指数幂、绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:30×()﹣2+|﹣2|=1×4+2=4+2=6.故答案为:6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.14.(3分)(2017•烟台)在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.【分析】根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.【解答】解:∵sinA==,∴∠A=60°,∴sin=sin30°=.故答案为:.【点评】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.15.(3分)(2017•烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.【分析】根据运算程序,列出算式:3x﹣6,由于运行了一次就停止,所以列出不等式3x﹣6<18,通过解该不等式得到x的取值范围.【解答】解:依题意得:3x﹣6<18,解得x<8.故答案是:x<8.【点评】本题考查了一元一次不等式组的应用,解题的关键是通过程序表达式,将程序转化问题化为不等式组,难度一般.16.(3分)(2017•烟台)如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B 都在格点上,则点B′的坐标是(﹣2,).【分析】把B的横纵坐标分别乘以﹣得到B′的坐标.【解答】解:由题意得:△A′OB′与△AOB的相似比为2:3,又∵B(3,﹣2)∴B′的坐标是[3×,﹣2×],即B′的坐标是(﹣2,);故答案为:(﹣2,).【点评】本题考查了位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可,注意原图形与位似图形是同侧还是异侧,来确定所乘以的相似比的正负.17.(3分)(2017•烟台)如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为3.【分析】可设点P(m,m+2),由OP=根据勾股定理得到m的值,进一步得到P点坐标,再根据待定系数法可求k的值.【解答】解:设点P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣3(不合题意舍去),∴点P (1,3),∴3=,解得k=3.故答案为:3.【点评】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点P 的坐标,难度不大.18.(3分)(2017•烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB .已知OA=6,取OA 的中点C ,过点C 作CD ⊥OA 交于点D ,点F 是上一点.若将扇形BOD 沿OD 翻折,点B 恰好与点F 重合,用剪刀沿着线段BD ,DF ,FA 依次剪下,则剪下的纸片(形状同阴影图形)面积之和为 36π﹣108 .【分析】先求出∠ODC=∠BOD=30°,作DE ⊥OB 可得DE=OD=3,先根据S 弓形BD =S 扇形BOD ﹣S △BOD 求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.【解答】解:如图,∵CD ⊥OA ,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=OA=OD ,∴∠ODC=∠BOD=30°,作DE ⊥OB 于点E ,则DE=OD=3,=S扇形BOD﹣S△BOD=﹣×6×3=3π﹣9,∴S弓形BD则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,故答案为:36π﹣108.【点评】本题主要考查扇形面积的计算,熟练掌握扇形的面积计算公式及折叠的性质是解题的关键.三、解答题(本大题共7小题,共66分)19.(6分)(2017•烟台)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣)÷===x﹣y,当x=,y=﹣1时,原式==1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(8分)(2017•烟台)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有50人;(2)表中a=10,b=0.16;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.【分析】(1)由B观点的人数和所占的频率即可求出总人数;(2)由总人数即可求出a、b的值,(3)由(2)中的数据即可将条形统计图补充完整;(4)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)总人数=12÷0.24=50(人),故答案为:50;(2)a=50×0.2=10,b==0.16,故答案为:(3)条形统计图补充完整如图所示:(4)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率==.【点评】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)(2017•烟台)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用,经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?【分析】(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据2015年及2017年该品牌足球的单价,即可得出关于x的一元二次方程,解之即可得出结论;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用,比较后即可得出结论.【解答】解:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据题意得:200×(1﹣x)2=162,解得:x=0.1=10%或x=﹣1.9(舍去).答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%.(2)100×=≈90.91(个),在A商城需要的费用为162×91=14742(元),在B商城需要的费用为162×100×=14580(元).14742>14580.答:去B商场购买足球更优惠.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)根据2015年及2017年该品牌足球的单价,列出关于x的一元二次方程;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用.22.(9分)(2017•烟台)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度﹣20℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到﹣4℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至﹣20℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录了44min内15个时间点冷柜中的温度y(℃)随时间x(min)的变化情况,制成下表:(1)通过分析发现,冷柜中的温度y是时间x的函数.①当4≤x<20时,写出一个符合表中数据的函数解析式y=﹣;②当20≤x<24时,写出一个符合表中数据的函数解析式y=﹣4x+76;(2)a的值为﹣12;(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当4≤x≤44时温度y随时间x变化的函数图象.【分析】(1)①由x•y=﹣80,即可得出当4≤x<20时,y关于x的函数解析式;②根据点(20,﹣4)、(21,﹣8),利用待定系数法求出y关于x的函数解析式,再代入其它点的坐标验证即可;(2)根据表格数据,找出冷柜的工作周期为20分钟,由此即可得出a值;(3)描点、连线,画出函数图象即可.【解答】解:(1)①∵4×(﹣20)=﹣80,8×(﹣10)=﹣80,10×(﹣8)=﹣80,16×(﹣5)=﹣80,20×(﹣4)=﹣80,∴当4≤x<20时,y=﹣.故答案为:y=﹣.②当20≤x<24时,设y关于x的函数解析式为y=kx+b,将(20,﹣4)、(21,﹣8)代入y=kx+b中,,解得:,∴此时y=﹣4x+76.当x=22时,y=﹣4x+76=﹣12,当x=23时,y=﹣4x+76=﹣16,当x=24时,y=﹣4x+76=﹣20.∴当20≤x<24时,y=﹣4x+76.故答案为:y=﹣4x+76.(2)观察表格,可知该冷柜的工作周期为20分钟,∴当x=42时,与x=22时,y值相同,∴a=﹣12.故答案为:﹣12.(3)描点、连线,画出函数图象,如图所示.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式、一次(反比例)函数图象上点的坐标特征以及一次(反比例)函数图象,解题的关键是:(1)①根据x、y成反比例,找出函数解析式;②利用待定系数法求出一次函数解析式;(2)根据表格数据找出冷柜的工作周期;(3)描点、连线,画出函数图象.23.(10分)(2017•烟台)【操作发现】(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【分析】(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.【解答】解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,∵∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,∵∠DCF=90°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF,在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.【点评】本题是几何变换综合题目,考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.24.(11分)(2017•烟台)如图,菱形ABCD中,对角线AC,BD相交于点O,AC=12cm,BD=16cm,动点N从点D出发,沿线段DB以2cm/s的速度向点B运动,同时动点M从点B出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为t(s)(t>0),以点M 为圆心,MB长为半径的⊙M与射线BA,线段BD分别交于点E,F,连接EN.(1)求BF的长(用含有t的代数式表示),并求出t的取值范围;(2)当t为何值时,线段EN与⊙M相切?(3)若⊙M与线段EN只有一个公共点,求t的取值范围.【分析】(1)连接MF.只要证明MF∥AD,可得=,即=,解方程即可;(2)当线段EN与⊙M相切时,易知△BEN∽△BOA,可得=,即=,解方程即可;(3)由题意可知:当0<t≤或<t<8时,⊙M与线段EN只有一个公共点;【解答】解:(1)连接MF.。