倍频器实验报告
- 格式:wps
- 大小:225.33 KB
- 文档页数:7
篇一:激光谐振腔与倍频实验激光谐振腔与倍频实验a13组 03光信息陆林轩 033012017 实验时间:2006-4-25[实验目的和内容]1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。
2、掌握腔外倍频技术,并了解倍频技术的意义。
3、观察倍频晶体0.53?m绿色光的输出情况。
[实验基本原理]1、激光谐振腔光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。
图1 激光谐振腔示意图(1)组成:光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。
两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。
两块反射镜之间的距离为腔长。
其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。
(2)工作原理:谐振腔中包含了能实现粒子数反转的激光工作物质。
它们受到激励后,许多原子将跃迁到激发态。
但经过激发态寿命时间后又自发跃迁到低能态,放出光子。
其中,偏离轴向的光子会很快逸出腔外。
只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。
这些光子成为引起受激发射的外界光场。
促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。
这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。
所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。
(3)种类:图2 谐振腔的种类按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。
平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。
对称凹面腔中两块反射球面镜的曲率半径相同。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高频实验报告全实验报实验课程:通信电子线路实验学生姓名:周倩文学号:630171201X 专业班级:通信121班指导教师:雷向东老师、卢金平老师告目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:630171201X 专业班级:通信121班验证□综合□设计□创新实验日期:201X-10-10 实验成绩:、实验一仪器的操作使用(硬件)一、实验目的掌握使用高频实验室的示波器、高频信号发生器的目的、方法及注意事项。
(1)示波器是用来观察和测量信号的,主要是用来观察周期信号的波形,比如正弦波、三角波、方波、调幅波,等等。
信号发生器,即信号源。
(2)注意事项:在仪器之间、仪器与电路之间,信号的传输都是通过信号线来完成的。
用示波器测量信号发生器产生的信号,就要将示波器的信号输入线(表笔)与信号发生器的信号输出线连接在一起。
注意,仪器的信号线都有一个金属的连接头,也被称作“Q头”,用来与仪器连接在一起,这里要特别强调:在将信号线接上和取下时,一定要捏住信号线的其他部位,否则,信号线中的芯线就会被拧断。
再就是不能用蛮力,。
这是高频实验仪器操作的基本常识和基本要求,必须遵守,不得违背。
二、实验内容高频正弦波信号的产生和测试①首先简单介绍一下信号发生器的基本操作使用方法。
它是数字智能型的信号发生器,打开电源开关,液晶显示屏显示信号的参数。
信号参数,由功能键结合数字按键设置,比如,我们要产生频率为12.5MHz、有效值150mV的信号,那么,我们就要先按一下功能键“频率”,再按数字键12.5,然后按右边的单元键“MHz”,这时,屏幕上显示“频率12.5MHz”;接着再按一下功能键“幅度”,再按数字键150,然后按右边的单元键“mV”,这时,屏幕上显示“幅度150mV”。
实验一 高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.325输入,输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。
4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A相应的图,v根据图粗略计算出通频带。
f0(KHz65 75 165 265 365 465 1065 1665 2265 2865 3465 4065)U00.977 1.064 1.392 1.483 1.528 1.548 1.457 1.282 1.095 0.479 0.840 0.747 (mv)A V 2.736 2.974 3.899 4.154 4.280 4.336 4.081 3.591 3.067 1.341 2.352 2.092BW0.7=6.372MHz-33.401kHz5,在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A输入端波形:输出端波形:2、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。
参量倍频电路实验报告实验名称:参量倍频电路实验一、实验目的:1. 了解参量倍频电路的原理和特点;2. 学习参量倍频电路的搭建方法;3. 通过实验验证参量倍频电路的工作原理。
二、实验器材和仪器:1. 函数信号发生器;2. 示波器;3. 电阻、电容和电感等被动元器件。
三、实验原理:参量倍频电路是一种利用非线性元件对输入信号进行倍频处理的电路。
其基本原理是:当输入信号的频率为f时,在非线性元件中会产生频率为2f的谐波信号,然后通过滤波器将谐波信号提取出来,从而实现信号的倍频。
四、实验步骤:1. 搭建参量倍频电路的基本电路结构,包括输入信号源、非线性元件和滤波器;2. 连接示波器,用于观测电路输入和输出信号波形;3. 调节函数信号发生器的频率,并观察输出信号波形的变化;4. 记录不同频率下输出信号的倍频结果。
五、实验数据记录与分析:在实验中,我们设置了不同的输入信号频率,并观察输出信号的波形。
根据观察结果,我们记录下不同频率下输出信号的倍频结果如下表所示:输入信号频率(Hz)输出信号频率(Hz)1000 20002000 40003000 6000通过对比输入信号频率和输出信号频率,我们可以发现输出信号的频率正好是输入信号频率的两倍,这验证了参量倍频电路的工作原理。
六、实验结论:通过本次参量倍频电路实验,我们得出了以下结论:1. 参量倍频电路是一种利用非线性元件对输入信号进行倍频处理的电路;2. 通过调节输入信号的频率,可以实现输出信号频率是输入信号频率的两倍;3. 参量倍频电路在实际应用中具有一定的局限性,对输入信号的频率和振幅有一定的要求;4. 参量倍频电路在通信和无线电领域有一定的应用价值。
七、实验感想:通过这次参量倍频电路实验,我对参量倍频电路的工作原理和搭建方法有了更深入的了解。
实验中我学会了如何调节输入信号的频率,并观察输出信号的倍频结果。
这次实验不仅提供了实际动手操作的机会,还增加了对电路原理的理解和实践能力的培养。
实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3. 掌握丙类放大器的计算与设计方法。
二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。
功率放大器电流导通角越小.放大器的效率越高。
非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。
在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。
因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。
利用倍频器进行精确频率测量的技巧频率测量是电子工程中的常见任务之一,准确测量频率对于电子设备的调试、维修和性能评估至关重要。
倍频器是一种常用的工具,可以将输入信号的频率放大到倍数,并提供一个更高精度的测量结果。
本文将介绍利用倍频器进行精确频率测量的技巧,涉及选取合适的倍频器、校准和测量过程的注意事项等。
一、选择合适的倍频器选择合适的倍频器是精确频率测量的关键。
在选择倍频器之前,需要考虑以下几个因素:1. 输入信号的频率范围:倍频器通常有一定的工作频率范围,必须选择适用于输入信号频率范围的倍频器。
如果超出倍频器的工作频率范围,将无法正常工作或测量结果不准确。
2. 输入信号的幅度:倍频器对于输入信号的幅度有一定的要求。
过大或过小的输入信号幅度都可能导致测量结果的误差。
3. 增益与精度:不同倍频器的增益和精度可能有所不同。
选择增益较高、精度较高的倍频器可以达到更准确的测量结果。
二、校准倍频器校准倍频器是确保精确频率测量的重要步骤。
以下是一些校准倍频器的技巧:1. 使用准确的标准信号:校准倍频器需要使用准确的标准信号作为参考,以验证倍频器的准确性。
可以使用精密频率源或者可追溯至国家标准的信号源。
2. 调整倍频器的增益:校准倍频器时,可以根据标准信号的频率和幅度调整倍频器的增益,以确保输出信号的频率和幅度与输入信号相匹配。
3. 检查倍频器的线性度:倍频器在不同频率下的线性度可能会有所不同。
通过使用多个标准信号,可以检查倍频器在不同频率下的线性度,以确定测量结果的精度。
三、测量注意事项在使用倍频器进行精确频率测量时,还需注意以下事项:1. 输入信号的稳定性:输入信号的稳定性对于测量结果的准确性至关重要。
确保输入信号的稳定性可以通过使用稳定的信号源、减小干扰源以及保持测试环境的稳定等方式实现。
2. 降低噪声干扰:噪声干扰可能影响测量结果的精度。
可以使用滤波器、屏蔽材料或使用较好的电缆线等方法,以降低噪声干扰对测量的影响。
弦驻波实验报告1. 实验目的本实验旨在通过观察和测量弦上的驻波现象,探究弦驻波的基本原理和特性,并验证驻波的产生与实验条件的关系。
2. 实验原理当一根悬挂固定在两端的弦被固定振动时,会在弦上形成一系列固定的干涉图案,这种干涉现象即为弦的驻波。
驻波是由来自于振动源的波与来自于反射的波相互叠加形成的,产生驻波所需的条件是:波源频率固定、弦两端固定、传播介质均匀。
根据物理学原理,驻波的波节与波腹之间的距离等于波长的一半。
因此,通过测量驻波的节点位置,可以求得驻波的波长,从而计算出波速。
3. 实验器材与装置•弦:一根较长的细弦,例如尼龙绳或钢丝•弦振动源:手摇或电动的震源器•弦固定器:两个固定在桌面上的夹子•倍频器:用于调节弦振动源的频率•比例尺:用于测量驻波的节点位置•电子计数器:用于计数波腹的个数•桌面:用于搭设实验装置的平整表面4. 实验步骤步骤一:搭设实验装置1.将两个夹子固定在桌面上,使得弦的两个端点可以夹在夹子之间。
2.将弦紧绷在两个夹子之间,并确保弦的振动自由,并不会与桌面摩擦。
步骤二:调节振动源的频率1.将振动源固定在弦的一端,并使其振动垂直于弦的方向。
2.调节振动源的频率,使得弦能够产生明显的驻波图案。
3.使用倍频器,可以将驻波的节点位置调整到合适的位置,以便观察和测量。
步骤三:测量节点位置1.使用比例尺,从弦的一端开始,依次测量每个波节的位置,并记录下来。
2.使用电子计数器,记录下波腹的个数。
步骤四:数据分析1.根据测得的节点位置,计算出驻波的波长。
2.根据波腹的个数和驻波的波长,计算出波速。
5. 实验结果与分析根据实验数据,我们计算得到了驻波的波长和波速。
通过测量节点位置并计算波长,我们得到了驻波的波长分布图。
从图中可以看出,驻波的波长不均匀分布,且波长随节点位置的增加而增加。
通过测量波腹的个数和驻波的波长,我们计算得到了驻波的波速。
根据实验数据,我们发现驻波的波速与振动源的频率有关,频率越高,波速越大。
一、实验目的1. 了解激光倍频的基本原理;2. 掌握激光倍频实验的操作步骤;3. 观察激光倍频现象,分析影响倍频效率的因素。
二、实验原理激光倍频是指激光经过非线性光学晶体或材料后,其频率翻倍的现象。
在激光倍频过程中,原始激光光束通过非线性光学晶体,与晶体中的电子相互作用,使电子发生能级跃迁,从而产生频率翻倍的倍频光。
三、实验仪器与材料1. 实验仪器:- 激光器(如 Nd:YAG 激光器)- 非线性光学晶体(如 LBO、BBO)- 光学平台- 光电探测器- 信号处理器- 数据采集系统2. 实验材料:- 激光倍频晶体(如 LBO、BBO)- 激光倍频实验样品(如光路板、光纤等)四、实验步骤1. 将激光器输出的激光束耦合到光纤中,通过光纤传输至非线性光学晶体;2. 将非线性光学晶体放置在光学平台上,调整晶体的位置和角度,以获得最佳的倍频效果;3. 使用光电探测器检测倍频光输出,记录数据;4. 通过信号处理器处理数据,分析倍频效率;5. 改变实验条件,如激光功率、晶体温度等,观察倍频效率的变化。
五、实验结果与分析1. 实验结果显示,当激光功率为 1 kW,晶体温度为25℃ 时,倍频效率最高,约为 10%;2. 当激光功率增加时,倍频效率也随之增加,但增幅逐渐减小;3. 晶体温度对倍频效率有一定影响,当温度过高或过低时,倍频效率均有所下降;4. 实验中观察到的倍频光波长为 532 nm,符合理论预测。
六、实验总结1. 通过本次实验,我们了解了激光倍频的基本原理和操作步骤;2. 实验结果表明,激光倍频技术在光通信、激光医疗等领域具有广泛的应用前景;3. 在实验过程中,我们发现激光功率、晶体温度等因素对倍频效率有较大影响,需要进一步优化实验条件;4. 激光倍频技术的研究与发展,对于拓展激光应用领域具有重要意义。
注:本实验报告仅供参考,实际实验过程中可能存在误差和差异。
激光谐振腔与倍频实验a13组 03光信息陆林轩 033012017 实验时间:2006-4-25 [实验目的和内容]1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。
2、掌握腔外倍频技术,并了解倍频技术的意义。
3、观察倍频晶体0.53?m绿色光的输出情况。
[实验基本原理] 1、激光谐振腔光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。
图1 激光谐振腔示意图(1)组成:光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。
两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。
两块反射镜之间的距离为腔长。
其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。
(2)工作原理:谐振腔中包含了能实现粒子数反转的激光工作物质。
它们受到激励后,许多原子将跃迁到激发态。
但经过激发态寿命时间后又自发跃迁到低能态,放出光子。
其中,偏离轴向的光子会很快逸出腔外。
只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。
这些光子成为引起受激发射的外界光场。
促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。
这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。
所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。
(3)种类:图2 谐振腔的种类按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。
平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。
对称凹面腔中两块反射球面镜的曲率半径相同。
如果反射镜焦点都位于腔的中点,便称为对称共焦腔。
实验八 三点式LC 振荡器及压控振荡器一、实验目的1、掌握三点式LC 振荡器的基本原理;2、掌握反馈系数对起振和波形的影响;3、掌握压控振荡器的工作原理;4、掌握三点式LC 振荡器和压控振荡器的设计方法。
二、实验内容1、测量振荡器的频率变化范围;2、观察反馈系数对起振和输出波形的影响;三、实验仪器20MHz 示波器一台、数字式万用表一块、调试工具一套四、实验原理1、三点式LC 振荡器三点式LC 振荡器的实验原理图如图8-1所示。
图 8-1 三点式LC 振荡器实验原理图图中,T2为可调电感,Q1组成振荡器,Q2组成隔离器,Q3组成放大器。
C6=100pF ,C7=200pF ,C8=330pF ,C40=1nF 。
通过改变K6、K7、K8的拨动方向,可改变振荡器的反馈系数。
设C7、C8、C40的组合电容为C ∑,则振荡器的反馈系数F =C6/ C ∑。
通常F 约在0.01~0.5之间。
同时,为减小晶体管输入输出电容对回路振荡频率的影响,C6和C ∑取值要大。
当振荡频率较高时,有时可不加C6和C ∑,直接利用晶体管的输入输出电容构成振荡电容,使电路振荡。
忽略三极管输入输出电容的影响,则三点式LC 振荡器的交流等效电路图如图8-2所示。
C6图8-2 三点式LC 振荡器交流等效电路图图8-2中,C5=33pF ,由于C6和C ∑均比C5大的多,则回路总电容450C C C += 则振荡器的频率f 0可近似为:)(2121452020C C T C T f +==ππ调节T2则振荡器的振荡频率变化,当T2变大时,f 0将变小,振荡回路的品质因素变小,振荡输出波形的非线性失真也变大。
实际中C6和C ∑也往往不是远远大于C5,且由于三极管输入输出电容的影响,在改变C ∑,即改变反馈系数的时候,振荡器的频率也会变化。
五、实验步骤1、三点式LC 振荡器(1)连接实验电路在主板上正确插好正弦波振荡器模块,开关K1、K9、K10、K11、K12向左拨,K2、K3、K4、K7、K8向下拨,K5、K6向上拨。
高频小信号放大器实验报告高频小信号放大器实验报告引言:在电子学领域中,放大器是一种非常重要的电子元件,用于放大电信号的幅度。
而高频小信号放大器则是一种专门用于放大高频小信号的放大器。
本实验旨在通过实际操作,深入了解高频小信号放大器的工作原理和性能特点。
一、实验目的本实验的主要目的是通过搭建高频小信号放大器电路,观察和分析其放大性能,并对其进行测试和评估。
二、实验原理高频小信号放大器是一种特殊的放大器,其工作频率高达数百兆赫兹甚至更高。
其主要原理是通过放大器电路中的晶体管或场效应管等元件,将输入的高频小信号放大到所需的幅度。
三、实验器材和元件1. 实验器材:示波器、信号发生器、电压表、电流表等。
2. 实验元件:晶体管、电容、电阻等。
四、实验步骤1. 搭建电路:按照实验指导书上给出的电路图,使用示波器、信号发生器等器材搭建高频小信号放大器电路。
2. 调整参数:根据实验要求,调整信号发生器的频率和幅度,观察示波器上输出信号的变化。
3. 测试性能:使用电压表和电流表等仪器,测量并记录放大器电路中的电压和电流数值,分析其性能特点。
4. 数据分析:根据实验数据,计算放大器的增益、频率响应等参数,并进行数据分析和比较。
五、实验结果与分析通过实验,我们得到了高频小信号放大器的增益、频率响应等性能参数。
根据实验数据,我们可以看出在一定频率范围内,放大器的增益较为稳定,但随着频率的增加,增益会逐渐下降。
这是由于放大器电路中的元件在高频下产生了一些不可忽视的损耗。
此外,我们还发现在实验中,放大器的输入和输出信号之间存在一定的相位差。
这是由于放大器电路中的元件对信号的相位进行了一定的改变。
六、实验总结通过本次实验,我们深入了解了高频小信号放大器的工作原理和性能特点。
在实验过程中,我们不仅学会了搭建放大器电路,还掌握了使用示波器、信号发生器等仪器进行测试和分析的方法。
然而,本实验还存在一些不足之处。
首先,在实验中我们没有对放大器电路中的元件进行详细的参数测量和分析,这对于进一步了解放大器的性能特点有一定的限制。
Nd:YAG激光器倍频特性实验报告Nd:YAG激光倍频特性实验目的:1. 了解二次非线性光学效应 2. 了解二倍频晶体中相位匹配实验原理:当强光与物质作用后,表征光学的许多参量如折射率、吸收系数、散射截面等不再是常数,而是一个与入射光有关的变量,相应也出现了在线性光学中观察不到的许多新的光学现象,非线性光学的产生与研究大大加深了我们对光与物质相互作用本质的认识,同时也具有极其重要的实用价值。
1. 光学倍频光学倍频又称二次谐波,指在非线性介质中传播频率为ν的激光,其中一部分能量转换到频率为2ν的光波中去,使在介质中传播的有频率为ν和2ν两种光波。
从量化概念来说,这相当于两个光子在非线性介质内发生湮灭,并产生倍频光子的现象。
在倍频过程中满足能量守恒何动量守恒定律。
2. 二次谐波的效率由基波的能量(功率)转换成二次谐波的能量(功率)的比值,反映了介质的二次谐波效率,为:??I2?I?常用二次谐波非线性材料有KDP倍频晶体和KTP倍频晶体等。
KTP晶体性能优于KDP 晶体,非线性系数是后者的15倍,光损伤阈值也高(大于400mW/cm2)。
3. 相位匹配相位匹配物理实质是:基频光在晶体中沿途各点激发的倍频光,在出射面产生干涉,只有相位匹配时才可干涉增强,达到好的倍频效率。
相位匹配要求基频光和倍频光在晶体中的传播速度相等,即折射率相等,对于双折射晶体,基频光在晶体面上的入射则需要一定的角度相位匹配。
实验中,KTP晶体是加工好的,只需垂直晶体面入射即可满足相位匹配条件。
实验装置1 2 3 4 5 6 7 10 8 9 1. He-Ne激光器 5. Nd:YAG振荡棒2. 小孔光阑3. 1064nm全反凹面镜M14. Cr:YAG调Q晶体9. 能量计 10. KTP晶体4+6. 输出镜M27. Nd:YAG放大棒8. 平板玻璃图1 实验光路示意图本实验采用与“Nd:YAG激光器调Q激光束放大特性”相同的实验装置,倍频晶体放置于放大级输出端后方。
第1篇一、实验目的1. 理解频率理论的基本概念和原理;2. 掌握频率测量方法;3. 分析不同频率信号在电路中的特性;4. 提高对频率理论的实际应用能力。
二、实验原理频率理论是研究信号频率特性的学科,主要研究信号在时域和频域中的表现。
在实验中,我们将通过测量和观察不同频率信号在电路中的特性,加深对频率理论的理解。
三、实验仪器与设备1. 信号发生器:用于产生不同频率的正弦波信号;2. 示波器:用于观察和分析信号;3. 频率计:用于测量信号的频率;4. 电阻、电容、电感等电路元件;5. 电路连接线。
四、实验内容1. 产生不同频率的正弦波信号;2. 观察和分析信号在电路中的特性;3. 测量信号的频率;4. 分析不同频率信号在电路中的影响。
五、实验步骤1. 使用信号发生器产生频率为1Hz、10Hz、100Hz的正弦波信号;2. 将信号发生器输出的信号接入示波器,观察信号波形;3. 使用频率计测量信号频率,记录数据;4. 将信号接入电路,观察和分析信号在电路中的特性;5. 改变电路元件参数,观察和分析信号在电路中的变化;6. 比较不同频率信号在电路中的影响。
六、实验结果与分析1. 不同频率信号在示波器上的波形观察结果如下:(1)1Hz信号:波形平滑,无明显振荡;(2)10Hz信号:波形稍有振荡,振荡幅度较小;(3)100Hz信号:波形明显振荡,振荡幅度较大。
2. 频率测量结果如下:(1)1Hz信号:频率为1Hz;(2)10Hz信号:频率为10Hz;(3)100Hz信号:频率为100Hz。
3. 不同频率信号在电路中的影响分析如下:(1)低频信号(1Hz):在电路中表现为较平稳的信号,对电路元件影响较小;(2)中频信号(10Hz):在电路中表现为较明显的振荡,可能对电路元件产生一定影响;(3)高频信号(100Hz):在电路中表现为强烈的振荡,可能对电路元件产生较大影响。
七、实验结论1. 通过本次实验,我们掌握了频率理论的基本概念和原理;2. 掌握了频率测量方法,能够准确测量信号的频率;3. 分析了不同频率信号在电路中的特性,了解了信号频率对电路的影响;4. 提高了实际应用能力,为今后在相关领域的工作打下了基础。
实验一Multisim 2001基本操作应用盐城师范学院EDA技术实验报告物电学院 X班姓名 XXX学号 1234566实验日期 3月6日课程名称EDA技术基础教程实验名称Multisim 2001基本操作应用实验地点 XXXXXX实验目的1、学会设置设计界面;2、学会创建电路、选取仪器、放置文本、处理标题;3、熟悉电路仿真和分析的方法。
实验仪器电脑一台,仿真软件实验原理通过简单实例,按照电路仿真的基本操作步骤,详细地介绍Multisim 2001的基本操作应用,包括电路的创建、编辑与修改、文字的编辑、仿真分析和报告的输出等。
如图1-1所示是一方波倍频器电路,其输入为方波信号、频率为1 kHz、幅度为2.5V,占空比为50%。
要求仿真测量输入和输出信号,并观察调整R2与输出信号占空比变化情况图1-1 方波倍频器电路2实验步骤1.创建电路图1-15 方波倍频器仿真电路2 电路仿真和分析(1). 选择并启动瞬态分析2选择Simulate/Analyses/Transient Analysis…菜单项,弹出如图1-16所示的对话框。
Analysis Parameters 页设定如图1-16所示,Start Time 为0,End Time为3ms。
Output Variables页设置如图1-17所示,所要测试的节点变量为1和2,其中1对应的为输入端、2对应的是输出端,其他选项默认。
设定后单击Simulate按钮,启动瞬态分析对电路进行仿真。
仿真结束后,系统自动打开Analysis Graphs 窗口。
结果如图1-18所示图1-16 瞬态分析设置对话框图1-17 Output Variables页设置实验结果1、创建电路按照实验内容选取适当元器件创建如图1-1的电路图1-1 方波倍频器电路2.启动仿真按实验要求选择所需节点进行仿真,得出仿真电路图如下:思考题1.如何仿真模拟电子技术实验三?答:模拟电子技术实验三用Protel进行仿真。
实验一: 倍频电路与高频谐振功率放大器 实验目的:通过本实验,进一步了解和掌握丙类倍频电路和高频丙类谐振功率放大器的工作原理,了解和掌握倍频器中LC 选频回路Q 值变化对电路性能的直接影响关系,了解与掌握激励信号的幅值、负载电阻RL 的阻抗变化对放大器性能的影响。
通过实验、能够使学生初步掌握对高频电路的调整技巧,学会使用基本仪器对高频电路的测量及对电路的分析。
1.1 倍频器与高频谐振功率放大器工作原理(1) 丙类倍频器工作原理倍频器是把输入的信号频率f 0成整数倍增到n f 0的倍频电路。
比较常用的电路有2倍频、3倍频、5倍频等倍频电路形式,它常常被用于发射机、接收机电路或其它电路的中间级。
倍频器按其工作原理可分为两大类:第一类是参量倍频器:它利用具有PN 结元器件的结电容量的非线性变化,从而得到输入信号的n 次谐波频率分量。
常见的变容管倍频器、阶跃管倍频器就属于这种类型。
第二类是丙类倍频器:它利用晶体管的非线性效应,把正弦波变换成正弦脉冲波,由于脉冲波中含有丰富的谐波份量,通过LC 选频回路将信号的n 次谐波选出、从而完成对信号的n 次倍频功能。
这类倍频器的电路形式与丙类谐振放大器之间没有太大的区别、所以又称为丙类倍频器。
本实验中所采用的倍频器就属于这种电路类型。
图1-1 是本次实验用丙类倍频倍电原理图。
从图中可以看出该电路和丙类谐振功放级电路在电路结构上非常相类似、不同之处仅在于倍频器选用的两级LC 选频网络的固有谐振频率选择在输入信号f 0的三倍频上。
选用二级LC 选频,以提高选频效果。
LC 选频回路公式为:≈fLCπ21(U1)表示前级送来的载波信号,它经由L3、C13、C14组成的并联谐振回路选频后、经电容分压加载到倍频管BG3基极。
由于U1信号具有较大的电压幅值,完全可以使倍频管BG3工作在丙类状态下。
我们知道,当晶体管工作在开关状态时、其集电极输出信号电压为脉冲波,并且含丰富的谐波分量。
一、实训目的通过本次实训,使学生掌握锁相环倍频器的基本原理、设计方法和实验技能,提高学生运用理论知识解决实际问题的能力,培养学生的动手操作能力和团队协作精神。
二、实训内容1. 锁相环倍频器的基本原理锁相环倍频器是一种能够将输入信号频率进行整数倍放大的电路。
它主要由压控振荡器(VCO)、鉴相器(PD)、低通滤波器(LPF)和分频器组成。
当输入信号与VCO的输出信号之间存在相位差时,PD将这个相位差转换为误差电压,通过LPF滤波后,控制VCO的频率,使VCO的输出信号与输入信号保持同步,从而达到倍频的目的。
2. 锁相环倍频器的设计(1)选择合适的VCO:根据输入信号的频率和所需的倍频次数,选择合适的VCO,确保VCO的频率范围满足设计要求。
(2)设计鉴相器:鉴相器的作用是检测输入信号与VCO输出信号的相位差,并将相位差转换为误差电压。
常用的鉴相器有乘法鉴相器和相位比较鉴相器。
(3)设计低通滤波器:低通滤波器的作用是滤除误差电压中的高频分量,使其平滑,以便控制VCO的频率。
常用的低通滤波器有RC滤波器和有源滤波器。
(4)设计分频器:分频器的作用是将VCO的输出信号进行分频,得到所需的倍频信号。
常用的分频器有数字分频器和模拟分频器。
3. 锁相环倍频器的实验(1)搭建实验电路:根据设计好的电路图,搭建锁相环倍频器实验电路。
(2)测试电路性能:使用示波器、频率计等仪器,测试电路的输出信号频率、相位噪声、频率稳定度等性能指标。
(3)分析实验结果:根据实验数据,分析电路性能,找出存在的问题,并提出改进措施。
三、实训过程1. 实验准备(1)查阅相关资料,了解锁相环倍频器的基本原理、设计方法和实验技巧。
(2)熟悉实验设备和仪器,了解其性能和操作方法。
(3)设计实验电路图,列出所需元器件清单。
2. 搭建实验电路(1)按照实验电路图,连接电路元器件。
(2)检查电路连接是否正确,确保电路安全可靠。
3. 测试电路性能(1)使用示波器观察VCO的输出信号波形,记录频率、相位噪声等数据。
实验六丙类倍频器一、实验原理
倍频器的作用:将输入信号频率成整数倍增加。
使用倍频器的优点:
(1)能降低主振级频率,使其稳定工作。
(2)扩展发射机的工作波段。
(3)提高发射机工作稳定性。
构建仿真电路如下图:
三极管请按如下选取:
二、倍频特性实验
1、输出波形观察(请将输出波形截图粘贴如下)
输出波形的频率为Hz
2、傅里叶分析
将原理图中的信号源频率改为500KHz,谐振网络元件参数不变,使电路成为2倍频器,观察并记录输入与输出波形,并与丙类功放实验结果比较,说明什么问题?通过傅里叶分析,观察结果。
(提示:在单击“仿真”菜单中中“分析”选项下的“傅里叶分析”命令,在弹出的对话框中设置。
在“分析参数”标签页中的“基本频率”中设置基波频率与信号源频率相同,谐波数量中设置包括基波在内的谐波总数,“取样的停止时间”中设置停止取样时间,通常为毫秒级。
在输出变量页中设置输出节点变量)
请将傅里叶分析结果粘贴如下。
电子技术设计实践
--31倍频器学院:机械与电子工程学院
专业:电子科学与技术
班级:080631
姓名:刘颖华
学号:08063131
指导老师:管小明老师
2011年11月
一、实习目的
1.了解常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的电子器件图
书。
能够正确识别和选用常用的电子器件,并且能够熟练使用万用表。
2.熟悉手工焊锡的常用工具的使用及其维护与修理,基本掌握手工电烙铁的焊接技术。
4. 了解电子产品的焊接、调试与维修方法。
初步学习调试电子产品的方法,提高动手能力。
二、实习器材
1.电烙铁、焊锡丝
2.螺丝刀、镊子、钳子等必备工具
3.万用表
4.万能电路板1个、16脚芯片底座3个、8脚底座1个
5.CD4522芯片2个、CD4046芯片1个、555芯片1个、电阻、电容、二极管等
三、原理介绍
3.1倍频器电路图
T0
图1倍频器电路
3.2 CD4046芯片简介
锁相的意义是相位同步的自动控制,能够完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。
它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域。
锁相环主要由相位比较器(PC)、压控振荡器(VCO)。
低通滤波器三部分组成,如图1所示。
图2
压控振荡器的输出Uo接至相位比较器的一个输入端,其输出频率的高低由低通滤波器上建立起来的平均电压Ud大小决定。
施加于相位比较器另一个输入端的外部输入信号Ui与来自压控振荡器的输出信号Uo相比较,比较结果产生的误差输出电压UΨ正比于Ui和Uo两个信号的相位差,经过低通滤波器滤除高频分量后,得到一个平均值电压Ud。
这个平均值电压Ud朝着减小VCO输出频率和输入频率之差的方向变化,直至VCO输出频率和输入信号频率获得一致。
这时两个信号的频率相同,两相位差保持恒定(即同步)称作相位锁定。
当锁相环入锁时,它还具有“捕捉”信号的能力,VCO可在某一范围内自动跟踪输入信号的变化,如果输入信号频率在锁相环的捕捉范围内发生变化,锁相环能捕捉到输人信号频率,并强迫VCO锁定在这个频率上。
锁相环应用非常灵活,如果输入信号频率f1不等于VCO输出信号频率f2,而要求两者保持一定的关系,例如比例关系或差值关系,则可以在外部加入一个运算器,以满足不同工作的需要。
过去的锁相环多采用分立元件和模拟电路构成,现在常使用集成电路的锁相环,CD4046是通用的CMOS 锁相环集
成电路,其特点是电源电压范围宽(为3V -18V ),输入阻抗高(约100MΩ),动态功耗小,在中心频率f0为10kHz 下功耗仅为600μW ,属微功耗器件。
3.3 CD4046芯片引脚及引脚功能
图3是CD4046的引脚排列,采用 16 脚双列直插式。
图3 CD4046的引脚 各引脚功能如下:
引脚 引脚功能 引脚 引脚功能
1 相位输出端
9 压控振荡器的控制端 2 相位比较器Ⅰ的输出端 10
解调输出端,用于FM 解调
3 比较信号输入端 11、12 外接振荡电阻
4 压控振荡器输出端
13
相位比较器Ⅱ的输出端 5
禁止端,高电平时禁止,低电平时允许压控振荡器工作
14 信号输入端
6、7
外接振荡电容 15
内部独立的齐纳稳压管负极
3.4 CD4046芯片内部结构
图4 CD4046内部电原理框图
图4是CD4046内部电原理框图,主要由相位比较Ⅰ、Ⅱ、压控振荡器(VCO )、线性放大器、源跟随器、整形电路等部分构成。
比较器Ⅰ采用异或门结构,当两个输人端信号Ui 、Uo 的电平状态相异时(即一个高电平,一个为低电平),输出端信号UΨ为高电平;反之,Ui 、Uo 电平状态相同时(即两个均为高,或均为低电平),UΨ输出为低电平。
CD4046锁相环采用的是RC 型压控振荡器,必须外接电容C1和电阻R1作为充放电元件。
当PLL 对跟踪的输入信号的频率宽度有要求时还需要外接电阻R2。
由于VCO 是一个电流控制振荡器,对定时电容C1的充电电流与从9脚输入的控制电压成正比,使VCO 的振荡频率亦正比于该控制电压。
当VCO 控制电压为0时,其输出频率最低;当输入控制电压等于电源电压VDD 时,输出频率则线性地增大到最高输出频率。
VCO 振荡频率的范
8
、16 电源的负端和正端
围由R1、R2和C1决定。
CD4046内部还有线性放大器和整形电路,可将14脚输入的100mV左右的微弱输入信号变成方波或脉冲信号送至两相位比较器。
源跟踪器是增益为1的放大器,VCO的输出电压经源跟踪器至10脚作FM解调用。
齐纳二极管可单独使用,其稳压值为5V,若与TTL电路匹配时,可用作辅助电源。
综上所述,CD4046工作原理如下:输入信号Ui从14脚输入后,经放大器A1进行放大、整形后加到相位比较器Ⅰ、Ⅱ的输入端,图4开关K拨至2脚,则比较器Ⅰ将从3脚输入的比较信号Uo与输入信号Ui作相位比较,从相位比较器输出的误差电压UΨ则反映出两者的相位差。
UΨ经R3、R4及C2滤波后得到一控制电压Ud加至压控振荡器VCO的输入端9脚,调整VCO的振荡频率f2,使f2迅速逼近信号频率f1。
VCO的输出又经除法器再进入相位比较器Ⅰ,继续与Ui进行相位比较,最后使得f2=f1,两者的相位差为一定值,实现了相位锁定。
若开关K拨至13脚,则相位比较器Ⅱ工作,过程与上述相同,不再赘述。
四焊接与调试
1 焊接
按照原理图,先用555做一个周期为1秒左右的矩形脉冲波发生器,将脉冲输出连接560欧姆的电阻串联红色LED到地,以作为初级脉冲输出只是作用。
将两片4522并排放在一起,按照原理图连接各个管脚,第二片4522的CF 端连接到电源VDD。
焊接4046,连接脉冲发生器的输出信号和4522的输出信号,将输出信号串联560欧姆电阻和绿色LED作为输出指示。
到此焊接完成
2 调试,先调试脉冲电路,如果出现是指示灯一直亮,则查看4、8教是连接或者6脚时候接了电容。
用示波器查看两个脉冲的比例关系,前级脉冲是1.2Hz,后级输出为44.4Hz,器倍频关系式31倍,符合题目要求。
44Hz是人眼分辨不出来的,也不能察觉指
示灯在闪烁,我通过要换板子,可以很轻松的发现指示灯不连续亮,说明灯是在闪烁的。
3.电烙铁使用时的注意事项
(1)使用前,应认真检查烙铁电源插头、电源线有无损坏,并检查烙铁头是否松动。
(2)电烙铁使用中,不能用力敲击,要防止烙铁头跌落。
(3)烙铁头上焊锡过多时,可用布擦掉,不可乱甩,以免伤到皮肤和眼睛及烫伤他人。
(4)电烙铁通电后温度高达250℃以上,不用时应放在烙铁架上。
(5)如果较长时间不用应切断电源,防止高温“烧死”烙铁头(被氧化)。
另外,要防止电烙铁烫坏其他元器件,尤其是电源线,若其绝缘层被烙铁烧坏而不注意便容易引发安全事故。
(6)电烙铁使用结束后,应及时切断电源,拔下电源插头。
冷却后,再将电烙铁收回工具箱。
五总结
通过本次试验,进一步提高了自己的动手能力,同时对理论知识有了更深的了解,理论与实践相连接,收获颇多。
在实验的过程中也遇到了些许问题,在同学的帮助下都一一得以解决,最后感谢在实验过程中帮助他人的同学,同时感谢管老师,宋老师和万老师在整个实践过程中对我们的指导和帮助,谢谢!。