聚合物结构分析知识点
- 格式:doc
- 大小:268.50 KB
- 文档页数:6
聚合物的结构(计算题:均方末端距与结晶度)1.简述聚合物的层次结构。
答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。
一级结构包括化学组成、结构单元链接方式、构型、支化与交联。
二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。
三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。
构型:是指分子中由化学键所固定的原子在空间的几何排列。
(要改变构型,必须经过化学键的断裂和重组。
)高分子链的构型有旋光异构和几何异构两种类型。
旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。
)。
全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。
构象:原子或原子基团围绕单键内旋转而产生的空间分布。
链段:把若干个键组成的一段链作为一个独立运动的单元链节(又称为重复单元):聚合物中组成和结构相同的最小单位高分子可以分为线性、支化和交联三种类型。
其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。
但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。
交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。
高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。
单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。
1.1 聚合物结构的三个层次近程结构——系指单个大分子链内部一个或几个结构单元的化学结构和立体化学结决定聚合物性能的根本性物质基础,亦是决定远程结构和凝聚态结构的重要因素。
远程结构——系指由数目众多的结构单元组成的单个大分子链的长短及其在空间存在的各种形态(是直链还是有支链?是刚性的还是柔性的?是折叠状,还是螺旋状的?)。
凝聚态结构——系指聚合物在宏观上所表现出的分子凝聚结构类型。
包括非晶态、结晶态、 取向态、液晶态、织态结构,前四个描述是聚合物的堆砌方式,织态为不同聚合物分子链或与添加剂间的结合和堆砌方式,以结晶态和非晶态最常见。
分子链结构是决定聚合物性质最基本、最重要的结构层次。
熔点、密度、溶解性、溶液或熔体的粘度、粘附性能很大程度上取决于分子结构;而凝聚态结构是决定聚合物材料和制品的使用性能,尤其是力学性能的重要因素。
关于化学结构与物理结构的确切划分,普遍认同的是 H.G.Elias 提出的界定原则:化学结构:除非通过化学键的断裂,即同时生成新的化学键才能够产生改变的分子结构。
聚合物结构中所包括的结构单元的组成及其空间构型属于化学结构。
物理结构:将大分子内部、之间或者基团与大分子之间的形态学表述。
取向、结晶和分子链的构象则属于物理结构 1.2 大分子链的近程结构大分子链的近程结构包括结构单元的化学组成,连接方式、结构异构、立体异构、以及共聚物的序列结构等五个主要方面。
1.2.1 结构单元的化学组成结论1:聚合物的近程结构,即结构单元的化学组成和结构是决定其远程结构和凝聚态结构以及聚合物性能最重要的决定性因素。
尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三条主要规律:1)杂链聚合物(多为缩合聚合物)与碳链聚合物(多为加成聚合物)相比较,前者的各项物理性能均优于后者; 2)在碳链聚合物中,侧基带有极性基团的PVC 和带有苯基的PS 的相对密度和熔点均高于非极性和低位阻侧基的PE 和PP ; 3)缩聚物尼龙和涤纶等的相对密度、熔点、强度和使用温度均普遍高于一般加聚物。
一、名字解释1、红外光谱中基因特征频率:通过把各种化合物的谱图对比发现,具有相同官能团的一系列化合物近似有一个共同的吸收频率范围,通常把这种能代表某种基团存在并有较高强度的吸收峰,称为基团的特征吸收峰。
这个峰所在的频率位置称为基团的特征吸收频率。
2、官能团区:在红外光谱中,通常划分两个主要的区域,在1300—4000cm-1范围内,基团和频率的对应关系比较明确,对于确定化合物中的官能团很有帮助,这个区域称为官能团区。
3、指纹区:在400-1300cm-1范围内,谱图上会出现许多的谱带,其特征归属不完全符合规律,但是一些同系物或者结构相近的化合物,在这个区域的谱带往往存在一定的区分,可以加以区别,如同人的指纹,因此通常被形象地称为指纹区4、透过率:记录原始光强在通过样品后透过光的强度变化百分比5、吸光度:记录样品吸收的红外光强度6、红外二向色性:当红外光通过偏振器后,得道电矢量只有一个方向上的偏振光。
这束光入射到取向的聚合物材料上,当基团振动的偶极距变化的方向与偏振光电矢量方向平行时,产生最强的吸收强度;反之如果二者垂直,则产生最小的吸收(几乎不产生吸收),这种现象称为红外二向色性。
7、衰减全反射:当光线由折射率高的晶体(光密介质)入射到折射率低的晶体(光疏介质)时,如果入射角大于临界角,光线在界面上发生反射,光线在界面上穿透一定的深度反射回来,如果界面上的物质对入射的光线有吸收,则反射的光能量就会发生衰减,这种现象被称为衰减全反射。
8、光声效应:物质吸收一定频率的光能后,由激发态通过非辐射过程跃迁到低能态时,会产生同频率的声波(光声信号),这种效应即为光声效应。
9、拉曼散射:拉曼散射为散射光谱,当一束频率为v0的入射光照射到气体、液体或透明晶体样品上时,绝大部分可以透过,大约有0.1%的入射光与样品分子之间发生非弹性碰撞,即在碰撞时有能量交换,这种光散射称为拉曼散射。
10、瑞利散射:若发生弹性碰撞,即俩者之间没有能量交换,这种光散射称为瑞利散射。
高分子物理知识点高分子物理是研究聚合物分子在物理场中的行为和性质的学科。
聚合物是由一些单体分子通过化学键结合而成的巨大分子,其分子量多数达到百万或以上。
高分子物理的研究范围主要包括聚合物的物理结构、热力学性质、电学性质、机械性质、输运性质、光学性质等方面。
一、聚合物的物理结构聚合物的物理结构是指聚合物高分子链的构象状态。
聚合物高分子链的构象状态受到其化学结构、聚合反应的条件、处理温度等多种因素的影响。
根据高分子链形态的不同,可将聚合物的物理结构分为直线型、支化型和交联型。
1. 直线型聚合物物理结构直线型聚合物是高分子链结构较为简单、规则的聚合物。
它通常由一根直线型链构成,其中的结构单元重复出现,链端没有分支或交联结构。
高分子的线密度、分子量和分子结构对其物理性质有很大的影响。
2. 支化型聚合物物理结构支化型聚合物指非直线型、分子链有分支结构的聚合物。
分支结构对于聚合物的物理性质有很大的影响,由于支化结构的存在,使得聚合物高分子链的平均距离更大,聚合物的分子间距离变大,导致其性能发生变化。
支化型聚合物化学结构和分支类型的不同,会对聚合物的物理性质产生巨大的影响。
3. 交联型聚合物物理结构交联型聚合物是由互相交联的高分子链构成的聚合物。
它们通常具有三维结构,分子间有交联点连接。
交联型聚合物的物理性质比支化型聚合物更为复杂。
不同交联密度、交联桥、交联方式等会对其物理性质产生很大的影响。
二、热力学性质聚合物的热力学性质主要包括相变、热力学函数、相平衡、玻璃化转变等方面。
1. 相变相变是指物质从一个物理状态到另一个物理状态的变化。
聚合物相变通常指聚合物高分子间和高分子和外界环境间的相变。
聚合物的相变通常与聚合物的物理结构、温度和压强等相关。
2. 热力学函数热力学函数是描述物质宏观性质的基本物理量,它包括熵、焓、自由能等,具体热力学函数的选择取决于所研究的问题和体系。
3. 相平衡聚合物在不同温度和压强下处于不同的相态平衡中,可以通过研究相平衡来揭示聚合物的热力学性质。
聚合物的结构和性质聚合物是由许多单体分子连接而成的高分子化合物。
聚合物的结构相对复杂,包括链状、分支、交联以及网络结构。
这种复杂的结构赋予了聚合物独特的性质和用途。
1. 链状聚合物链状聚合物是由相同的单体分子连接而成的长链分子。
其分子链可以通过键键相连,形成线性链、弯曲链以及环状链等不同形态。
链状聚合物具有以下性质:(1) 高分子量:由于链状聚合物是由若干单体分子连接而成的,其分子量往往会非常大。
(2) 高分子稳定性:由于分子链往往是线性或弯曲的,相对稳定。
链状聚合物的热稳定性、化学稳定性等均较为优异。
(3) 高分子合成方便:链状聚合物的合成方法较为简单,容易掌握,重复性、扩展性较强。
2. 分支聚合物分支聚合物是由一个或几个核心结构上连接若干单体分子而形成的。
分支聚合物具有以下性质:(1) 分子体积大:由于分支结构紧密,空隙较小,其分子体积往往较大。
(2) 分子构造复杂:分支聚合物的结构通常是分子核心 + 分子支链,有些还包含有分子夹层等结构。
分支聚合物的结构复杂度相对较高。
(3) 物理性能特别:由于分支聚合物分子内部空间充足,分子间相互作用力较弱。
因此分支聚合物的物理性能常常非常特别,如超高分子材料等。
3. 交联聚合物交联聚合物是由可交联单体或可交联化合物单体所制备的高分子材料。
交联聚合物具有以下性质:(1) 耐火性和耐化学性较好:交联聚合物通常结构致密,交联度较高。
因此其耐火性和耐化学性均优异。
(2) 物理性质均匀:交联聚合物结构致密,分子间相互作用较强。
相当于是一个三维网状结构,物理性质较均匀。
(3) 生物相容性较差:交联聚合物一般具有化学反应性,因此在生物系统中应用较为有限。
4. 网络聚合物网络聚合物也称为化学凝胶,是由高分子单体经过交联反应在溶液或固态中形成的凝胶式高分子材料。
网络聚合物具有以下性质:(1) 密闭性极强:网络聚合物分子间交联后,形成一种网络结构,因此密闭性非常强。
(2) 可逆性预留时间较长:由于网络聚合物结构化学性质非常稳定,因此可逆性预留时间通常较长。
一、名字解释1、红外光谱中基因特征频率:通过把各种化合物的谱图对比发现,具有相同官能团的一系列化合物近似有一个共同的吸收频率范围,通常把这种能代表某种基团存在并有较高强度的吸收峰,称为基团的特征吸收峰。
这个峰所在的频率位置称为基团的特征吸收频率。
2、官能团区:在红外光谱中,通常划分两个主要的区域,在1300—4000cm-1范围内,基团和频率的对应关系比较明确,对于确定化合物中的官能团很有帮助,这个区域称为官能团区。
3、指纹区:在400-1300cm-1范围内,谱图上会出现许多的谱带,其特征归属不完全符合规律,但是一些同系物或者结构相近的化合物,在这个区域的谱带往往存在一定的区分,可以加以区别,如同人的指纹,因此通常被形象地称为指纹区4、透过率:记录原始光强在通过样品后透过光的强度变化百分比5、吸光度:记录样品吸收的红外光强度6、红外二向色性:当红外光通过偏振器后,得道电矢量只有一个方向上的偏振光。
这束光入射到取向的聚合物材料上,当基团振动的偶极距变化的方向与偏振光电矢量方向平行时,产生最强的吸收强度;反之如果二者垂直,则产生最小的吸收(几乎不产生吸收),这种现象称为红外二向色性。
7、衰减全反射:当光线由折射率高的晶体(光密介质)入射到折射率低的晶体(光疏介质)时,如果入射角大于临界角,光线在界面上发生反射,光线在界面上穿透一定的深度反射回来,如果界面上的物质对入射的光线有吸收,则反射的光能量就会发生衰减,这种现象被称为衰减全反射。
8、光声效应:物质吸收一定频率的光能后,由激发态通过非辐射过程跃迁到低能态时,会产生同频率的声波(光声信号),这种效应即为光声效应。
9、拉曼散射:拉曼散射为散射光谱,当一束频率为v0的入射光照射到气体、液体或透明晶体样品上时,绝大部分可以透过,大约有0.1%的入射光与样品分子之间发生非弹性碰撞,即在碰撞时有能量交换,这种光散射称为拉曼散射。
10、瑞利散射:若发生弹性碰撞,即俩者之间没有能量交换,这种光散射称为瑞利散射。
11、斯托克斯线:在拉曼散射中,若光子把一部分能量给样品分子,得道的散射光能量减少,在垂直方向测量到的散射光中,可以检测频率为v0—△E/h的线,称为斯托克斯线,如果他是红外活性的话,△E/h 的测量值与激发该振动的红外频率一致12、反斯托克斯线:若光子从样品分子中获得能量,在大于入射光线频率处接收到的射线,则称为反斯托克斯线。
13、拉曼位移:斯托克斯线或反斯托克斯线与入射光频率之差为拉曼位移。
14、核磁共振:处于静磁场中的核自旋体系,当其拉莫尔运动频率与作用于该体系的射频场频率相等时。
所发生的吸收电磁波的现象称为核磁共振。
15、拉莫尔进动:在磁场中,自转核的赤道平面也因受到力矩作用而发生偏转,其结果是核磁距绕着磁场方向转动,这就称为拉莫尔运动。
16、NMR中的屏蔽作用:当原子核处于外磁场中时,核外电子运动要产生感应磁场,核外电子对原子核的这种作用就是屏蔽作用。
17、化学位移:当共振频率发生了变化,在谱图上反映出了谱峰位置的移动,这称为化学位移。
18、耦合常数:通过成键电子间的传递,形成相离质子之间的自旋—自旋耦合,而导致自旋—自旋分裂。
分裂峰之间的距离称为耦合常数。
19、动态力学热分析:测量材料在一定温度范围内动态力学性能的变化。
从分子运动和变化的角度看蠕变过程包括三种形变:普弹形变、高弹形变、塑性形变20、普弹形变:当高分子材料受到应力作用时,分子链内部键长和链角立刻发生变化,这种变化是很小的,称为普弹形变。
21、高弹形变:当外力作用时间和链段运动所需要的松弛时间有相同的数量级时,链段的热运动和链段间的相对滑移使卷曲的分子链逐渐伸展开来,这种形变值很大,称为高弹形变。
22、塑性形变:如果分子间没有化学交联,当外力作用时间与整个分子链的松弛时间有相同的数量级时,则会产生分子间的相对滑移,称为塑性形变。
23、损耗因子:损耗角正切.24、吸收衬度:高分子电镜图像的衬度主要是吸收衬度,取决于样品各处参与成像的电子数目的差别,电子数目越多,散射越厉害,透射电子就越少,从而图像越暗。
25、表面形貌衬度:主要是样品表面的凹凸决定的。
26、原子序数衬度:指扫描电子束入射式样时产生的背景电子、吸收电子、X射线,对微区内原子序数的差异相当敏感,而二次电子不敏感。
27、焦深:焦深大意味着能使不平整性大的表面上下都能聚焦。
二、填空及解答1、聚合物的取向度、结晶度、交联度、本体粘流行为分别可以用哪些方法来测试测定取向度的方法有双折射法、X射线衍射、圆二色性法、红外二色性法;测定结晶度的方法有X射线衍射法、电子衍射法、核磁共振吸收、红外吸收光谱、密度法、热分析法;测定交联度的方法有溶胀法、力学测量法;测定本体粘流行为有旋转粘度计、熔融指数测定仪、各种毛细管流变仪。
3、多晶X射线衍射仪在聚合物结构分析中有哪些应用物相分析、结晶度测定、取向测定、晶粒尺寸测定。
4、聚合物相对分子质量的测定方法有哪些?分别可以测定哪些类型的分子量相对分子质量的测定方法有溶液光散射法、凝胶渗透色谱法、粘度法、扩散法、溶液激光小角散射法、沸点升高法、端基滴定法。
相对分子质量分布的测定有凝胶渗透色谱、熔体流变行为、分级沉淀法、超速离心法。
绝对数均:端基滴定法、沸点升高法、气相渗透压法、、渗透压法、扩散法、凝胶渗透色谱法、绝对质均:溶液光散射法、溶液激光小角散射法、超速离心法、凝胶渗透色谱法、黏均相对分子量:粘度法、凝胶渗透色谱法、5、要记住羟基及羰基在红外光谱中出现的波数范围羟基在红外光谱中出现的波数范围:3200—3650cm-1羰基在红外光谱中出现的波数范围:1650—1900cm-16、要会用氢谱推测简单化合物的结构。
注意积分面积比、位移峰分裂数目、及位移大小。
1H-NMR谱图可以给我们提供的主要信息是:①化学位移值-确认氢原子所处的化学环境,即属于何种基团②耦合常数-推断相邻氢原子的关系与结构③吸收峰的面积-确定分子中各类氢原子的数量比7、要知道可以根据哪些性能的变化来研究聚合物的分子运动,都有哪些仪器。
主要有四种类型:体积的变化、热力学性质、力学性质的变化、电磁效应测定体积的变化包括膨胀计法、折射系数测定法测定热力学性质的方法包括差热分析方法、差示扫描量热法测定力学性质的变化的方法包括热机械法、应力松弛法测定电磁效应的方法包括测定介电松弛、核磁共振。
8、紫外和红外在化合物定性和定量分析中有哪些优劣定性分析:由于高分子的紫外吸收峰通常只有2~3个,且峰形平稳,因此他的选择性远不如红外光谱。
而且紫外光谱主要决定于分子中发色和助色基团的特性,而不是整个分子的特性,所以紫外吸收光谱用于定性分析不如红外光谱重要和准确。
因为只有具有重键和芳香共轭体系的高分子才有紫外活性,所以紫外光谱能测定出的高分子种类受到很大局限,不过利用紫外光谱很容易将具有特征官能团的高分子与不具特征官能团的高分子相区别开来。
定量分析:紫外光谱法的吸收强度比红外光谱法大的多,红外的ε值很少超过103,而紫外的ε值最高可达104~105,紫外光谱法的灵敏度(10-4~10-5mol/L),测量准确度高于红外光谱法;紫外光谱法的仪器也比较简单,操作方便。
紫外光谱法很适合研究共聚组成、微量物质和聚合反应动力学。
9、用光散射如何标定聚合物粘度方程中参数κ和α的标定:Mkαγη=][两边对数lg[η]=lgκ+αlg Mγ聚合物的α值一般都在0.5~0.8之间,所以聚合物的质均相对分子质量与黏均相对分子质量比较相近。
配置一系列单分散性的样品,用光散射法依次测定其值均相对分子质量,近视认为是黏均相对分子质量,用黏度法测定其黏度,以lg[η]~lg Mγ做图,可以得到一条直线,外推直线得截距lgκ和斜率α。
10、用X射线发如何对聚合物进行物组分析X射线衍射物相分析的工作程序有两种:一、实验得到样品的衍射,然后将之与已知物相在相同实验条件下的衍射图直接比较,根据峰位、相对强度、样品结构已知信息等判别待定物相。
二、实验得到待定样品的衍射图,求出各衍射峰对应的面间距d i,然后结合各峰相对强度I i/I0及试样结构已知信息等,在汇编标准中用d i—I i/I0。
对照检索,定识物相。
基本内容包括:区分晶态与非晶态、聚合物鉴定、识别晶体类型。
11、哪些因素会影响聚合物的DSC曲线?是如何影响的影响因素有:样品量-样品量少,样品的分别率高,但灵敏度下降,一般根据样品热效应大小调节样品量,一般3~5mg。
升温速率-通常升温速率范围在5~20℃/min。
一般来说,升温速率越快,灵敏度提高,分别率下降。
气氛-一般使用惰性气体,这样不会产生氧化反应峰,同时又可减少试样挥发物对检测器的腐蚀。
12、举出至少三种判定俩种聚合物是形成了共聚物或是共聚物的方法,如何判定DSC测定玻璃化转变温度Tg,如果是共混物会出现两个Tg,而共聚物只有一个。
DMA动态力学分析,用Tg~~TG失重曲线:共聚物的热稳定性介于俩种均聚物热稳定性之间,而且随组成比的变化而变化;而共混物的TG曲线,各组分的失重温度没有太大变化,各组分失重量是各组分纯物质的失重量乘以百分量叠加的结果。
13、举出至少三种判定两三种聚合物相容性好坏的方法,如何判定DSC法:测定俩种聚合物的玻璃化温度,对共混体系只观察到单一的Tg其值介于纯组分之间,则可认为构成共混物的组分是相容的;反知DMA:测定聚合物的玻璃化温度Tg偏光显微镜P216红外光谱法14、要知道凝胶渗透色谱的原理。
凝胶渗透色谱中为什么要进行普适校正。
如何进行普适校正。
GPC对分子链进行分级的原理为体积排除。
忽略了溶质和载体之间的吸附效应以及高分子在流动相和固定相之间的分配效应,假设淋出体积仅仅是由高分子的分子尺寸和载体尺寸的大小决定。
当高分子稀溶液通过多孔性凝胶固定相时,大尺寸高分子不能进到凝胶空洞中而被完全排阻,只能沿着多孔凝胶粒子之间的空隙通过色谱柱,首相从柱中被流动相脱出来;中等大小分子能进入凝胶中的一些空洞中,但不能进入更小的微孔,在色谱中受到滞留,较慢的从色谱柱中被洗脱出来;小分子可进入凝胶的绝大部分孔洞,在柱中受到更强的滞留,会更慢的被洗脱出来。
在使用校正曲线进行相对分子质量计算时,理论上要求被测聚合物与标样具有相同的化学组成、化学结构及组装结构。
实际上很难做到,能够得到标准样品的聚合物种类非常有限,这时就需要使用普适校正。
普适校正的原理是GPC对聚合物分子的分离是基于分子流体力学体积的排除。
对于相同的分子流体力学体积,在同一个保留时间流出,即俩种柔性高分子链的流体力学体积相等。
其数学表达式为[n]1M r,1=[n]2M r,2 依据M-H方程Mkαγη=][得到12,211,1++=αγαγMKMK然后查阅进行普适校正计算,对于不能查到的κ、α的聚合物,可以通过使用黏度-光散射-示差检测器联用进行测量。