河南省南阳市2016届高三上学期期中质量评估数学(文)试卷
- 格式:doc
- 大小:482.50 KB
- 文档页数:8
河南省南阳市2023-2024学年高一下学期4月期中质量评估数学试题一、单选题1.与角20244'-o 终边相同的角是( ) A .4044'-oB .2244'-oC .31556'oD .67556'o2.已知()1,2A ,()4,3B ,(),6C x ,若AB AC ∥u u u r u u u r,则x =( ) A .10B .11C .12D .133.在扇形AOB 中,2AOB ∠=,弦2AB =,则扇形AOB 的面积是( ) A .1sin1B .()21sin1 C .sin1D .()2sin14.在梯形ABCD 中,90BAD CDA ∠=∠=︒,5AD =,则AD BC ⋅=u u u r u u u r( )A .25B .15C .10D .55.在ABC V 与111A B C △中,已知11111π,3AB A B x BC B C C C =====,若对任意这样两个三角形,总有111ABC A B C ≅△△,则( )A .30,2x ⎛⎤∈ ⎥⎝⎦B .(x ∈C .)x ∞∈+D .)32x ∞⎧⎫∈+⋃⎨⎬⎩⎭6.小娟,小明两个人共提一桶水匀速前进,已知水和水桶总重力为G u r,两人手臂上的拉力分别为1F u u r ,2F u u r ,且12F F =u u r u u r ,1F u u r 与2F u u r 的夹角为θ,下列结论中正确的是( )A .θ越小越费力,θ越大越省力B .始终有122G F F ==ru u r u u rC .当2π3θ=时,1F G =u u r r D .当π2θ=时,1F G =u u r r7.若π,,0,2αβθ⎛⎫∈ ⎪⎝⎭,且c o s t a n αα=,cos ββ=,cos sin θθ=,则α,β,θ的大小是( )A .αθβ<<B .αβθ<<C .βαθ<<D .βθα<<8.已知()()sin f x x ωϕ=+,其中0ω>,0πϕ<<.其部分图象如下图,则π6f ⎛⎫= ⎪⎝⎭( )A .1-B .C .12-D .二、多选题9.下列等式恒成立的是( ) A .()sin πsin αα+=B .πcos sin 2αα⎛⎫-= ⎪⎝⎭C .3πsin cos 2αα⎛⎫-+= ⎪⎝⎭D .()tan πtan αα+=-10.已知向量()1,2a =r,2b =r ,a b +=r r )A .a r 在b r 上的投影数量是12-B .b r 在a r 上的投影向量是⎛ ⎝⎭C .a r 与b rD .()4a b b +⊥r r r11.设函数f x =A sin ωx +φ (其中0A >,0ω>,π0ϕ-<<),若()f x 在ππ,62⎡⎤⎢⎥⎣⎦上具有单调性,且π5ππ266f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭)A .2A =B .23ω=C .π2ϕ=-D .当π3π,64x ⎡⎤∈-⎢⎥⎣⎦时,()f x ⎡∈-⎣ 12.在ABC V 中,2AB =,3AC =,60BAC ∠=︒,则( )A .ABC V 的周长是5B .BCC .BCD .BC三、填空题13.若[]0,2πx ∈,满足条件sin cos 0x x +>的x 的集合是.14.将函数1sin 22y x =的图象上各点向左平移π3个单位长度,再把横坐标缩短为原来的13,得到的图象的函数解析式是.15.已知5πsin 3α⎛⎫-= ⎪⎝⎭19πcos 6α⎛⎫-=⎪⎝⎭. 16.在ABC V 中,D 为BC 边上的任一点,若1cos 3B =,22AB AD BD DC =+⋅,则sin C =.四、解答题17.如图,以Ox 为始边作角α与π0π2ββα⎛⎫<<<< ⎪⎝⎭,它们的终边分别与单位圆相交于点P ,Q ,已知点Q 的坐标为x ⎛ ⎝⎭.(1)求2sin 5cos 3sin 2cos ββββ+-的值;(2)若OP OQ ⊥,求P 的坐标.18.如图,在平行四边形ABCD 中,点M 为AB 中点,点N 在BD 上,3BN BD =.(1)设AD a =u u u r r ,AB b =u u u r r ,用a r ,b r 表示向量u u u rNC ; (2)求证:M ,N ,C 三点共线.19.(1)已知()1,0A -,()0,2B ,求满足5AB AD ⋅=u u u r u u u r,210AD =u u u r 的点D 的坐标;(2)设a r ,b r 为单位向量,且12a b ⋅=-r r ,向量c r 与a b +r r 共线,求b c +r r 的最小值.20.在锐角ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2c B a b =-. (1)求C ;(2)若5b =,c =ABC V 的面积.21.已知()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在5,612ππ⎛⎫ ⎪⎝⎭上是单调函数,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称,且对任意的x ∈R ,都有()512f x f π⎛⎫≤ ⎪⎝⎭. (1)求()f x 解析式;(2)若函数()()()g x f x m m =-∈R 在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个零点1x ,2x ,求()12f x x +的值.22.已知a ,b ,c 分别为ABC V 中角A ,B ,C 的对边,G 为ABC V 的重心,AD 为BC 边上的中线.(1)若ABC V 60CGD ∠=o ,1CG =,求AB 的长; (2)若GB GC ⊥,求cos BAC ∠的最小值.。
2023-2024学年河南省南阳市高三上学期期中联考数学试题✽一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个集合中,是空集.( )A. B. ,且C. D.2.命题“,”的否定为( )A. ,B. ,C. ,D. ,3.若复数z满足,则( )A. B. 2 C. D. 4i4.公比不为1的等比数列满足,若,则m的值为( )A. 8B. 9C. 10D. 115.若函数有两个零点,则实数a的取值范围为( )A. B. C. D.6.已知,,,则( )A. B.C. D.7.已知a,b,c分别为的三个内角的对边,若点P在的内部,且满足,则称P为的布洛卡点,称为布洛卡角.布洛卡角满足:注:则( )A. B. C. D.8.已知在上单调递减,则实数a的取值范围为( )A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下图是函数的部分图像,则( )A. B. C. D.10.已知是数列的前n项和,,则( )A.是等比数列 B. C. D.11.设,若,则的值可能为( )A. B. C. 1 D. 212.设,若为函数的极小值点,则下列关系可能成立的是( )A. 且B. 且C. 且D. 且三、填空题:本题共4小题,每小题5分,共20分。
13.一个正实数的小数部分的2倍,整数部分和自身成等差数列,则这个正实数是__________.14.四边形ABCD中,,,BD是四边形ABCD的外接圆的直径,则__________.15.奇函数满足,,则__________.16.互不相等且均不为1的正数a,b,c满足b是a,c的等比中项,则函数的最小值为__________.四、解答题:本题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
17.本小题10分设数列为等差数列,其前n项和为,数列为等比数列.已知求数列和的通项公式;求数列的前n项和18.本小题12分已知函数,其中,若实数满足时,的最小值为求的值及的单调递减区间;若不等式对任意时恒成立,求实数a应满足的条件.19.本小题12分记为数列的前n项和.已知证明:是等差数列;若,,成等比数列,求数列的前2024项的和.20.本小题12分在中,角A,B,C的对边分别为a,b,c,且满足_____.从以下两个条件中任选一个补充在上面横线上作为已知,将其序号写在答题卡的横线上并作答条件①:条件②:求角A;若为锐角三角形,,求面积的取值范围.21.本小题12分已知函数,,曲线在点处的切线也是曲线的切线.若,求求a的取值范围.22.本小题12分已知函数,判断函数的单调性并证明;设n为大于1的整数,证明:答案和解析1.【答案】B【解析】【分析】本题考查了学生对空集的理解,属于基础题.根据空集的定义求解即可.【解答】解:对于选项A,含有一个元素0,不是空集;对于选项B,小于且大于2的实数不存在,因此,且为空集;对于选项C,,含有一个元素,不是空集;对于选项D,是无限集,不是空集.故本题选:2.【答案】A【解析】【分析】本题考查全称量词命题与存在量词命题,属于基础题.存在量词命题的否定为全称量词命题,据此得到答案.【解答】解:命题“,”的否定为“,”.故选:A3.【答案】D【解析】【分析】本题主要考查复数的除法运算,考查共轭复数,属于基础题.根据复数的除法运算法则,求得z,进一步计算即可.【解答】解:因为,所以,,则,故选:4.【答案】C【解析】【分析】本题主要考查等比中项,属于基础题.根据等比数列的性质列方程求得m的值.【解答】解:依题意,数列是等比数列,且公比,,,所以 .故选:C5.【答案】C【解析】【分析】本题主要考查函数零点与方程根的个数问题,属于中档题.利用函数有零点等价于对应方程有实根,通过换元将其转化成一元二次方程的根的问题即可求得.【解答】解:由函数有两个零点可知,方程有两个不相等的实根.不妨设则,依题意可知方程有两个不相等的正实根,故有,解得即实数a的取值范围为故选:6.【答案】D【解析】【分析】本题主要考查指数函数图象与性质比较大小,考查三角函数值域,属于中档题.由,得到,再利用指数函数和幂函数的单调性求解.【解答】解:因为,所以,所以,所以,即,故选:7.【答案】B【解析】【分析】本题主要考查正弦定理及变形,考查诱导公式等,属于中档题.结合图象,求得,,分别在,,中利用正弦定理可求得,,,三数相加化简即可.【解答】解:如图所示,,故,同理,,在中,由正弦定理得:,即,所以,在中同理可得:,在中同理可得:,所以,故选:8.【答案】A【解析】【分析】本题考查了利用导数解决函数单调性问题,属于较难题.利用必要性探路得到,再证明充分性可以避免繁琐的讨论,简化运算,是解题的关键.确定在上恒成立,根据得到,再证明充分性,,设,求导得到单调区间,计算最值得到证明.【解答】解:,在上恒成立,设,,,①必要性:,恒成立,故,故,若,则存在,使时,,单调递增,,不满足条件;②充分性:,,设,在恒成立,故单调递减,,故恒成立,综上所述: .故选:9.【答案】BC【解析】【分析】本题主要考查了利用三角函数图象求三角函数的解析式,也考查了诱导公式的灵活应用,属于基础题.首先利用周期确定的值,然后确定的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【解答】解:由函数图像可知:,则,所以排除选项A,当时,,解得:,即函数的解析式为:而,故选项D项不正确.故选:10.【答案】ABD【解析】【分析】本题考查等比数列的判断或证明,等比数列的通项公式,前n项和公式,等比中项等问题,属于中档题.利用递推关系求得,逐项验证即可.【解答】解:因为,①当时,则,当时,,②① - ②得,则,故是以1为首项,公比为的等比数列,且,故A正确;又,故B正确;,故C错误;由题中,,故D正确,故选:11.【答案】BC【解析】【分析】本题考查一元二次方程的解集问题,属于中档题.根据题意,由判别式法即可得到的范围,从而得到结果.【解答】解:令,则,代入可得,,关于x的方程有解,则,解得,所以,则BC选项符合题意.故选:12.【答案】AC【解析】【分析】本题考查利用导数根据极值点求参,属于较难题.根据题意,求得,结合函数极值点的定义,分类讨论,列出不等式,即可求解.【解答】解:由函数,可得,令,可得或,要使得为函数的极小值点,当时,则满足,解得,所以A正确;当时,则满足,解得,所以C正确.故选:13.【答案】或【解析】【分析】本题主要考查等差中项问题,属于基础题.根据等差数列的知识列方程,化简求得这个正实数.【解答】解:设这个正实数的小数部分是,整数部分是y,自身是,则,所以,由于,,当时,;当时,;当时,,不符合.综上所述,这个正实数是或 .故答案为:或14.【答案】【解析】【分析】本题主要考查向量数量积的运算,属于中档题.根据圆内接四边形的性质及数量积的定义即可求解.【解答】解:依题意:,故答案为:15.【答案】【解析】【分析】本题主要考查利用函数的奇偶性求函数值,考查函数的周期性,属于中档题.根据奇函数得到,确定函数周期为 6 ,计算得到答案.【解答】解:奇函数满足,则,,故,函数周期为 6 ,.故答案为: .16.【答案】4【解析】【分析】本题考查等比中项,利用基本不等式求取值范围,属于较难题.先根据条件:成等比数列,得到的关系,再用基本不等式求的最小值.【解答】解:是的等比中项,,是互不相等且均不为1的正数,, ..因为是互不相等且均不为1的正数,所以上式只能在,,时,即时取等号.故答案为:17.【答案】解:设等差数列的公差为d,等比数列的公比为q,由可得,即,解得,所以,,,,则;,则①,可得②,① - ②得:,因此, .【解析】本题考查等差、等比数列的基本计算,错位相减法求和,考查运算求解能力,是中档题.设等差数列的公差为d,等比数列的公比为q,根据题意,列方程求解即可得答案;根据错位相减法求和即可.18.【答案】解:由题意,函数,因为实数满足时,的最小值为,所以的最小正周期,解得,所以,由,解得,所以的单调递减区间为由,因为,可得,令,则,所以,,即,即,令,可得,又由函数在为递减函数,所以,所以,解得,即实数a的取值范围是【解析】本题考查三角恒等变换的综合应用,三角函数的图象与性质,对勾函数的图象与性质,属于较难题.化简为,结合最小正周期求得,得到,结合三角函数的性质,即可求解函数的单调递减区间;化简,令,得到,结合函数的性质,即可求解.19.【答案】解:证明:,即①,当时,②,① - ②得,,即,即,所以,且,所以是以1为公差的等差数列.,,,,成等比数列,,解得,故,故 .数列的前2024项和为:【解析】本题考查裂项相消法求和,考查等比中项,等差数列的判定等,属于中档题.,,两式相减整理得到,得到证明;根据等比中项计算得到,确定,再利用裂项相消法求和即可.20.【答案】解:选择①,由及正弦定理,得,整理得,由余弦定理得,而,所以 .选择②,由,得,即,解得,又,所以 .由知,,由正弦定理得,即,而是锐角三角形,则,解得,,即,因此,,所以面积的取值范围是 .【解析】本题考查三角形面积公式,正余弦定理,诱导公式等,属于中档题.选择①,利用正弦定理角化边,再利用余弦定理求解即得;选择②,利用诱导公式及同角三角函数的基本关系式求解即得.利用正弦定理求出边b的范围,再利用三角形面积公式求解即得.21.【答案】解:,,且故在点处的切线方程为又与相切,将直线代入得由得,曲线在点处的切线方程为,即由得,设在点处的切线方程为,即,,令,则当或时,,此时函数单调递减;当或时,,此时函数单调递增又,,,,故【解析】本题考查利用导数研究函数的切线方程,属于较难题.22.【答案】解:函数的定义域为,函数的定义域为函数在上单调递减,在上单调递增证明:,则为上的偶函数.,,故,所以函数在上单调递减,在上单调递增.证法一要证明,需证明即证明,即,由可知即证 .且在单调递增,所以对,成立.证法二要证明,即证明,即证,即证,设函数,,故函数在上单调递增又,,即成立,故原不等式成立.【解析】本题主要考查函数单调区间,利用导数证明不等式等,属于较难题.先求导,再分析导数的符号,进而可得函数的单调性.证法一将问题转化为证,由可知即证,进而可得答案.证法二将问题转化为证,即证,即可得出答案.。
河南省南阳市2017届高三数学上学期期中质量评估试题文(扫描版)2016年秋期高中三年级期中质量评估数学试题(文)参考答案一、选择题1.C 2.B 3.A 4.A 5.B 6.D 7.D 8. C 9. D 10.B 11.A 12.C 解析:1.()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B =,,,,故选C .2.由i 3i z +=-得32i z =-,所以32i z =+,故选B.3. ()42a b m +=-,,∵()a b b +⊥,∴()122(2)0a b b m +⋅=--=解得8m =,故选A . 4.由题意得A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数 的关系可知,a =-1,b =-2,∴a +b =-3, 故选A 5.由等差数列性质可知:()1959599292722a a a S a +⨯====,故选53a =, 而108a =,因此公差1051105a a d -==-∴100109098a a d =+=.故选B .6.由余弦定理得3222452⨯⨯⨯-+=b b ,解得3=b (31-=b 舍去),故选D.7.根据对数函数性质知,a >0,所以幂函数是增函数,排除A(利用(1,1)点也可以排除); 选项B 从对数函数图像看a <1,与幂函数图像矛盾;选项C 从对数函数图像看a >1, 与幂函数图像矛盾,故选D.8.根据指数函数与对数函数的性质分析比较可得, 故选C . 9.由图像知A =23,12T =π2,所以T =π,所以ω=2,又由-7π12×2+φ=2k π+32π,k ∈Z ,所以当k =-1时,φ=2π3;所以y =23sin ⎝⎛⎭⎪⎫2x +2π3.故选D.10.因为()(02O B O C O B C O A -⋅+-=,所以(0)C B O B O A C O A ⋅-+-=,()()0AB AC AB AC -⋅+=,220AB AC -=,22=0AB AC -,即=AB AC ,故选B.11.∵f′(x)=x 2+2ax +a 2-1,∴f′(x)的图像开口向上.根据图像分析,若图像不过原点,则a =0,f(-1)=53;若图像过原点,则a 2-1=0,又对称轴x =-a>0,∴a =-1,∴f(-1)=-13.故选A .12.∵a 满足x+lgx=4,b 满足x+10x=4,∴a ,b 分别为函数y=4-x 与函数y=lgx ,y=10x图象交点的横坐标 由于y=x 与y=4-x 图象交点的横坐标为2,函数y=lgx ,y=10x的图象关于y=x 对称 ∴a+b=4∴函数f (x )=当x≤0时,关于x 的方程f (x )=x ,即x 2+4x+2=x ,即x 2+3x+2=0, ∴x=-2或x=-1,满足题意当x >0时,关于x 的方程f (x )=x ,即x=2,满足题意 ∴关于x 的方程f (x )=x 的解的个数是3 故选C . 二、填空题13.6 14.⎣⎢⎡⎭⎪⎫23,+∞ 15.4 031 16.18 解析:13.设等比数列{}n a 公比为q ,由已知a 1=1,a 3=4,得q 2=a 3a 1=4.又{}n a 的各项均为正数,∴q =2.而S k =1-2k1-2=63,∴2k-1=63,解得k =6.14.由f(f(a))=2f(a)得,f(a)≥1.当a <1时,有3a -1≥1,∴a≥23,∴23≤a<1.当a≥1时,有2a≥1,∴a≥0,∴a≥1. 综上,a≥23.15.依题意得,f (x )=2 016-120161x ++2 017sin x ,注意到120161x ++120161x-+ =1,且函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数(注:函数y =-120161x +与y =2 017sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上都是增函数),故M +N =f ⎝ ⎛⎭⎪⎫π2+f ⎝ ⎛⎭⎪⎫-π2=4 032-1=4 031.16.设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则由题意可得,⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,z =3x +4y ,作出可行域如图阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18.三、解答题17.解析:(I )设数列{}n a 公差为d ,且d≠0,∵a 1,a 2,a 5成等比数列,a 1=1 ∴(1+d )2=1×(1+4d )解得d=2,∴a n =2n-1.……………………………………5分<2………………………………………………………………10分 18. 解析:(Ⅰ)∵在△ABC 中,, ∴根据正弦定理,得=﹣,去分母,得cosB (2sinA+sinC )=﹣sinBcosC ,……………………………………2分 即2cosBsinA+(sinBcosC+cosBsinC )=0,可得2cosBsinA+sin (B+C )=0, ∵△ABC 中,sinA=sin (B+C ),∴2cosBsinA+sinA=0,即sinA (2cosB+1)=0.……………………………………4分 又∵△ABC 中,sinA >0,∴2cosB+1=0,可得cosB=﹣.∵B∈(0,π),∴B=23π. …………………………………………………………6分 (Ⅱ)∵b=3,cosB=cos π=﹣,∴由余弦定理b 2=a 2+c 2﹣2accosB ,即9=a 2+c 2+ac≥3ac,即ac≤3, ……………8分 ∴S △ABC =acsinB≤×3×=(当且仅当“a=c ”时取“=”号),则△ABC 面积最大值为. ………………………………………………………12分19.解析:(Ⅰ)当2≥n 时,n n n a a S -=--11,则111n n n S a a ++-=-,作差得:1112n n n n a a a a +-+=-+,112n n a a -∴=.………………………………2分又212121211112S a a a a a a a -=---=-⇒=即,由已知0n a ≠,112n n a a -∴=, ∴{}n a 是首项为12,公比为12的等比数列,………………………………………4分 1111222n n n a -∴=⋅=(). ……………………………………………………………6分(Ⅱ)由(Ⅰ)得:12n n n b +=, ……………………………………………………7分1231234122222n n n n n T -+∴=+++++,①234112341222222n n n n n T ++∴=+++++,② ①-②可得23411111111222222n n n n T ++=+++++-, 111111334221122212n n n n n ++-⋅++=+-=--, ………………………………………………11分332n n n T +∴=-. ………………………………………………………………………12分20. 解析:(Ⅰ)由c bx ax x x f +++=23)(得b ax x x f ++=23)('2,)(x f y =在点))1(,1(f P 处的切线方程为)1)(1(')1(-=-x f f y ,即)1)(23()1(-++=+++-x b a c b a y .而)(x f y =在点))1(,1(f P 处的切线方程为13+=x y ,故⎩⎨⎧=++=+⎩⎨⎧=+++=++30241323c b a b a c b a b a 即 ……………………………………………3分 ∵)(x f y =在2-=x 处有极值,故.124-02-'-=+∴=b a f ,)(联立解得542)(,5,4,223+-+=∴=-==x x x x f c b a . ………………………6分 (Ⅱ)因为b ax x x f ++=23)('2,由(Ⅰ)知b bx x x f b a +-=∴=+23)('.02,依题意在]1,2[-上恒有0)('≥x f ,即032≥+-b bx x即23)1(x x b ≤-在]1,2[-上恒成立. 当1=x 时恒成立;当)1,2[-∈x 时,)0,3[1-∈-x ,613)1(3132+-+-=-≥x x x x b ……………8分而))0,3[1(613)1(3-∈--≤-+-x x x 当且仅当0=x 时成立 0613)1(3≤+-+-∴x x 要使613)1(3+-+-≥x x b 恒成立,只须0≥b . …………………………………11分 所以实数b 的取值范围[)0,+∞ ……………………………………………………12分 21.解析:(Ⅰ)a ·b =cos3x 2·cos x 2-sin 3x 2·sin x2=cos 2x. ………………2分 |a +b |=a 2+2a ·b +b 2=2+2cos 2x =2cos 2x =2|cos x|. …………………………………………4分∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x≥0,∴|a +b |=2cos x. …………………………………………………………6分 (Ⅱ)f(x)=cos 2x -4λcos x ,即f(x)=2(cos x -λ)2-1-2λ2. ………………………………………………7分∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴0≤cos x≤1. ①当λ<0时,当且仅当cos x =0时,f(x)取得最小值-1,这与已知矛盾. ②当0≤λ≤1时,当且仅当cosx =λ时,f(x)取得最小值-1-2λ2, 即-1-2λ2=-32,解得λ=12.③当λ>1时,当且仅当cos x =1时,f(x)取得最小值1-4λ,即1-4λ=-32,解得λ=58,这与λ>1相矛盾. ………………………………11分综上所述,λ=12即为所求.…………………………………………………………12分22.解析:(Ⅰ)∵()(ln 1)f x ax x =-,∴x>0 ……………………………1分又()()1ln 1ln f x a x x a x x ⎡⎤'=-+⋅=⎢⎥⎣⎦, ……………………………2分令()0f x '>,当0a >时,解得1x >;当0a <时,解得01x <<, …………………………3分所以当0a >时,函数()y f x =的单调递增区间是()1,+∞;当0a <时,函数()y f x =的单调递增区间是()0,1.……………………………4分 (Ⅱ)(1)2211()()()ln 22h x g x x f x x a x ''==-=-,由题意得()min 0h x ≥,因为()2a x a h x x x x-'=-=(x x x +=,所以当x ∈时,()0h x '<,()h x 单调递减;当)x ∈+∞时,()0h x '>,()h x 单调递增; ……………………………6分min 1()2h x h a a ∴==-由1ln 02a a -≥,得ln 1a ≤,解得0e a <≤, 所以实数a 的取值范围是(]0,e .……………………………………………………8分 (2)由(1)知e a =时,()21eln 02h x x x =-≥在()0,x ∈+∞上恒成立,当x =*x ∴∈N 时,22eln x x <,令1,2,3,x n =⋅⋅⋅,累加可得()22222e ln1ln 2ln3ln 123n n ++++<++++ ,即()2222e2ln 123123,n n ⨯⨯⨯⨯<++++()*n ∈N .……………………12分。
2023-2024学年河南省南阳市高一(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|1<x<3},B={y|y=2x﹣1,x∈A},则A∩B=()A.∅B.A C.B D.A∪B2.命题“方程x2﹣8x+15=0有一个根是偶数”的否定是()A.方程x2﹣8x+15=0有一个根不是偶数B.方程x2﹣8x+15=0至少有一个根不是偶数C.方程x2﹣8x+15=0至多有一个根不是偶数D.方程x2﹣8x+15=0的每一个根都不是偶数3.若函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=1e x+e−x B.f(x)=1e x−e−xC.f(x)=e x−e−xe x+e−x D.f(x)=ex+e−xe x−e−x4.我国古代数学家李善兰在《对数探源》中利用尖锥术理论来制作对数表,他通过“对数积”求得ln2≈0.693,ln54≈0.223,由此可知ln5的近似值为()A.1.519B.1.726C.1.609D.1.3165.已知a=243,b=425,c=2013,则()A.b<a<c B.b<c<a C.c<b<a D.a<c<b6.通过北师大版必修一教材57页的详细介绍,我们把y=[x]称为取整函数.那么“[x]=[y]”是“|x﹣y|<1”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要7.若关于x的不等式1x−a >1x−b的解集是{x|1<x<3},则下列式子中错误的是()A.a﹣b<0B.a+b=4C.a=1,b=3D.a=3,b=18.已知函数f(x)={−2x 2+4x ,x ≤2,x−2x+1,x >2,若存在三个不相等的实数x 1,x 2,x 3使得f (x 1)=f (x 2)=f (x 3),则f (x 1+x 2+x 3)的取值范围是( ) A .(25,1)B .(25,+∞)C .(25,2)D .(2,+∞)二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.满足函数f (x )=x 2﹣ax +1在区间[1,3]上不单调的实数a 的值可能是( ) A .3B .4C .5D .610.下列函数中,具备奇偶性的函数是( ) A .f(x)=(√x)2B .f(x)=1+22x−1C .f(x)={−x ,x <−11,−1<x <1,x ,x >1.D .f(x)=√4−x 22−|x−2|11.已知二次函数f (x )=ax 2+bx +c 满足f (1+x )=f (1﹣x ),且对∀x 1,x 2∈(﹣∞,1),都有f(x 1)−f(x 2)x 1−x 2>0,则下列结论正确的有( )A .f (1.2)>f (1.5)B .2a +b =0C .f(−√2)<f(√3)D .abc <012.已知a >0,b >0,a +b =1,则下列结论成立的是( ) A .1a +1b的最小值为4B .1a +ab 的最小值为3C .11−a+12−b的最小值为2D .a +1b的最小值为1三、填空题(本题共4小题,每小题5分,共20分.)13.幂函数f (x )=(a 2﹣2a +2)x b (a >0)的图像经过点(2,4),则a +b = . 14.若函数f (x )的定义域是[2,5],则函数y =f(2x−3)√x 2−2x−3的定义域是 .15.已知f (x )=x 2+|x |+2;则不等式f (x +1)<8的解集是 .16.如图,已知等腰三角形中一腰上的中线长为√6,则该等腰三角形的面积最大值为 .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)(1)已知x+x﹣1=3,求是x 12+x−12值;(2)计算:2−12+2+(1−√2)−1−823+2lg5lg20+(lg2)2.18.(12分)已知函数f(x)=x+1x.(1)判断函数f(x)在[1+∞)上的单调性,并用单调性的定义证明;(2)求函数g(x)=√x2+4x2+5的值域.19.(12分)已知集合A={x|x2+ax﹣a﹣1<0,a∈R},B={x|2<x<3}.(1)若0∈A且2∉A,求实数a的取值范围;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.20.(12分)为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.大学毕业生袁阳按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件20元,出厂价为每件24元,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系近似满足一次函数:y=﹣10x+600.(1)设袁阳每月获得的利润为ω(单位:元),写出每月获得的利润ω与销售单价x的函数关系;(2)物价部门规定,这种节能灯的销售单价不得高于40元.如果袁阳想要每月获得的利润不小于3000元,那么政府每个月为他承担的总差价的取值范围是多少元?21.(12分)已知log a b+log b a=52,a b=b a,其中a>b>1.(1)求实数a,b的值;(2)若函数f(x)=m•a x+b x+1在定义域[1,2]上为增函数,求实数m的取值范围.22.(12分)已知函数f(x)的定义域为R.当x>0时,f(x)=2x+a,a∈R.(1)若函数f(x)为奇函数,求函数f(x)的表达式;(2)若函数f(x)是奇函数且在R上单调,求实数a的取值范围;(3)在(1)的条件下,若关于x的方程((f(x)+2+a)(f(x)﹣a)=0有三个不等的实数根,求实数a的取值范围.2023-2024学年河南省南阳市高一(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|1<x<3},B={y|y=2x﹣1,x∈A},则A∩B=()A.∅B.A C.B D.A∪B解:集合A={x|1<x<3},则B={y|y=2x﹣1,x∈A}={y|1<y<5},故A∩B=A.故选:B.2.命题“方程x2﹣8x+15=0有一个根是偶数”的否定是()A.方程x2﹣8x+15=0有一个根不是偶数B.方程x2﹣8x+15=0至少有一个根不是偶数C.方程x2﹣8x+15=0至多有一个根不是偶数D.方程x2﹣8x+15=0的每一个根都不是偶数解:“方程x2﹣8x+15=0有一个根是偶数”的否定是:方程x2﹣8x+15=0的每一个根都不是偶数.故选:D.3.若函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=1e x+e−x B.f(x)=1e x−e−xC.f(x)=e x−e−xe x+e−x D.f(x)=ex+e−xe x−e−x解:对于A,f(0)=12,与图象不相符,故A错误;对于B,f(0)无意义,与图象不相符,故B错误;对于C,函数定义域为R,f(0)=0,f(−x)=e−x−e xe−x+e x=−f(x),函数为奇函数,符合图象,故C正确;对于D,f(0)无意义,与图象不相符,故D错误.故选:C.4.我国古代数学家李善兰在《对数探源》中利用尖锥术理论来制作对数表,他通过“对数积”求得ln2≈0.693,ln 54≈0.223,由此可知ln 5的近似值为( )A .1.519B .1.726C .1.609D .1.316解:因为ln 2≈0.693,ln 54≈0.223=ln 5﹣2ln 2=ln 5﹣1.386,由此可知ln 5≈1.609.故选:C . 5.已知a =243,b=425,c=2013,则( )A .b <a <cB .b <c <aC .c <b <aD .a <c <b解:∵a =243=√163,b =425=√165,c =2013=√203,y =x 13=√x 3是R 上的增函数,20>16,∴√203>√163,即c >a .再根据√163>√165,可得a >b . 综上可得,c >a >b . 故选:A .6.通过北师大版必修一教材57页的详细介绍,我们把y =[x ]称为取整函数.那么“[x ]=[y ]”是“|x ﹣y |<1”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要解:若[x ]=[y ],设[x ]=[y ]=m ,则x =m +a (0≤a <1),y =m +b (0≤b <1), ∴x ﹣y =a ﹣b ∈(﹣1,1),∴|x ﹣y |<1,反之,令x =1.1,y =0.9,则满足|x ﹣y |=0.2<1,但[x ]=1,[y ]=0,[x ]≠[y ], ∴[x ]=[y ]是|x ﹣y |<1的充分不必要条件. 故选:A . 7.若关于x 的不等式1x−a>1x−b的解集是{x |1<x <3},则下列式子中错误的是( )A .a ﹣b <0B .a +b =4C .a =1,b =3D .a =3,b =1解:由1x−a>1x−b,得1x−a−1x−b>0,化简得,a−b(x−a)(x−b)>0,即(a ﹣b )(x ﹣a )(x ﹣b )>0,∵不等式1x >a>1x−b的解集是{x |1<x <3},∴a ﹣b <0,且1和3是方程(x ﹣a )(x ﹣b )=0的两个根, ∴a =1,b =3,∴a +b =4,故A 正确,B 正确,C 正确,D 错误. 故选:D .8.已知函数f(x)={−2x 2+4x ,x ≤2,x−2x+1,x >2,若存在三个不相等的实数x 1,x 2,x 3使得f (x 1)=f (x 2)=f (x 3),则f (x 1+x 2+x 3)的取值范围是( ) A .(25,1)B .(25,+∞)C .(25,2)D .(2,+∞)解:函数f (x )={−2x 2+4x ,x ≤2x−2x+1,x >2的图象如图所示:由f (x )在(﹣∞,2]上关于x =1对称,且f max (x )=2, 当x ∈(2,+∞)时,f (x )=x−2x+1=1−3x+1是增函数, 且f (x )=x−2x+1=1−3x+1∈(0,1), 所以x 1+x 2=2,x 3∈(2,+∞), 所以x 1+x 2+x 3∈(4,+∞),又f (4)=4−24+1=25, 故f (x 1+x 2+x 3)∈(25,1).故选:A .二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.满足函数f (x )=x 2﹣ax +1在区间[1,3]上不单调的实数a 的值可能是( ) A .3B .4C .5D .6解:因为函数f (x )=x 2﹣ax +1在区间[1,3]上不单调,所以1<12a <3,即2<a <6.故选:ABC .10.下列函数中,具备奇偶性的函数是( ) A .f(x)=(√x)2B .f(x)=1+22x−1C .f(x)={−x ,x <−11,−1<x <1,x ,x >1.D .f(x)=√4−x 22−|x−2|解:根据题意,依次分析选项:对于A ,f (x )=(√x )2,其定义域为[0,+∞),不关于原点对称, 则该函数为非奇非偶函数,不符合题意; 对于B ,f (x )=1+22x−1,其定义域为R , 有f (﹣x )+f (x )=1+22−x −1+1+22x −1=2+2⋅2x1−2x +22x−1=0,即f (﹣x )=﹣f (x ), 则该函数为奇函数,符合题意;对于C ,f(x)={−x ,x <−11,−1<x <1,x ,x >1.其定义域为{x |x ≠±1},当x <﹣1时,﹣x >1,有f (﹣x )=f (x )=﹣x , 当﹣1<x <1时,﹣1<﹣x <1,有f (﹣x )=f (x )=1, 当x >1时,﹣x <﹣1,有f (﹣x )=f (x )=x ,综合可得:∀x ∈{x |x ≠±1},都有f (x )=f (﹣x ),则f (x )为偶函数,符合题意;对于D ,f (x )=√4−x 22−|x−2|,则有{4−x 2≥02−|x −2|≠0,解可得﹣2≤x ≤2且x ≠0,即函数的定义域为{x |﹣2≤x ≤2且x ≠0}, 则f (x )=√4−x 2x,则有f (﹣x )=−√4−x 2x=−f (x ),则f (x )为奇函数.故选:BCD .11.已知二次函数f (x )=ax 2+bx +c 满足f (1+x )=f (1﹣x ),且对∀x 1,x 2∈(﹣∞,1),都有f(x 1)−f(x 2)x 1−x 2>0,则下列结论正确的有( )A .f (1.2)>f (1.5)B .2a +b =0C .f(−√2)<f(√3)D .abc <0解:因为二次函数f (x )=ax 2+bx +c 满足f (1+x )=f (1﹣x ), 即函数的图象关于x =1对称,故−b2a=1,所以b +2a =0,B 正确; 对∀x 1,x 2∈(﹣∞,1),都有f(x 1)−f(x 2)x 1−x 2>0,所以f (x )在(﹣∞,1)上单调递增,所以a <0,b =﹣2a >0,但c 的正负无法确定,D 错误;根据函数的对称性可知,f (x )在(1,+∞)上单调递减,则f (1.2)>f (1.5),A 正确, 又f (−√2)=f (2+√2)<f (√3),C 正确. 故选:ABC .12.已知a >0,b >0,a +b =1,则下列结论成立的是( )A .1a +1b的最小值为4B .1a +ab 的最小值为3C .11−a+12−b的最小值为2D .a +1b的最小值为1解:对于A ,1a +1b =(a +b)(1a +1b )=2+b a +a b ≥2+2√b a ⋅a b=4,当且仅当a =b =12时,取等号,故A 正确;对于B ,1a =a+b a =1+b a ,故1a +a b =1+b a +a b ≥1+2√b a ⋅a b=3,当且仅当a =b =12时,取等号,故B 正确;对于C ,由a >0,b >0,a +b =1,可知(1﹣a )+(2﹣b )=3﹣(a +b )=2,且1﹣a >0,2﹣b >0, 11−a+12−b=12[(1−a)+(2−b)](11−a+12−b)=12(2+2−b 1−a+1−a 2−b)≥12(2+√2−b 1−a ⋅1−a 2−b)=2, 不等式取等号的条件是1﹣a =2﹣b =1,即a =0,b =1,与题设a +b =1矛盾,故11−a+12−b的最小值大于2,C 不正确;对于D ,a +1b −1=1b −b =1−b 2b =(1+b)(1−b)b >0,故a +1b>1,最小值大于1,故D 不正确.故选:AB .三、填空题(本题共4小题,每小题5分,共20分.)13.幂函数f (x )=(a 2﹣2a +2)x b (a >0)的图像经过点(2,4),则a +b = 3 . 解:幂函数f (x )=(a 2﹣2a +2)x b (a >0)的图像经过点(2,4), ∴{a 2−2a +2=1f(2)=2b =4,解得a =1,b =2,则a +b =1+2=3. 故答案为:3.14.若函数f (x )的定义域是[2,5],则函数y =f(2x−3)√x 2−2x−3的定义域是 (3,4] .解:由题意得,{2≤2x −3≤5x 2−2x −3>0,解得3<x ≤4.故答案为:(3,4].15.已知f (x )=x 2+|x |+2;则不等式f (x +1)<8的解集是 (﹣3,1) .解:对于f (x )=x 2+|x |+2,当x ≥0时,f (x )=x 2+x +2,当x <0时,f (x )=x 2﹣x +2, 所以f(x)={x 2+x +2,x ≥0x 2−x +2,x <0,当x +1≥0时,即x ≥﹣1时,不等式f (x +1)<8可化为(x +1)2+(x +1)+2<8,即x2+3x﹣4<0,解得﹣4<x<1,所以﹣1≤x<1;当x+1<0时,即x<﹣1时,不等式f(x+1)<8可化为(x+1)2﹣(x+1)+2<8,即x2+x﹣6<0,解得﹣3<x<2,所以﹣3<x<﹣1;综上,不等式f(x+1)<8的解集为(﹣3,1).故答案为:(﹣3,1).16.如图,已知等腰三角形中一腰上的中线长为√6,则该等腰三角形的面积最大值为4.解:如图所示:作CE⊥AB于E,DF⊥AB于F,则AE=EB,EF=FB,设DF=h,FB=b,故AF=3b,在△ADF中:6=9b2+h2≥2√9b2×ℎ2=6bh,即bh≤1,当且仅当9b2=h2,即h=√3,b=√33时等号成立,S△ABC=2S△ABD=4bh≤4.故答案为:4.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)(1)已知x+x﹣1=3,求是x 12+x−12值;(2)计算:2−12+40√2+(1−√2)−1−823+2lg5lg20+(lg2)2.解:(1)由于(x 12+x12)2=x+x−1+2=5,又x 12+x−12>0,故x12+x12=√5;(2)原式=√222−(√2+1)﹣4+2=﹣3.18.(12分)已知函数f(x)=x+1x.(1)判断函数f(x)在[1+∞)上的单调性,并用单调性的定义证明;(2)求函数g(x)=√x2+4x2+5的值域.解:(1)函数f(x)在[1+∞)上单调递增,证明如下:任取x1,x2∈[1,+∞),且x1<x2,则x2﹣x1>0,x2x1>1,则f(x2)−f(x1)=(x2+1x2)−(x1+1x1)=x2−x1+1x1=(x2−x1)(x2x1−1)x2x1>0,∴f(x2)﹣f(x1)>0,即f(x1)<f(x2),∴函数f(x)是[1,+∞)上的增函数.(2)令t=√x2+4(t≥2),则t2﹣4=x2,于是g(x)的值域即为求ℎ(t)=tt2+1=1t+1t的值域,由(1)知函数y=t+1t(t≥2)在[2,+∞)是单调递增的,所以当t=2时,即√x2+4=2,即x=0处y取最小值y min=2+12=52,所以0<1t+1t≤25,所以函数g(x)=√x2+4x2+5的值域为(0,25].19.(12分)已知集合A={x|x2+ax﹣a﹣1<0,a∈R},B={x|2<x<3}.(1)若0∈A且2∉A,求实数a的取值范围;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.解:(1)由0∈A且2∉A,得{−a−1<0a+3≥0,∴a>﹣1,∴a的取值范围为(﹣1,+∞);(2)由p是q的必要不充分条件,∴B⫋A,∵x2+ax﹣a﹣1=(x﹣1)(x+a+1)<0,且B={x|2<x<3},故A={x|1<x<﹣a﹣1},∴{1<−a−1−a−1≥3,∴a≤﹣4,∴a的取值范围为(﹣∞,﹣4].20.(12分)为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.大学毕业生袁阳按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件20元,出厂价为每件24元,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系近似满足一次函数:y=﹣10x+600.(1)设袁阳每月获得的利润为ω(单位:元),写出每月获得的利润ω与销售单价x 的函数关系;(2)物价部门规定,这种节能灯的销售单价不得高于40元.如果袁阳想要每月获得的利润不小于3000元,那么政府每个月为他承担的总差价的取值范围是多少元?解:(1)依题意可知每件的销售利润为(x ﹣20)元,每月的销售量为(﹣10x +600)件,所以每月获得的利润ω与销售单价x 的函数关系为ω=(x ﹣20)(﹣10x +600)(20≤x ≤60);(2)由每月获得的利润不小于3000元,即(x ﹣20)(﹣10x +600)≥3000,即x 2﹣80x +1500≤0,即(x ﹣30)(x ﹣50)≤0,解得30≤x ≤50,又因为这种节能灯的销售单价不得高于40元,所以30≤x ≤40,设政府每个月为他承担的总差价为p 元,则p =(24﹣20)(﹣10x +600)=﹣40x +2400,由30≤x ≤40,得800≤p ≤1200,故政府每个月为他承担的总差价的取值范围为[800,1200]元.21.(12分)已知log a b +log b a =52,a b =b a ,其中a >b >1. (1)求实数a ,b 的值;(2)若函数f (x )=m •a x +b x +1在定义域[1,2]上为增函数,求实数m 的取值范围.解:(1)设log b a =k ,则k >1,因为log a b +log b a =52, 可得k +1k =52,所以k =2,则a =b 2. 又a b =b a ,所以b 2b =b b 2,即2b =b 2,又a >b >1,解得b =2,a =4.(2)由(1)以及函数f (x )=m •a x +b x +1,得f (x )=m •4x +2x +1,令t =2x ,x ∈[1,2],则y =mt 2+t +1,t ∈[2,4].为使f (x )在[1,2]上为增函数,则m =0或{m >0−12m <2或{m <0−12m≥4,解得m =0或m >0或−18≤m <0. 综上,m 的取值范围为[−18,+∞). 22.(12分)已知函数f (x )的定义域为R .当x >0时,f (x )=2x +a ,a ∈R .(1)若函数f (x )为奇函数,求函数f (x )的表达式;(2)若函数f (x )是奇函数且在R 上单调,求实数a 的取值范围;(3)在(1)的条件下,若关于x 的方程((f (x )+2+a )(f (x )﹣a )=0有三个不等的实数根,求实数a 的取值范围.解:(1)当x =0时,f (0)=0;当x <0时,f (x )=﹣f (﹣x )=﹣(2﹣x +a )=﹣2﹣x ﹣a ;故f(x)={2x +a ,x >00,x =0−2−x −a ,x <0.(2)因为当x >0时,f (x )=2x +a 是单调增函数,所以若f (x )在R 上单调,则f (x )必为R 上的单调增函数,只须满足﹣20﹣a ≤0≤20+a ,得a ≥﹣1,实数a 的取值范围是[﹣1,+∞);(3)由方程(f (x )+2+a )(f (x )﹣a )=0⋯(*),可得f (x )=﹣2﹣a 或f (x )=a ,由题意可知,f (x )不可能是单调函数,故a <﹣1,又因为方程(*)有三个不等的实数根,且a <1+a ,所以只须1+a <﹣2﹣a <﹣1﹣a 且﹣2﹣a ≠0,解得a <−32且a ≠﹣2, 综上所述,a 的取值范围为(−∞,−2)∪(−2,−32).。
河南省南阳市多校2024--2025学年上学期期中考试数学试题(2)一、单选题1.2-的绝对值是()A .2-B .2C .2±D .12±2.与()3m n -+相等的是()A .3m n --B .3m n -+C .33m n --D .33m n -+3.光伏发电作为一种可再生能源形式,其在减少碳排放和实现可持续发展方面具有巨大潜力.根据国家能源局发布的数据,截至2024年6月底,中国光伏发电累计并网容量已经达到了7.1293亿千瓦,数据“7.1293亿”用科学记数法表示为()A .90.7129310⨯B .771.29310⨯C .87.129310⨯D .97.129310⨯4.一只蚂蚁在数轴上先向左爬行5个单位长度,再向右爬行3个单位长度,正好停在表示2-的位置上,则这只蚂蚁的起始位置所表示的数是()A .0B .1C .2D .35.下列计算正确的是()A .224a b ab+=B .2222332x y x y x y ++-=-C .32xy xy -=D .()2222a b a b -+=-+6.《孙子算经》中载有“今有出门望见九堤,堤有九木,木有九枝,枝有九巢……”.大意为:今天出门看见9座堤坝,每座堤坝上有9棵树,每棵树上有9根树枝,每根树枝上有9个鸟巢…….文中的鸟巢共有()A .39个B .310个C .49个D .410个7.若一个三位小数“四舍五入”得到的近似数是2.60,则这个三位小数不可能是()A .2.601B .2.595C .2.599D .2.6058.有理数a ,b 在数轴上的位置如图所示,则化简a b a --的结果是()A .bB .2a b -C .2aD .b-9.如图,左侧四边形的面积为8,右侧五边形的面积为15,左、右两个阴影部分的面积分别为a ,()b a b <,则b a -的值为()A .9B .8C .7D .610.如图,将形状、大小完全相同的“·”和线段按照一定的规律摆成下列图案.其中第①个图案用了6个“·”,第②个图案用了11个“·”,第③个图案用了16个“·”,第④个图案用了21个“·”,……,按此规律排列下去,则第⑨个图案用的“·”的个数是()A .41B .46C .51D .56二、填空题11.写出323x y -的一个同类项:.12.如图,这是某零件的设计图纸.由此图纸可知,该零件合格的最大长度是.13.魏晋时期数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,图1表示的数值为:()()110++-=,则可推算图2表示的数值是.(请直接写出最后的结果)14.一名同学在计算2A B +时,误将“2A B +”看成了“2A B -”,求得的结果是2235x x -+.已知221B x x =++,则2A B +的正确答案为.15.对于各数位上数字均不为0的三位数自然数N ,记N 的各数位上数字之和为m .若N 能被m 整除,则称N 是m 的“倍生数”.如:因为()3753753751525÷++=÷=,所以375是15的“倍生数”.216(填“是”或“不是”)9的“倍生数”;如果三位数自然数A 是15的“倍生数”,那么A 最大为.三、解答题16.计算:(1)()2213922-¸--(2)()2222323m n mn mn m n ---17.已知多项式()21523m x m x y xy ---+-是一个五次四项式,求21m -的值.18.小明和小红在游戏中规定:长方形表示正,圆形表示负,求它们的和,结果小者为胜.列式计算,小明和小红谁为胜者?19.阅读材料,解答问题.计算:112312234⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:()123112312689523412234⎛⎫⎛⎫⎛⎫+-÷-=+-⨯-=--+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以原式15=-根据阅读材料提供的方法,计算:()2112534242364轾骣骣犏琪琪-¸-++-´-琪琪犏桫桫臌20.新郑大枣是河南新郑市一大特产.现有10筐新郑大枣,以每筐10千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值/千克0.2-0.15-00.3筐数1243(1)这10筐新郑大枣中,与标准质量差值为0.2千克的有筐,最重的一筐重千克.(2)若新郑大枣每千克售价50元,则出售这10筐新郑大枣总收入多少元?21.如图,某体育馆设计在一个长为y 米、宽为32米的大长方形场地中,且并排新建三个大小一样的标准篮球场.已知两个篮球场之间及篮球场与长方形场地边沿的距离均为a 米,篮球场的宽为b 米.(1)用含a ,b 的代数式表示一个篮球场的周长.(2)若()22150a b -+-=,求整个大长方形场地的面积.22.在2024年巴黎奥运会上,我国网球运动员勇夺网球女单冠军,这一壮举在国内掀起了一阵网球热潮.某商店抓住这一机遇,积极销售某种品牌的网球拍和网球.其中网球拍每副定价为200元,网球每筒定价为25元.“国庆”期间,该商店决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一副球拍送2筒球.方案二:网球拍和网球都打九折销售.现小明要在该商店购买网球拍10副,网球()20x x >筒.(1)若小明按方案一购买,需付款元;若小明按方案二购买,需付款元.(用含x 的代数式表示)(2)当30x =时,请通过计算说明,按哪种方案购买更省钱?(3)若两种优惠方案可同时使用,当30x =时,你能给出一种最为省钱的购买方案吗?请说明理由.23.综合与实践杨老师在黑板上布置了一道题,求代数式:()22224696x y x xy y xy --+++的值.(1)请思考该代数式与哪个字母无关?知道哪个字母的值就能求出此代数式的值?【变式应用】(2)若多项式()2313mx m x -+-的值与x 的取值无关,求m 的值.【能力提升】(3)如图1,小长方形的长为a ,宽为b .用7张小长方形按照图2所示的方式不重叠地放在大长方形ABCD 内,将大长方形中未被覆盖的两个部分涂上阴影,设右上角阴影部分的面积为1S ,左下角阴影部分的面积为2S .当AB 的长变化时,a 与b 满足什么关系,12S S -的值能始终保持不变。
河南省南阳市2024-2025学年高三上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________.已知平面向量a r ,b r 满足,1b =r ,则向量b r )a rB .-14arD共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公最年幼的儿子的岁数为( )A .11B .13C .14D .166.已知数列{}n a 为等比数列,,,,m t p q 均为正整数,设甲:m t p q a a a a =;乙:m t p q +=+,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件7.在锐角ABC V 中,已知()sin 22sin sin B A A C +=-,则A ,C 的大小关系为( )A .C A >B .C A=C .C A<D .无法确定8.已知函数()f x 是定义在R 上的连续可导函数,且满足①()()32226128f x f x x x x --=-+-,②()f x 为奇函数,令()()3g x f x x =+,则下列说法错误的是( )A .()g x 的图象关于1x =对称B .()13f ¢=-C .()320242024f =D .()2202532025f =-´¢故32322(26128)(260()()128)g x x x x x x g x x -=-+-+-+--+=,则得()g x 的图象关于1x =对称,故A 正确;对于B ,由A 项已得()g x 的图象关于1x =对称,则(1)0g ¢=,由()()3g x f x x =+,可得()()23g x f x x ¢+¢=,则()()1133f g =-¢=-¢,故B 正确;对于C ,因()f x 为奇函数,故()()3g x f x x =+也是奇函数,图象关于(0,0)对称,因()g x 的图象关于1x =对称,故函数()g x 的周期为4|10|4T =-=,又()()3g x f x x =+,则()3(2024)(0)020242024g g f ===+,解得()320242024f =-,故C 错误;对于D ,因()()3g x f x x =+为奇函数,且周期为4,则()()23g x f x x ¢+¢=,由()()23g x f x x ¢¢-=-+,因()[()][()]()f x f x f x f x ¢¢¢¢-=--=--=,故()()g x g x ¢¢-=,即函数()()23g x f x x ¢+¢=为偶函数;由()()344(4)g x f x x +=+++,可得()()2443(4)g x f x x +=+++¢¢,因()()3g x f x x =+的周期为4,则()()4g x g x +=,求导得()4()g x g x +=¢¢,即函数()()23g x f x x ¢+¢=的周期为4.于是,2(2025)(1)0(2025)32025g g f ¢¢¢===+´,故得2(2025)32025f ¢=-´,即D 正确.故选:C.【点睛】思路点睛:本题主要考查抽象函数与导函数的奇偶性,周期性,对称性等性质的应用,属于难题.18.(1)1a=2(2)①(]0,1;②证明见解析【分析】(1)求导,根据(2)①对a进行讨论,即数单调性,即可根据单调。
2015年秋期期终质量评估高三年级数学(理)参考答案一、选择题CBDCA ABBDA CB二、填空题13.14. 15. 9(,2][0,2)4--三、解答题:17.解:(1)由正弦定理得:B A C C A sin 232cos sin 2cossin 22=+ 即B A C C A sin 232cos 1sin 2cos 1sin =+++ ………2分 ∴B C A C A C A sin 3sin cos cos sin sin sin =+++即B C A C A sin 3)sin(sin sin =+++ ………4分 ∵B C A sin )sin(=+∴B C A sin 2sin sin =+ 即b c a 2=+∴c b a 、、成等差数列。
………6分 (余弦定理也可解决)(2)∵3443sin 21===ac B ac S ∴16=ac ………8分 又ac c a ac c a B ac c a b 3)(cos 2222222-+=-+=-+= ………10分由(1)得:b c a 2=+ ∴48422-=b b∴162=b 即4=b ………12分 18. 解:(1)记“从15天的PM2.5日均监测数据中,随机抽出三天,恰有一天空气质量达到一级”为事件A ………1分………4分,M=5,n=3,ξ的可能值为0,1,2,3,………6分(3 一年中空气质量达到一级或二级的天数为η ………10分………12分19. (1)证明:11AE A B ⊥ ,11A B ∥ABAB AE ∴⊥ 又1AB AA ⊥ 1A E A A A⋂=AB ∴⊥面11A ACC 又AC ⊂ 面11A ACC A B A C ∴⊥ ………2分以A 为原点建立如图所示的空间直角坐标系 A xyz -则()0,0,0A ,10,1,2E ⎛⎫ ⎪⎝⎭,11,,022F ⎛⎫ ⎪⎝⎭,1(0,0,1)A ,1(1,0,1)B 设(),,D x y z ,111AD AB λ= 且[0,1]λ∈,即:()(),,11,0,0x y z λ-=(),0,1D λ∴ 11,,122DF λ⎛⎫∴=-- ⎪⎝⎭10,1,2AE ⎛⎫∴= ⎪⎝⎭ ………5分 ∴11022DF AE =-= DF AE ∴⊥ ………6分 (2)假设存在,设面DEF 的法向量为 (),,n x y z = , 则 00n FE n DF ⎧=⎨=⎩ 111,,222FE ⎛⎫=- ⎪⎝⎭ 11,,122DF λ⎛⎫=-- ⎪⎝⎭ 111022211022x y z x y z λ⎧-++=⎪⎪∴⎨⎛⎫⎪-+-= ⎪⎪⎝⎭⎩ 即: ()()3211221x z y z λλλ⎧=⎪-⎪⎨+⎪=⎪-⎩ 令()21z λ=- ()()3,12,21n λλ∴=+- . ………8分 由题可知面ABC 的法向量()0,0,1m = ………9分平面DEF 与平面ABC ()cos ,14m n m n m n ∴== 14= 12λ∴=或74λ= (舍) ………11分 ∴ 当点D 为11A B 中点时,满足要求. ………12分 20. 解:(Ⅰ)由题意得1,32c a a c ⎧=⎪⎨⎪-=⎩1,3c a =⎧⇒⎨=⎩82=⇒b . 椭圆C 的方程为:221.98x y +=……………………………………………………4分 (Ⅱ)设),9(1y G ),9(2y H ,则GH 的中点为)2,9(21y y Q +,12GH y y =-,所以以GH 为直径的圆的方程为:4)()2()9(2212212y y y y y x -=+-+-. 令0=y ,得212(9)x y y -=-,设,,M A B 的坐标分别为00(,)M x y ,)0,3(-A ,)0,3(B ,因为A 、M 、G 三点共线,则010,123y y x =+因为M 、B 、H 三点共线,则020,63y y x =+ 两式相乘得201220729y y y x =-. 因为P 在椭圆上,所以2222000081(9)989x y y x +=⇒=-, 所以1212864729y y y y =-⇒=-.……………………………………………………8分 所以2(9)64x -=1,17x x ==得.所以,以GH 为直径的圆恒过x 轴上的定点(17,0),(1,0).…………………………12分 21. 解(Ⅰ)由()e 1x f x ax =--,则()e x f x a '=-.当0a ≤时,对x ∈R ,有'()0f x >,所以函数()f x 在区间(,)-∞+∞上单调递增; 当0a >时,由'()0f x >,得ln x a >;由'()0f x <,得ln x a <,此时函数()f x 的单调增区间为(ln ,)a +∞,单调减区间为(,ln )a -∞.综上所述,当0a ≤时,函数()f x 的单调增区间为(,)-∞+∞;当0a >时,函数()f x 的单调增区间为(ln ,)a +∞,单调减区间为(,ln )a -∞. ················ 4分 (Ⅱ)函数()()ln F x f x x x =-的定义域为(0,)+∞,由()0F x =,得e 1ln x a x x-=-(0x >) ············································································ 5分 令()h x =e 1ln x x x --(0x >),则()h x '=2(e 1)(1)x x x --, ················································ 6分 由于0x >,e 10x ->,可知当1x >,'()0h x >;当01x <<时,'()0h x <,故函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()(1)e 1h x h ≥=-.又由(Ⅰ)知当1a =时,对任意0x >,有()(ln )0f x f a >=,即111x xe e x x -->⇔>, (随着0x >的增长,e 1x y =-的增长速度越来越快,会超过并远远大于y x =的增长速度,而ln y x =的增长速度则会越来越慢.则当0x >且x 无限接近于0时,()h x 趋向于正无穷大.) 当e 1a >-时,函数()F x 有两个不同的零点;当e 1a =-时,函数()F x 有且仅有一个零点;当e 1a <-时,函数()F x 没有零点. ··················································································· 8分 (Ⅲ)由(Ⅱ)知当0x >时,1x e x ->,故对任意0,()0x g x >>,先分析法证明:任意0x >,()g x x <. ·············································································· 10分 要证任意0x >,()g x x <,只需证任意10,x x e x e x-><,即证任意0,10x x x xe e >-+>, 构造函数()H x =1(0)x x xe e x -+>,则'()0x H x xe =>,故函数()H x 在(0,)+∞单调递增,所以()(0)0H x H >=,则任意0,10x x x xe e >-+>成立. 当1a ≤时,由(Ⅰ),()f x 在(0,)+∞单调递增,则(())()f g x f x <在(0,)x ∈+∞上恒成立; 当1a >时,由(Ⅰ),函数()f x 在(ln ,)a +∞单调递增,在(0,ln )a 单调递减,故当0ln x a <<时,0()ln g x x a <<<,所以(())()f g x f x >,则不满足题意.所以满足题意的a 的取值范围是(,1]-∞. …………12分22. 证明:(1)∵PM 是圆O 的切线, NAB 是圆O 的割线, N 是PM 的中点,∴NB NA PN MN ⋅==22, ∴PNNA BN PN =, 又∵BNP PNA ∠=∠, ∴△PNA ∽△BNP ,∴PBN APN ∠=∠, 即PBA APM ∠=∠.∵BC MC =, ∴BAC MAC ∠=∠, ∴PAB MAP ∠=∠,∴△APM ∽△ABP . ………5分 (2)∵PBN ACD ∠=∠,∴APN PBN ACD ∠=∠=∠,即CPM PCD ∠=∠,∴CD PM //, ∵△APM ∽△ABP ,∴BPA PMA ∠=∠,∵PM 是圆O 的切线,∴MCP PMA ∠=∠,∴BPA PMA ∠=∠MCP ∠=,即MCP DPC ∠=∠,∴PD MC //, ∴四边形PMCD 是平行四边形. ………10分23.解:(I )圆1C 的直角坐标方程为22(2)4x y +-=, 直线2C 的直角坐标方程为40x y +-=。
2022年秋期高中三年级期中质量评估数学试题(文)(答案在最后)注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损.第I 卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合401x A x x ⎧⎫-=≤⎨⎬+⎩⎭,{}54B x x =-<<,则()R A B ⋂=ð()A.(](),14,-∞-+∞ B.()(),14,-∞-⋃+∞ C.()5,1-- D.(]5,1--【答案】D 【解析】【分析】解不等式得到集合A ,然后利用补集和交集的定义计算即可.【详解】由题意得集合{}14A x x =-<≤,{R 1A x x =≤-ð或}4x >,所以(){}R 51A B x x ⋂=-<≤-ð.故选:D.2.若2z i z i +=-=,则z =()A.1B.C.D.2【答案】C 【解析】【分析】设i z x y =+,,R x y ∈,由条件列方程求,x y ,再由复数的模的公式求z .【详解】设i z x y =+,,R x y ∈,因为2z i z i +=-=,2=2=,所以0y =,23x =,所以z ==,故选:C.3.已知()()()2lg5lg 10lg f x x x =⋅+,则()2f =()A.1B.2C.3D.4【答案】A 【解析】【分析】根据对数的运算性质及函数值的定义即可求解.【详解】因为()()()2lg5lg 10lg f x x x =⋅+,所以()()()()()()()22222lg5lg 20lg 2lg5lg 4lg 2l 5g5l g lg5lg g 2l 22f ⨯=⨯+++=⨯+=+⨯()()22lg 5lg 2lg101=+==.故选:A.4.已知数列{}n a 的前n 项和211n S n n =-.若710k a <<,则k =()A.9B.10C.11D.12【答案】B 【解析】【分析】先求得n a ,然后根据710k a <<求得k 的值.【详解】依题意211n S n n =-,当1n =时,110a =-;当2n ≥时,211n S n n =-,()()22111111312n S n n n n -=---=-+,两式相减得()2122n a n n =-≥,1a 也符合上式,所以212n a n =-,*N k ∈,由721210k <-<解得911k <<,所以10k =.故选:B5.若x ,y 满足3020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩则2x y -的最小值是()A.3-B.5- C.8 D.7-【答案】D 【解析】【分析】根据题意画出可行域,令2z x y =-,即1122y x z =-,所以平移斜率为12的直线,12z -相当于在y 轴上的截距,找到使y 轴上的截距最值时的点代入即可.【详解】由题知,画出满足题意的可行域如下所示,令2z x y =-,即1122y x z =-,12z -相当于直线1122y x z =-在y 轴上的截距,平移直线12y x =,当直线过A 点时,截距最大,z 最小,联立203x y x -+=⎧⎨=⎩,可得()A 3,5,故在A 点时取得最优解,代入2z x y =-,可得7z =-.故选:D.6.已知:()1,2a =r,b = a b - 的最大值是()A.B. C.+ D.-【答案】B 【解析】【分析】设向量a 与b的夹角为()0πθθ≤≤,由()1,2a =r 可得a =得a b -=.【详解】设向量a 与b的夹角为()0πθθ≤≤,由()1,2a =r ,得a == 所以a b -== ,因为0πθ≤≤,所以1cos θ1-#,即52520cos 45θ≤-≤≤≤所以a b -的最大值为.故选:B.7.函数()f x 的部分图像如图所示,则()f x 的解析式可能为()A.()1cos f x x x=+ B.()1sin f x x x =+C.()1cos f x x x=- D.()1sin f x x x=-【答案】D 【解析】【分析】由函数的奇偶性排除A ,C ,由函数在0x =处的变化趋势排除B ,得正确选项.【详解】由函数图像可知,函数()f x 为奇函数,对于A:()()()11cos cos f x x x f x x x-=-+=+≠---,()f x 不是奇函数排除A 选项;()()()11cos cos f x x x f x x x-=--=+≠--,()f x 不是奇函数排除C 选项;对于B ,当0x >,且x 趋近于0时,由图知()f x 趋近于-∞,但()10,sin 0x f x x x→=+>排除B ;故选:D.8.若π0,2α⎛⎫∈ ⎪⎝⎭,πcos 63α⎛⎫+= ⎪⎝⎭,则sin α=()A.6B.6- C.3D.36【答案】B 【解析】【分析】先由已知条件求出πsin 6α⎛⎫+⎪⎝⎭,然后由ππsin sin 66αα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦化简计算可得答案.【详解】因为π0,2α⎛⎫∈ ⎪⎝⎭,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为πcos 63α⎛⎫+= ⎪⎝⎭,所以πsin 63α⎛⎫+=== ⎪⎝⎭,所以ππsin sin 66αα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ππππsin cos cos sin6666αα⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭132326-=⨯-⨯=,故选:B9.在ABC 中,30C =︒,b =,c x =.若满足条件的ABC 有且只有一个,则x 的可能取值是()A.12B.32C.1D.【答案】D 【解析】【分析】利用正弦定理得到sin 2B x=,再分030B ︒<≤和30B ︒>两种情况讨论,结合正弦函数的性质求出x 的取值范围,即可判断.【详解】解:由正弦定理sin sin b c B C =,即sin sin 30x B ︒=,所以sin 2B x=,因为ABC 只有一解,若30B ︒>,则90B ︒=,若030B ︒<≤显然满足题意,所以10sin 2B <£或sin 1B =,所以1022x <≤或12x =,解得x ≥或2x =;故选:D10.若将函数()π2sin ,03f x x ωω⎛⎫=+> ⎪⎝⎭的图像向右平移14个周期后,与函数()()2cos 2g x x ϕ=+的图像重合,则ϕ的一个可能取值为()A.π3B.π3-C.2π3-D.4π3-【答案】C 【解析】【分析】根据三角函数图像平移规律得到平移后的解析式,再对()g x 的解析式变形处理,列出等式,即可判断.【详解】()π2sin ,03f x x ωω⎛⎫=+> ⎪⎝⎭,周期2πT ω=,函数()π2sin 3f x x ω⎛⎫=+⎪⎝⎭的图像向右平移14个周期后,得函数πππ2sin 2sin 236y x x ωωω⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎢⎝⎭⎝⎭⎣⎦的图像,而()()()ππ2cos 22sin 22sin 222g x x x x ϕϕϕ⎡⎤⎛⎫=+=++=++ ⎪⎢⎥⎣⎦⎝⎭,由题意π2,2π,Z π26k k ωϕ=+=-∈,Z 2,π32πk k ϕ∴=-∈,令32ππ2π3k ϕ=-=,得1Z 2k =∉,故A 错误;令32ππ23πk ϕ=-=-,得1Z 6=∉k ,故B 错误;令2π2π332πk ϕ=-=-,得0Z k =∈,故C 正确;令32π34π2πk ϕ=-=-,得1Z 3=-∉k ,故D 错误.故选:C.11.已知函数()πe (cos ),0,2π1,,02x x a x f x x x ⎧⎛⎫-∈ ⎪⎪⎪⎝⎭=⎨⎛⎤⎪--∈- ⎥⎪⎝⎦⎩在ππ,22⎛⎫- ⎪⎝⎭上单调递减,则实数a 的取值范围是()A.1a ≥B.3a ≥ C.2a ≥ D.12a ≤≤【答案】C 【解析】【分析】利用导数求解π0,2x ⎛⎫∈ ⎪⎝⎭时()f x 单调递减满足的条件,即可结合分段函数的性质求解.【详解】当π0,2x ⎛⎫∈ ⎪⎝⎭时,()e (cos )x f x x a =-,则()e (cos sin )0xf x x x a '=--≤所以πcos sin 4a x x x ⎛⎫≥-=+ ⎪⎝⎭恒成立,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以ππ3π,444x ⎛⎫+∈ ⎪⎝⎭()π1,14x ⎛⎫+∈- ⎪⎝⎭,因此1a ≥,要使()f x 在ππ,22⎛⎫- ⎪⎝⎭上单调递减,则需要()()01201e cos0a a f a ≥⎧⇒≥⎨=-≥-⎩,故选:C12.已知:22π1tan 8π1tan 8a -=+,2b =,4log 3c =,则()A.a b c <<B.a c b<< C.c<a<b D.c b a<<【答案】B 【解析】【分析】根据三角函数的公式求出22a =,然后借助指数函数的单调性得到2log 31.5232<=<=,即可得到a c <,构造函数()22xf x x =-,利用函数的单调性得到0>,整理后即可得到b c >.【详解】222222πππ1tan cos sin π888cos πππ421tan cos sin 888a --====++,2242log 3log 3log 3log 42c ===,∵2log 31.5232<=<=,2log 3<,则2log 322<,即a c <,设函数()22xf x x =-,则()2ln 22x f x '=-,∵()22412ln 22ln 4ln ln 0f '=-=-=<e e ,()21624ln 22ln 0f '=-=>e,且函数()f x '单调递增,∴()f x '只存在一个0x 使()00f x '=,且()01,2x ∈,当0x x <时,()0f x '<,()f x 在()0,x -∞单调递减,∴()102f f ⎛⎫>= ⎪ ⎪⎝⎭,即22log 30log 222>⇒>⇒>,即b c >,所以a c b <<.故选:B.【点睛】方法点睛:比较数值大小方法.(1)估值法:找出式子的取值区间,以此判断各个式子的大小关系;(2)构造函数法:当无法进行估值判断式子大小时,可通过构造函数,利用导数判断其单调性,从而判断式子大小.第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数()sin ,sin cos cos ,sin cos ,x x xf x x x x ≤⎧=⎨>⎩,则2023π3f ⎛⎫= ⎪⎝⎭__________.【答案】12##0.5【解析】【分析】根据2023π2023πsin cos 33⎛⎫⎛⎫>⎪ ⎝⎭⎝⎭可得解.【详解】2023ππsin πsin 674πsin 3332⎛⎫⎛⎫=+==⎪ ⎝⎭⎝⎭,2023ππ1cos πcos 674πcos 3332⎛⎫⎛⎫=+== ⎪ ⎝⎭⎝⎭,所以2023π2023πsin cos 33⎛⎫⎛⎫>⎪ ⎝⎭⎝⎭,可得202320231πcos π332⎛⎫==⎪⎝⎭f .故答案为:12.14.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c)cos c b A a -=,b =ABC 的外接圆面积为__________.【答案】9π【解析】【分析】在ABC)cos c b A a -=)sin sin cos sin C B A A -=利用π--C B A =消角可得cos 2B =,则角B可求,又b =,可利用正弦定理求ABC 的外接圆直径,ABC 的外接圆面积可求.【详解】 在ABC)cos c b A a -=,∴)sin sin cos sin C B A A -=,又π--C B A =,())sin sin cos sin B A B A A +-=,)sin cos cos sin sin cos sin B A B A B A A +-=,sin sin B A A =,又在ABC 中sin 0A >,∴2cos 2B =.又 在ABC ,0πB <<,∴π4B =,∴ABC的外接圆直径=6sin 22b B ==,∴ABC 的外接圆的面积为9π.故答案为:9π.15.若()e e 1xx f x =+,则()2e 11ef x +-<的解集是______________.【答案】()0,2【解析】【分析】根据题意求得()f x 为偶函数,且在()0,∞+上单调递增,结合()2e 11(1)ef f +==,把不等式转化为()1(1)f x f -<,得到11x -<,即可求解.【详解】由函数()e e 1xx f x =+,可得()()11e e e ex xx xf x f x ---=+=+=,所以()f x 为偶函数,当0x ≥时,可得()e e0x xf x -'=+>,所以函数()f x 在()0,∞+上单调递增,又由()2e 11(1)e f f +==,所以不等式()2e 11ef x +-<等价于()1(1)f x f -<,则满足11x -<,解得02x <<,即不等式的解集为()0,2.故答案为:()0,2.16.不等式()()222e 1a b a b m m -+--≥-对任意实数a ,b 恒成立,则实数m 的取值范围是___________.【答案】[1,2]-【解析】【分析】设(,e ),(1,)a P a Q b b +,则可得22PQ m m ≥-,而,P Q 分别在曲线()x f x e =和直线1y x =-上,将直线1y x =-平移恰好与曲线()x f x e =相切时,可求出PQ 的最小值,从而可解关于m 的不等式可得答案.【详解】由题意设(,e ),(1,)aP a Q b b +,则()()222e 1aPQ b a b =-+--,所以22PQ m m ≥-,因为,P Q 分别在曲线()x f x e =和直线1y x =-上,所以将直线1y x =-平移恰好与曲线()x f x e =相切时,切点到直线1y x =-的距离最小,此时PQ 最小,设切线为y x m =+,切点为00(,)x y ,则()x f x e =,得()e x f x '=,所以0e 1x =,得00x =,则01y =,所以PQ 的最小值为点(0,1)到直线1y x =-的距离d ,d ==,即PQ ,所以22m m ≥-,即220m m --≤,解得12m -≤≤,所以实数m 的取值范围是[1,2]-,故答案为:[1,2]-【点睛】关键点点睛:此题考查不等式恒成立问题,考查导数的几何意义,解题的关键是将问题转化为(,e ),(1,)a P a Q b b +,22PQ m m ≥-,进一步转化为曲线()x f x e =上的点和直线1y x =-的点的距离最小问题,考查数学转化思想,属于较难题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .AB AC ⋅=- ,ABC 的面积等于3.(1)求A ;(2)求222b c a +的最小值.【答案】(1)2π3A =(2)23【解析】【分析】(1)根据平面向量的数量积定义及三角形的面积公式可得tan A =,进而求解即可;(2)由(1)可得bc =,结合余弦定理可得222b c a +=-22221b c a a +=-,再根据基本不等式可得2222b c a bc +=-≥=2a ≥.【小问1详解】因为cos cos AB AC AB AC A bc A ⋅=⋅⋅=⋅=- 又1sin 32ABC S bc A ==△,两式相除得,tan A =又0πA <<,所以2π3A =.【小问2详解】由(1)知,cos bc A ⋅=-2π3A =,所以bc =,又2221cos 22b c a A bc +-==-,即222b c a +=-所以2222221b c a a a a+=--=,又因为2222b c a bc +=-=1423b c ==⨯时等号成立,所以2a ≥210a <≤,即214303a -≤-<,即2243113a≤-<,所以222b c a +的最小值为23.18.已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,)*N n b n =∈,且{}n b 是以2为公比的等比数列.(1)证明:24n n a a +=;(2)若2122n n n c a a -=+,求数列{}n c 的通项公式及其前n 项和n S .【答案】(1)证明见解析(2)154n n c -=⋅,()5413n n S =-【解析】【分析】(1)先求得n b ,然后根据递推关系证得24n n a a +=.(2)先求得n c ,然后结合等比数列前n 项和公式求得n S .【小问1详解】依题意,11a =,22a =,0n a >,)*N n b n =∈,1b ==,且{}n b 是以2为公比的等比数列,所以11222n n nb --==,所以1212122n n n n a a --+==,则21122n n n a a +++=,两式相除得224,4n n n na a a a ++==.【小问2详解】由(1)知数列{}2n a 和数列{}21n a -都是公比为4的等比数列,所以1211222221142,42n n n n n n a a a a -----=⋅==⋅=,22211212222254n n n n n n c a a ----=+=+⨯=⨯,1154,4n n n nc c c ++=⨯=,所以数列{}n c 是首项为5,公比为4的等比数列,所以()()514541143n n n S -==--.19.已知函数()222cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()y f x =的单调递增区间;(2)若函数()()02g x f x πϕϕ⎛⎫=+<<⎪⎝⎭的图像关于点,12π⎛⎫ ⎪⎝⎭中心对称,求()y g x =在,63ππ⎡⎤⎢⎥⎣⎦上的值域.【答案】(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈(2)11,24⎡⎤-⎢⎥⎣⎦【解析】【分析】(1)利用二倍角公式及和差角公式将函数化简,再根据正弦函数的性质计算可得;(2)首先表示出()g x ,根据对称性求出ϕ,即可得到()g x 的解析式,再根据x 的取值范围求出2x 的范围,最后根据正弦函数的性质计算可得;【小问1详解】解:()222cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭cos 211cos 23222x x π⎛⎫++ ⎪-⎝⎭=--22cos 2cos sin 2sin 11cos 233222x x x ππ-+-=--1cos 2211cos 222222x x x --+-=--13cos 2211cos 222222x x x --+-=--3cos 2sin 2144x x =++1cos 2sin 21222x x ⎛⎫=++ ⎪ ⎪⎝⎭sin 2123x π⎛⎫=++ ⎪⎝⎭,即()sin 2123f x x π⎛⎫=++ ⎪⎝⎭,令222,Z 232k x k k πππππ-≤+≤+∈,解得5,Z 1212k x k k ππππ-≤≤+∈,所以函数的单调递增区间为5,,Z 1212ππππ⎡⎤-+∈⎢⎥⎣⎦k k k .【小问2详解】解:因为()()()33sin 212212323g x f x x x ππϕϕϕ⎡⎤⎛⎫=+=+++=+++ ⎪⎢⎥⎣⎦⎝⎭,又()g x 的图像关于点,12π⎛⎫⎪⎝⎭中心对称,所以2,Z 3k k ππϕπ++=∈,解得21,Z 32k k πϕπ=-+∈,因为02πϕ<<,所以3πϕ=,所以()()sin 21sin 2122g x x x π=++=-+,当,63x ππ⎡⎤∈⎢⎥⎣⎦时22,33x ππ⎡⎤∈⎢⎥⎣⎦,所以sin 2,12x ⎤∈⎥⎣⎦,所以()11,24g x ⎡⎤∈-⎢⎥⎣⎦.20.已知函数()ln a f x x x x=+-,其中a ∈R .(1)当2a =时,求函数()f x 在点()()1,1f 处的切线方程;(2)如果对于任意()1,x ∈+∞,都有()2f x >,求实数a 的取值范围.【答案】(1)450x y --=(2)1a ≤-【解析】【分析】(1)先将2a =代入得到()f x 解析式,对()f x 求导可得切线的斜率,由()1f 得切点的坐标,利用点斜式得到切线方程;(2)将()f x 代入得到2ln 2a x x x x <+-,所以将对于任意()1,x ∈+∞都有()2f x >转化成了()2min ln 2<+-a x x x x ,构造函数()2ln 2g x x x x x =+-,对()g x 求导判断函数()g x 单调递增,从而得()()1g x g >,即得证.【小问1详解】当2a =时,由已知得()2ln =+-f x x x x ,故()2121=++'f x x x ,所以()11214f '=++=,又因为()21ln1111=+-=-f ,所以函数()f x 的图象在点()1,1-处的切线方程为()141+=-y x ,即450x y --=;【小问2详解】由()2f x >,()1,x ∈+∞,得2ln 2<-+a x x x x ,设函数()2ln 2g x x x x x =+-,()1,x ∈+∞,则()1ln 22ln 21g x x x x x x x'=+⋅+-=+-,因为()1,x ∈+∞,所以ln 0x >,210x ->,所以当()1,x ∈+∞时,()ln 210g x x x '=+->,故函数()g x 在()1,x ∈+∞上单调递增,所以当()1,x ∈+∞时,()()11ln11211g x g >=⨯+-⨯=-,因为对于任意()1,x ∈+∞,都有()2f x >成立,所以对于任意()1,x ∈+∞,都有()a g x <成立.所以1a ≤-.【点睛】思路点睛:本题利用导数的运算、利用导数求曲线的切线、利用导数判断函数的单调区间、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.21.数列{}n a 中,n S 为{}n a 的前n 项和,24a =,()()*21n n S n a n +=∈N.(1)求证:数列{}n a 是等差数列,并求出其通项公式;(2)求证:数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和53n T <.【答案】(1)32n a n =-(2)证明见详解.【解析】【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差得到1(2)(1)1(2)n n n a n a n --=--≥,从而得到12(3)(2)1(3)n n n a n a n ---=--≥,即可得到122(3)n n n a a a n --=+≥,从而得证,再求出公差,即可求出通项公式;(2)由(1)可得()1231n S n n =-,适当放大再利用裂项相消法求和即可.【小问1详解】数列{}n a 中,n S 为{}n a 的前n 项和,24a =,*2(1)(N )n n S n a n =+∈①,当1n =时,1121a a =+,解得11a =;当2n ≥时,112(1)(1)n n S n a --=-+②,①-②得1(2)(1)1(2)n n n a n a n --=--≥③,所以12(3)(2)1(3)n n n a n a n ---=--≥④,由③④得122(3)n n n a a a n --=+≥,所以数列{}n a 为等差数列,所以公差21413d a a =-=-=,所以13(1)32n a n n =+-=-.【小问2详解】由(1)可得()3212n n n S -+=,所以,所以()1231n S n n =-,当1n =时,11513S =<,当2n ≥时,()122121211(13133(1)31()3n S n n n n n n n n ==⋅<⋅=----,12111n nT S S S =++⋯+211211211131232331n n ⎛⎫⎛⎫⎛⎫<+-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 525333n =-<,综上53n T <.22.已知()21e 12x f x x x =---.(1)讨论函数()f x 的单调性;(2)设()f x '是()f x 的导数.当[]1,1x ∈-时,记函数()f x 的最大值为M ,函数()f x '的最大值为N .求证:M N <.【答案】(1)()f x 在R 上单调递增(2)见解析【解析】【分析】(1)求导即可由导函数的正负求解原函数的单调性,(2)根据(1)的结论,分别求解M ,N ,即可作差求解大小.【小问1详解】函数()f x 的定义域为R ,()e 1xf x x '=--,令()()(),e 1xx f x x ϕϕ''==-,当()()0,0,x x x ϕϕ'>>单调递增,当()()0,0,x x x ϕϕ'<<单调递减,所以()(0)0x ϕϕ≥=,即()e 10x f x x ¢=--³故函数()f x 在R 上单调递增【小问2详解】由(1)知()f x 在[]1,1x ∈-时,单调递增,且()00f =,故()()[]()(],0,1,1,0f x x y f x f x x ⎧∈⎪==⎨-∈-⎪⎩,所以()(){}max 1,1M f f =-,由于()()115111e 3e 0e 22ef f --=---=--<,所以()()11f f -<,故()51e 2M f ==-,而()51e 2e 2N f M '≥=->-=,因此M N <。
2022年秋期高中三年级期终质量评估数学试题(理)注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 5.保持卷面清洁,不折叠、不破损.第I 卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{}2230A x x x =--≤∣,{}2log 1B x x =≤∣,则A B ⋃=( ) A .[-1,3]B .(,3]-∞C .(0,2]D .(0,3]2.已知复数z 满足(i 1)2i z -=,则 z ( )A .1B CD .23.从3,4,5,6四个数中任取三个数作为三角形的三边长,则构成的三角形是锐角三角形的概率是( ) A .14B .13C .12D .344.已知向量(4,2a =-,(1,5)b =,则向量b 在向量a 方向上的投影是( )A .B .-1C .1D5.已知x ∈R ,y ∈R ,若:|1||2|1p x y ++-≥,22:2440q x y x y ++-+≥,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F 点M 在C 的右支上,直线1F M 与C 的左支交于点N ,若1F N b =,且2||MF MN =,则双曲线C 的渐近线方程为( ) A .13y x =±B .3y x =±C .12y x =±D .2y x =±7.设f (x )是定义在R 上且周期为4的奇函数,当02x ≤≤时,,01()2,12x x f x x x ≤≤⎧=⎨-<≤⎩,令g (x )=f (x )+f (x +1),则函数y =g (x )的最大值为( ) A .1B .-1C .2D .-28.已知函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭在[]0,π上单调递增,且2()3f x f π⎛⎫≥-⎪⎝⎭恒成立,则ω的值为( ) A .2B .32C .1D .129.已知抛物线2:4C y x =的焦点为F ,过点F 作直线l 交抛物线C 于点A ,B (A 在x 轴上方),与抛物线准线交于点M .若|BM |=2|BF |,则直线l 的倾斜角为( ) A .60°B .30°或150°C .30°D .60°或120°10.对于函数()sin xf x x x e =+-,[0,]x π∈,下列说法正确的是( ) A .函数f (x )有唯一的极大值点 B .函数f (x )有唯一的极小值点 C .函数f (x )有最大值没有最小值D .函数f (x )有最小值没有最大值11.如图为“杨辉三角”示意图,已知每一行的数字之和构成的数列为等比数列且记该数列前n 项和为n S ,设n b ={}n b 中的整数项依次取出组成新的数列记为{}n c ,则2023c 的值为( )A .5052B .5057C .5058D .506312.十七世纪法国数学家、被誉为业余数学家之王的皮埃尔·德·费马提出的一个著名的几何问题:“已知一个三角形,求作一点,使其与这个三角形的三个顶点的距离之和最小”它的答案是:当三角形的三个角均小于120时,所求的点为三角形的正等角中心,即该点与三角形的三个顶点的连线两两成角120°;当三角形有一内角大于或等于120°时,所求点为三角形最大内角的顶点.在费马问题中所求的点称为费马点.已知a ,b ,c 分别是ABC △三个内角A ,B ,C 的对边,且22()6b a c --=,cos sin 2cos 6A C B π⎛⎫=- ⎪⎝⎭,若点P 为ABC △的费马点,则PA PB PB PC PA PC ⋅+⋅+⋅=( ) A .-6B .-4C .-3D .-2二、填空题(本大题共4小题,每小题5分,共20分)13.上级将5名农业技术员分派去3个村指导农作物种植技术,要求每村至少去一人,一人只能去一个村,则不同的分派种数有______.(数字作答)14.如图,△ABC 内接于椭圆,其中A 与椭圆右顶点重合,边BC 过椭圆中心O ,若AC 边上中线BM 恰好过椭圆右焦点F ,则该椭圆的离心率为______.15.《九章算术》是《算经十书》中最重要的一部,全书总结了战国、泰、汉时期的数学成就,内容十分丰富,在数学史上有其独到的成就.在《九章算术》中,将四个面都是直角三角形的四面体称之为“鳖臑”,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.如图,几何体P -ABCD 为一个阳马,其中PD ⊥平面ABCD ,若DE PA ⊥,DF PB ⊥,DG PC ⊥,且PD =AD =2AB =4,则几何体EFGABCD 的外接球表面积为______.16.已知函数1()ln (0)mx x f x x mx x e+=-+>的值域为[0,)+∞,则实数m 取值范围为______. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步聚) 17.(本题满分12分)已知数列{}n a 是各项均为正数..的等差数列, n S 是其前n 项和,且()()122n n n a a S -+=.(1)求数列{}n a 的通项公式;(2)若89nn n b a ⎛⎫=⋅ ⎪⎝⎭,求n b 取得最大值时的n . 18.(本题满分12分)在2022年卡塔尔世界杯亚洲区预选赛十二强赛中,中国男足以1胜3平6负进9球失19球的成绩惨败出局.甲、乙足球爱好者决定加强训练提高球技,两人轮流进行定位球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得-1分;两人都进球或都不进球,两人均得0分,设甲每次踢球命中的概率为12,乙每次踢球命中的概率为23,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率15,且各次踢球互不影响,(1)经过一轮踢球,记甲的得分为X ,求X 的分布列及数学期望;(2)若经过两轮踢球,用2p 表示经过第2轮踢球后甲累计得分高于乙累计得分的概率,求2p .19.(本题满分12分)如图,四棱锥P -ABCD 的底面为直角梯形,2ABC BAD π∠=∠=,PB ⊥底面ABCD ,112PB AB AD BC ====,设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面P AB ;(2)设Q 为l 上的动点,求PD 与平面QAB 所成角的正弦值的最大值. 20.(本题满分12分)已知函数2()ln f x a x x ax =-+. (1)当a =1时,求证:()0f x ≤;(2)若函数f (x )有且只有一个零点,求实数a 的取值范围. 21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>,离心率为12,其左右焦点分别为1F ,2F ,点A (1,-1)在椭圆内,P 为椭圆上一个动点,且1||PF PA +的最大值为5. (1)求椭圆C 的方程;(2)在椭圆C 的上半部分取两点M ,N (不包含椭圆左右端点),且122FM F N =,求四边形12F F NM 的面积.选考题:共10分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分. 22.【选修4-4:坐标系与参数方程】(10分) 在平面直角坐标系xOy 中,曲线C 的参数方程为2cos (sin x y ϕϕϕ=⎧⎨=⎩为参数), (1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求曲线C 极坐标方程; (2)若点A ,B 为曲线C 上的两个点且OA OB ⊥,求证:2211||||OA OB +为定值. 23.【选修4-5:不等式选讲】(10分)已知存在0x ∈R ,使得0024x a x b +--≥成立,a ,b +∈R . (1)求a +2b 的取值范围;(2)求22a b +的最小值.2022年秋期高中三年级期终质量评估数学(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)13.150 14.13 15.20π 16.21,e ∞⎛⎤- ⎥⎝⎦ 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【解析】(1)当1n =时,()()1111122a a S a -+==,解得:12a =或者11a =-,因为0n a >,故12a =. 方法一:因为()()1222n n n n a a n a S ++==,所以()()()21222n n n n a a a +-+=,又0n a >,即可得1n a n =+.方法二:当2n =时,()()22221222a a S a -+=+=,易得:23a =.因为数列{}n a 是等差数列,故1n a n =+.(2)由(1)知,()819n n b n ⎛⎫=+⋅ ⎪⎝⎭,故()11829n n b n ++⎛⎫=+⋅ ⎪⎝⎭.18799nn n n b b +-⎛⎫-=⨯ ⎪⎝⎭, 当7n <时,1n n b b +>;当7n =时,1n n b b +=; 当n >7时,1n n b b +<;故数列{}n b 的最大项为7b ,8b ,即7n =或8 18.【解析】(1)记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立, 由题意得:()1121?255P A ⎛⎫=⨯-= ⎪⎝⎭,()2111323P B ⎛⎫=⨯-= ⎪⎝⎭, 甲的得分X 的可能取值为-1,0,1,()()()()21111535P X P AB P A P B ⎛⎫=-===-⨯= ⎪⎝⎭,()()()()()()()21218011535315P X P AB P AB P A P B P A P B ⎛⎫⎛⎫==+=+=⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭()()()()214115315P X P AB P A P B ⎛⎫====⨯-=⎪⎝⎭, 所以X 的分布列为:所以()411015151515E X =-⨯+⨯+⨯= (2)根据题意,经过第2轮踢球累计得分后甲得分高于乙得分的情况有三种; 分别是:甲两轮中第1轮得0分,第2轮得1分; 或者甲第1轮得1分,第2轮得0分; 或者甲两轮各得1分,于是:()()()()()201101p P X P X P X P X P X ⎡⎤==⋅=+=⋅=+=⎣⎦8448416151515151545⎛⎫=⨯+⨯+= ⎪⎝⎭ 19.【解析】(1)证明:因为PB ⊥底面ABCD ,所以PB BC ⊥. 又底面ABCD 为直角梯形,且2ABC BAD π∠∠==,所以AB BC ⊥.因此BC ⊥平面PAB .因为BC AD ∥,BC ⊄平面PAD , 所以BC ∥平面PAD .又由题平面PAD 与平面PBC 的交线为l , 所以l BC ∥,故l ⊥平面PAB .(2)以B 为坐标原点,BC 的方向为x 轴正方向,建立如图所示的空间直角坐标系B xyz -, 则()0,0,0B ,()2,0,0C ,()0,1,0A ,()0,0,1P ,由(1)可设(),0,1Q a ,则(),0,1BQ a =.设(),,n x y z =是平面QAB 的法向量,则00n BQ n BA ⎧⋅=⎪⎨⋅=⎪⎩,即00ax z y +=⎧⎨=⎩,可取()1,0,n a =-所以cos ,3n PD n PD n PD⋅-==⋅设PD 与平面QAB 所成角为θ,则sinθ==因此:当0a>≤(当且仅当1a=时等号成立)又当0a≤时,易知不符合题意.所以PD与平面QAB所成角的正弦值的最大值为3.20.【解析】(1)()()()221112121x xx xf x xx x x----++='=-+=故f(x)在(0,1)上是单调增加的,在(1,+∞)上是单调减少的.所以()()max10f x f==,即()0f x≤(2)当a=0时,()2f x x=-,不存在零点当0a≠时,由()0f x=得21ln x xa x+=,()0,x∞∈+设()2ln x xg xx+=,则()312ln x xg xx--'=令()12lnh x x x=--,易知()h x在()0,∞+上是单调减少的,且()10h=.故()g x在()0,1上是单调增加的,在()1,∞+上是单调减少的.由于21111egee-+⎛⎫=<⎪⎝⎭⎛⎫⎪⎝⎭,()11g=,且当1x>时,()0g x>故若函数()f x有且只有一个零点,则只须11a=或1a<即当(){},01a∞∈-⋃时,函数()f x有且只有一个零点.21.【解析】(1)由题意知:12ca=,即2a c=,又由椭圆定义可得:()122PF PA a PA PF+=+-2225a AF a≤+==,又∵222a b c =+,且52a ≤, 故可得:2a =,b =1c =.即椭圆C :的方程为:22143x y += (2)延长1F M 交椭圆于点P ,由122FM F N =, 根据椭圆的对称性可得112F M PF =.设()11,M x y ,()22,P x y ,则()22,N x y --.显然,10y >. 设直线PM 的方程为1x my =-,联立221143x my x y =-⎧⎪⎨+=⎪⎩得,()2234690m y my +--=,∴122634my y m +=+① 122934y y m =-+②又112FM PF =,得122y y =-③由①②③得,m =得直线PM的方程为15x y =-20y -+=, 设2F 到直线PM 的距离为d ,则由距离公式得:3d ==,又由弦长公式得:12PM y =-==将m =278PM =, 设四边形12F F NM 的面积为S ,易知1127228S PM d =⋅⋅=⨯= 【选做题】 22.【解析】(1)因为2cos sin x y ϕϕ=⎧⎨=⎩,所以曲线C 的直角坐标方程为2214x y +=. 因为cos x ρθ=,sin y ρθ=,所以,曲线C 的极坐标方程为:2243sin 1ρθ=+(2)由于OA OB ⊥,故可设()1,A ρθ,2,2B πρθ⎛⎫+⎪⎝⎭21243sin 1ρθ=+,22243cos 1ρθ=+,所以2222121111||||OA OB ρρ+=+ ()()223cos 13sin 1544θθ+++==.即2211||||OA OB +为定值5423.【解析】(1)由题知:()()2222x a x b x a x b a b a b +--≤+--=+=+, 因为存在0x R ∈,使得0024x a x b +--≥,所以只需24a b +≥, 即2a b +的取值范围是[)4,∞+. (2)方法一:由(1)知24a b +≥,因为,a b R +∈,不妨设22t a b =+, 当2b ≥时,224t a b =+>,当02b <<时,有222(42)t b a b -=≥-,整理得,2281651616555t b b b ⎛⎫≥-+=-+ ⎪⎝⎭,此时t 的最小值为165;综上:22a b +的最小值为165.方法二:令222t a b =+,不妨设cos a t θ=,sin b t θ=,因为24a b +≥,所以4cos 2sin t θθ≥≥+,所以:2165t ≥,即22a b +的最小值为165.。
2023年秋期高中三年级期中质量评估数学试题注意事项:1本试卷分第1卷(选择题)和第II卷(非选择题)两部分考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效。
2答题前,考生务必先将自己的姓名、准考证号填写在答题卡上3选择题答案使用2B铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚4请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5保持卷面清洁,不折叠、不破损。
第1卷选择题(共60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)].下列集合中,表示空集的是A.{O}c.{xeN忙-1=0}2命题“3x。
ER'点+X。
+1,,0"的否定为A.\::/xER, x2+x+l>OC. V xE R, x2 +x+l,, 03.若复数z满足(l+z)i=2,则亡z= A.-2 B.2 B.{xlx<-2,主>2}o.{xlx>4}B.3.x ER, x2+x+1>0 D.玉ER,x2+x+l<0C.-4iD.4i4公比不为1的等比数列{a,,}满足a5a7+a凸=16,若a2a3a9a,,,= 64,则m的值为A.8B.9C.10D.115若函数f(x)=4x-(a-1)2飞a2-5有两个零点,则实数a.的取值范围为A.(-1门B.(-1,.Js) 叶石,订 D (1+2气]6已知GE [0,王](. )Sina' y=c''' =s i n °0'"4 , x =(sinaY'"", y =(c o sa)""", z = (si n a),则A.x<y<zB.x<z < yC.y<x<zD.z <x< y7已知a,b, c分别为6.ABC的三个内角A,B, C的对边,若点P在6.ABC的内部,且满足乙PAB =乙PBC =乙PCA=0,则称P 为6.ABC 的布洛卡(Brocard)点,0称为布洛卡角布洛卡角满足:PA PB PCcot0 = c otA + cotB + c ote(注:tanxcotx=1)则—+—-+—-=c a bA.2sin0B. 2cos0C.2tan0D.2cot08已知f(x) = a e x +�x 2 -ax 在(0,+oo )上单调递减,则实数a.的取值范围为A.(--00,-1]B. (--00,-1)c.(O,+oo)D.[0,+oo)二、选择题(本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分)9如图是函数f(x) = sin (mx + rp )的部分图象,则函数f(x )=yxA.si n(x +f )C.c os(三)B.sin(气-2x )D.c os(子-2x )10已知S,,是数列忆}的前n项和,3S,,=a,,+2,则A.{a,,}是等比数列B.a 9+a.i o>OC.a 孔o a.11> 0D.S,, >01l 设x,yeR,若4x2+ y 2 +xy=l,则x+y 的值可能为A.-2B.-1C.ID.212设a;,r:O,若x=a 为函数f(x)= a (x-a/ (x-b)的极小值点,则下列关系可能成立的是A.a>O 且a>bC.a<O 且a<bB.a>O 且a<bD.a<O 且a>b第II 卷非选择题(共90分)三、填空题(本题共4小题,每小题5分,共20分)13一个正实数的小数部分的2倍,整数部分和自身成等差数列,则这个正实数是___14.四边形ABCD 中,AD=2,CD=3, BD 是四边形ABCD 的外接圆的直径,则AC-BD=15奇函数f(x)满足f(2+x)= J(l-x), /(-1)= 2023,则/(2023)=16互不相等且均不为1的正数a,b, c满足b是a,C的等比中项,则函数f(x) =a x +2b-·'+e x的最小值为四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17(本小题满分10分)设数列伈}为等差数列其前n项和为S,,(neN.),数列{丸}为等比数列已知a1=b1=1,a5 = 3b2, S4 = 4S2(I)求数列忆}和{丸}的通项公式;(2)求数列{a,,·b,,}的前n项和T”18(本小题满分12分)已知函数f(x)=五sin皿coswx-sin汤x+½,其中w>O,若买数X1,X2满足V估)-f伈)1=2时,|凸一对的最小值为一(I)求0的值及.f'(x)的单调递减区间;(2)若不等式[f(x)J +2acos(2x+勹-2a-2<0对任意XE(-工工12 6 ' )时恒成立,求实数a的取值范围.19(本小题满分12分)2S记S,,为数列伈}的前n项和已知—�+n=2a,,+l(I)证明:忆}是等差数列;(2)若QI'生,a7成等比数列,求数列{d,1:/1+1}的前2024项的和20(本小题满分12分)在L::;.ABC中,角A,B, C的对边分别为a,b, c,且满足___(从以下两个条件中任选一个补充在上面横线上作为已知,将其序号写在答题卡的横线上并作答)条件CD,(b+c)(sinB+sinC) =a sinA+3bsinC条件@:cos2(于小cosA=¾(l)求角A;(2)若L::;.ABC为锐角三角形,c=l.求L::;.ABC面积的取值范围21(本小题满分12分)已知函数f(x)=x3-x,g(x)=x2+a, aeR,曲线y=f(x)在卢、(xEf(x l))处的切线也是曲线y=g(x)的切线(I)若x l=1,求a;(2)求a的取值范围22(本小题满分12分)(I)已知函数f(x)=x l nx,判断函数g(x)= f(l+x)+ f(l-x)的单调性并证明.I.Il+- l--(2)设n为大于1的整数,证明:(n+1) "(n-l) n >n22023年秋期高中三年级期中质量评估一选择题:1-8.BADC CDBA二选择题:9.BC三填空题:4 8 13.-或-3 3 四解答题:JO.ABO14.-5数学参考答案II.BCl5.-2O2317解:(l)设等差数列忆}的公差为d,等比数列{丸}的公比为q,由S4= 4S2可得4a,+6d = 4(2a1 +d),即6d+4=4(d+2),解得d=2,所以,a,,=a1 +(n-l)d =1+2(n-1) =2n-l.3b2 = 3q = a5= 9, :. q = 3则b,.=b1q"一I=3•-I;(2)a;,b,,=(2n-1)· 3"-1,则T,,= 1-3° +3·31 +5-32 +···+(2n-1)·3"一1@,12.AC 16.4可得3兀=1·31+3·32 +.. ·+(2n -3)·3n 一I +(2n-1)·3'危),6 l -3'1一l@-@得:-2T,, = l + 2(31 + 32 +.. · + 3"一I)-(2n -1) · 3" = 1 + ()II1-3= (2-2n ) · 3" -2,因此,T,,=(n -1)·3" +ll8解:(l )f()✓3s i n(J)XCO S (J)X -s i n 2 1x l =.J 3s in(J)X C O S (J)x in (J)x +-2 石l -cos2(J)X.l =—sin2{JJX-+-22 2石l =—sin2(J)x+-=-cos2(J)X2 2 =S i 中三)因为实数斗,X 2满足V 伈)-f 伈)1=2时,怀-对的最小值为:2冗所以f(x)的最小正周期T =冗=—,解得cv=l,2Q-2n -l · 3',()所以/(x)=sin (三)由2k 冗十%::,2x+¾::,2k 冗子(k eZ)得f (x)的单调递减区间为[k冗2冗冗+一,k 冗+—](k e Z 6.3) (2)不等式[f(x)J +2acos(2气)-2a-2<0对任意XE(-启)时恒成立,[.f (x )J +2a cos (三)-2a -2= s in 2(三)+2acos (三)-2a -2= -cos 2(三)+2acos (三)-2a-l令I =CO S (三)气E (o :)c os (三)e (O,l )一t 2+2a t-2a -1<0,tE{0,1) t 2 + 12a(t -l)矿+L 2a>—恒成立t -1t 2 +l m江2m+2 2令m=t -l E(-1,0),一—==m+-=+2<-1 t -1m m:. 2a... -L 解得:a2':一一,12l故实数a 的取值范围是[-½,+oo)2S19解:(l)因为—'.!!..+n=2a 11+l,即2S,,+ n 2 = 2na11 + n(D,n当n2':2时,2S,,一1+(n-1/ =2(n-l)a,,一I +(n-1)@,@-@得,2S 11+1产2S 11一)-(n-1/ = 2na 11 + n-2(n-l)a,,一)-(n-1),即2a ,,+2n-l =2na 11 -2(n-l)a,'一i +L即2(n-l)a ,,-2(n-l)a ,,一)=2(n-l),所以a 11-a n -I = 1,,i 2': 2且n E N •,所以{a,,}是以1为公差的等经数列(2)由(I)可得a 3=c� +2, � =a 1+6又a 1,a 3, a 1成等比数列,所以(a 1+2/ =a 1 ·(a 1 +6),解得a 1=2,所以a.=n +l1 1 1 1 ... -= � =—-.a ,,a ,,+1 (n+l)(n+2) n +l n+2 :.数列{a ,1:/1+1}的前2024项和为·且-i)+(主计(曰)++(幸声)千幸倡20解:解析:(l)选择条件@:由题意及正弦定理知(b+c)=a 2+3bc,b 2 +c 2_矿l:. a 2=b 2+c 2-bc, :. cosA =�=..'.:..·:O<A<冗,.·.A=色.32bc 2选择条件@:因为cos2(f+ A )+cosA = ¾,所以sin 2A +cosA = ¾,5 45 1即l-cos 2A +co sA=-,解得cos A =一,又O<A <冗,42冗所以A=-3(2)由 b C—=—可得s i nB sinCb=气sm[!C+C )石l一cos C +�s i nC 1石)2 2 = --=-----= -+—· sinC 2 2 tanC冗2因为t0:.ABC 是锐角三角形,由(l )知A =.:.:.,A+B+C =冗得到B+C =一冗,3 3O<C<.:.:..冗故{卢-C 2<工,解得产<C <亨所以½<b<232I,..✓3石"3Sil.ABC= ½bcs i n A=了b 'Sil.ABC E(/'了)21解:(I)巾题意知,f(l )=O,f'(x)=3x 2一l,f'(l )=3-l =2,则y =f(x)在点(l,0)处的切线方程为y =2(x -l),y=2x-2设该切线与g(x)切千点化,g (凸)),g'(x)=2x,则g '(凸)=2-Xz =2,解得x 2=1,则g(l )=l+a=2-2=0,解得a=-1;(2)因为f'(x)=3x 2-L 则y=f(x)在点(x I ,f (凸))处的切线方程为y-(式-x 1)= (3x� -l )(x-x,),整理得y =(3x 12-小-勾,设该切线与g (x)切千点化,g (凸)),g'(x)=2x,则g '(凸)=勾~则切线方程为y-(斗+a)=2凸(x 飞),整理得y =2x 2x -式+a,则厂::::飞X+a,整理行a =x 户-2x f=(孚-订-2x f=:亡2x f -扫叶93 2,l令h(x)= �x 4-2x 3-�x +-,则h'(x)=9i 3-6x 2-3x = 3x(3x+l)(x -l ),4 2 4令h'(x)>0,解得-一<x<O 或x>1,3令h'(x)<0,解得x<--或O<x<L3则x 变化时,h'(x),h(x)的变化悄况如下表:(-OO六)lX h'(x) 。
南阳市2016届高三上学期期中质量评估数学(文)试题第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P ={2|1x x ≤},M ={a },若PUM =P ,则a 的取值范围是 A .(一1,1) B .[一1,1]C .[1,+∞)D .(一∞,一1〕U 〔1,+∞)2,设Sn 是等差数列{n a }的前n 项和,已知a 2=3,a 6=11,则S 7等于 A .13 B .35 C .49 D .633.函数了(x )在x=0x 处导数存在,若p :0'()0f x =,q :x =x 0是f (x )的极值点,则A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.要得到函数g (x )=sin(2)6x π+,只需将f (x )=cos 2x 的图像A .左移3π个单位 B .右移3π个单位 C .左移6π个单位 D .右移6π个单位5.已知定义在R 上的奇函数f (x ),当x ≥0时,221,[0,1]()(2),(1,)x x f x x x ⎧-∈⎪=⎨-∈+∞⎪⎩,则f [f (一3)]=A 、1B .一1C .7D .一76.如图所示,M 、N 是函数2sin()(y x ωϕω=+>0)图像与x 轴的交点,点P 在M 、N 之间的图像上运动,当△MPN 面积最大时PM PN=0,则ω=A .4πB .3πC .2πD .87.△ABC 外接圆半径为1,圆心为O ,且3450OA OB OC ++= ,则OC AB=A .-15 B .13C 一1D .1 8·已知函数()log (01)a f x x a a =>≠且满足f (2a )>f (3a ),则f (1一1x)>0的解为A .0<x <1B .x <1C .x >1D .x >09.已知f (x )=x 2+(sin θ一cos θ)x +sin θ(θ∈R )的图象关于y 轴对称,则 sin2θ+cos2θ的值为 A 、32 B ·2 C ·12D ·1 10.已知函数y =f (x )是R 上的减函数,且函数y =f (x 一1)的图象关于点A (1,0)对称,设动点M (x ,y ),若实数x ,y 满足不等式f (x 2一8y +24)+f (y 2一6x ))≥0恒成立,则OA OM的取值范围是A .(一∞,+∞)B .〔一1,1]C .〔2,4]D .[3,5]11.已知函数33|log |,03()2log ,3x x f x x x <≤⎧=⎨->⎩,若a ,b ,c 互不相等,且f (a )=f (b )=f(c ),则a +b +c 的取值范围12.已知f (x ),g (x )都是定义在R 上的函数,,且.若数列的前n 项和大于62,则n 的最小值为A .6B .7C .8D .9第II 卷(非选择题共90分)二、坟空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13.若复数z 满足(3一4i )z =|4+3i 卜则z 的虚部为 14.函数f (x )=133|log |x x 一1的零点个数为 ·15.△ABC 为等腰直角三角形,OA =1,OC 为斜边AB 上的高,P 为线段OC 的中点,则AP OP=16·已知数列{n a }为等差数列,若761a a <-,且它们的前n 项和Sn 有最大值,则使Sn>0的n 的最大值为三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)已知向量1(cos ,),,cos 2),2a xb x x x R =-=∈,设函数f (x )=a ·b .(1)求了(x )的单调递增区间; (2)求f (x )在[0,]2π上的最大值和最小值.18.(本小题满分12分)已知数列{2log (1)(*)n a n N -∈}为等差数列,且a 1=3,a 3=9. (1)求数列{n a }的通项公式;(2)证明:19.(本小题满分12分)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos )B A B =+=,ac =,求sinA 和边c 的值.20.(本小题满分12分)已知函数32()331f x x ax x =+++(1)a =时,讨论f (x)的单调性;(2)若x [2,)∈+∞时, f(x)≥0恒成立,求a 的取值范围.21.(本小题满分12分)直线Ln : y =x Cn :222n x y a n +=+交于不同的两点,n n A B .数列{n a }满足:(1)求数列{n a }的通项公式, (2)若,求{}的前n 项和Tn .22.(本小题满分12分)设函数f(x)=ax 21n x +b(x -1)(x >0),曲线y =f (x)过点(e ,e 2-e +1),且在点(1,0)处的切线方程为y =0. (1)求a ,b 的值;(2)证明:当x ≥1时,f(x)≥(x -1)2;(3)若当x ≥1时f (x)≥m(x -1)2恒成立,求实数m 的取值范围.高三(文科)数学试题参考答案一、选择题二、填空题13、 215、 1117.解: (Ⅰ)()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x . 当226222πππππ+≤-≤-k x k 时,解得36ππππ+≤≤-k x k ,)62sin()(π-=∴x x f 的单调递增区间为)](3,6[Z k k k ∈+-ππππ. ……………5分 (Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈. ]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f .所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-. ……………10分 18. 解:(1)解:设等差数列)}1({log 2-n a 的公差为d 。
由,8log 2log )2(log 29,322231+=+==d a a 得即d =1。
所以2log (1)1(1)1,n a n n -=+-⨯=即.12+=nn a …………5分 (2)证明:nn n n n a a a 2121111=-=-++,…………7分 所以nn n a a a a a a 2121212111132112312++++=-++-+-+ .1211211212121<-=-⨯-=n n …………12分19.解:在ABC ∆中,由cos B =sin B =因为A B C π++=,所以sin sin()C A B =+=, …………2分 因为sin sin C B <,所以C B <,可知C 为锐角,…………4分所以cos C =sin sin()A B C =+ sin cos cos sin B C B C =+==…………8分由,sin sin a cA C =可得sin sin c A a C ===,又ac =,所以1c =. …………12分 20.(Ⅰ)当a =,()32=3 1.f x x x ++'2()33f x x =-+. …………2分令'()0f x =,得,11x =-,21x =+.当(1)x ∈-∞-时,'()0f x >,()f x在(1)-∞是增函数;当1)x ∈-时,'()0f x <,()f x在1)+是减函数;当1,)x ∈+∞时,'()0f x >,()f x在1,)+∞是增函数;…………6分 (Ⅱ)采用分离字母的方法323310x ax x +++≥ 在[)2,x ∈+∞时恒成立,32313x x a x ---∴≥令3231()x x g x x ---= 42322333232(1)(2)()x x x x x x x g x x x x'----+-=-=-=- ………10分 当[)2,x ∈+∞时 ()0g x '≤()g x ∴在 [)2,x ∈+∞单调递增,min 15()(2)4g x g ==-,54a ∴≥- …………12分 21.(1)圆心距n d =,半径n r =22211224n n n n n n n a A B r d a n n a +∴==-=+-=…………2分12,{}n n na a a +=∴是以1为首项,2为公比的等比数列,12n n a -∴=…………4分(2)n 为偶数时,12312462351(...)(...)2(21)[157...(23)](222 (2))23n n n n n T b b b b b b b b n n n --=+++++++++--=++++-+++++=+n 为奇数时,2121(1)(1)2(21)22(21)2323n n n n n n n n n T T b n ------+-=+=++-=+…10分综上:222(21),232223n n n n n n n n n T --++-+⎧⎪=⎨⎪⎩为偶数,为奇数 …………12分22.解:(1)()2ln f x a x ax b '=++,(1)0f a b '=+= ,22()(1)(1)f e ae b e a e e =+-=-+21e e =-+ 1=∴a ,1-=b .………………………………4分(2)2()ln 1f x x x x =-+,设22()ln g x x x x x =+-,(1)x ≥,()2ln 1g x x x x '=-+(())2ln 0g x x ''=>,∴)(x g '在[)+∞,0上单调递增,∴()(1)0g x g ''≥=,∴)(x g 在[)+∞,0上单调递增,∴()(1)0g x g ≥=. ∴2()(1)f x x ≥-.………………………………8分(3)设22()ln (1)1h x x x x m x =---+,()2ln 2(1)1h x x x x m x '=+---,由(2) 中知22ln (1)1(1)x x x x x x ≥-+-=-,∴ln 1x x x ≥-,∴()3(1)2(1)h x x m x '≥---,①当023≥-m 即23≤m 时,0)(≥'x h ,)(x h ∴在[1,)+∞单调递增,()(1)0h x h ∴≥=,成立.②当320m -<即23>m 时,()2ln (12)(1)h x x x m x '=+-- (())2ln 32h x x m ''=+-,令(())0h x ''=,得23201m x e-=>,当[)01,x x ∈时,()(1)0h x h ''<=,)(x h ∴在[)01,x 上单调递减()(1)0h x h ∴<=,不成立. 综上,23≤m .………………………………12分。