陀螺仪认识入门
- 格式:doc
- 大小:176.50 KB
- 文档页数:5
航空陀螺仪一、陀螺仪的基本知识陀螺玩具旋转时,能够直立在地上;而且转得愈快,立得也愈稳;即使给它一个冲击,也只是晃动而不会倒下。
陀螺的这种特性可以被利用来做成仪表用来测量飞机的姿态角、航向角和角速度。
航空陀螺仪表中的陀螺仪,是把绕自转轴(又叫转子轴)高速旋转的转子用框架支撑起来,使转子绕垂直于自转轴方向可以自由转动的这样一种装置。
图8.1表示的是,转子安装在内环和外环这两个框架中,转子可绕自转轴高速旋转,转子同内环可绕内环轴转动,转子同内环和外环还可绕外环轴转动这样支承起来的转子可以绕着垂直于自转轴的两根轴转动,这种装置称为三自由度陀螺仪。
若转子仅安装于内环中这样支承起来的转子只能绕着垂直于自转轴的一根轴转动这种装置称为二自由度陀螺仪。
三自由度陀螺仪的基本特性之一是稳定性(又叫定轴性)。
当转子高速旋转时,因具有很大的惯性,自转轴能够保持原来的方向稳定;无论基座怎样转动,自转轴所稳定的方向都将保持不变;同使受到冲击作用,自转轴也仅在原来的方位附近作一种高频微幅的振荡运动。
陀螺仪具有抵抗干扰作用而力图保持自转轴方向稳定的特性叫做螺仪的稳定性。
陀螺仪的又一基本特性是进动性。
当转子高速旋转时,若外力矩绕外环轴作用,陀螺仪将绕内环轴转动;若外力矩绕内环轴作用,陀螺仪将绕外环轴转动。
陀螺仪转动角速度方向与外力矩作用方向互相垂直的特性,叫做陀螺仪的进动性。
进动角速度的方向取决于转子动量矩H的方向(与转子自转角速度矢量的方向一致)和外力矩M的方向,可用右手定则确定。
进动角速度的大小取决于转子动量矩H的大小和外力矩M的大小,其计算式为 =M/H。
如果这种进动由陀螺仪中的干扰力矩引起,则叫做漂移,漂移角速度即漂移率是衡量各种陀螺仪表精度的最重要的指标。
至于二自由度陀螺仪的特性,就与三自由度陀螺仪不同。
二自由度陀螺仪少了垂直于内环轴和自转轴方向的转动自由度。
这样,当基座绕着这个缺少自由度的轴线转动时,通过内环轴上一对轴承的推动,就强迫陀螺仪跟随基座转动;与此同时,基座作用于内环两端轴承上的推力形成了推力矩将强迫陀螺绕内环轴进动,使自转轴趋于基座转动角速度的方向重合。
陀螺仪原理及YJTG构造和工作流程陀螺仪是一种常见的测量仪器,广泛应用于导航、航空航天、车辆控制等领域。
本文将介绍陀螺仪的原理以及一种常见的陀螺仪——YJTG的构造和工作流程。
一、陀螺仪原理陀螺仪基于陀螺效应工作原理,即陀螺在旋转时产生的稳定作用力。
陀螺仪通常由一个旋转的陀螺和一组传感器组成。
当陀螺仪受到外部力矩作用时,由于陀螺的旋转作用,会产生一个力矩与外部力矩相抵消,从而使得陀螺仪保持稳定。
陀螺仪可以检测到转动角速度,并将其转换为电信号输出。
通过测量陀螺仪输出信号的变化,可以确定陀螺仪所受的力矩大小和方向。
二、YJTG构造YJTG是一种常见的陀螺仪,其构造包括陀螺、控制系统和信号处理系统。
1. 陀螺YJTG的核心是陀螺部分,由一个旋转的陀螺产生稳定作用力。
陀螺通常采用石英陀螺或激光陀螺等形式,其中激光陀螺具有高精度和稳定性优势。
2. 控制系统YJTG的控制系统包括控制电路和电源。
控制电路用于控制陀螺的旋转速度,以保持陀螺的稳定性。
电源为整个系统提供能量。
3. 信号处理系统YJTG的信号处理系统主要负责将陀螺输出的旋转角速度信号转换为电信号,并进行滤波、放大等处理,以便后续的数据分析和应用。
三、YJTG工作流程YJTG的工作流程主要包括校准、数据采集和信号处理等步骤。
1. 校准YJTG在使用前需要进行校准,以保证其测量的准确性。
校准主要包括零偏校正和放大倍率校准两个步骤。
零偏校正是将陀螺在静止状态下的输出值归零,以消除误差;放大倍率校准是将陀螺的输出信号与已知角速度进行比较,调整放大倍率,以保证测量的准确性。
2. 数据采集YJTG在运行过程中会将陀螺旋转的角速度转换成电信号,并传送到计算机或其他设备进行数据采集。
数据采集主要包括对陀螺输出信号进行采样和量化等步骤。
3. 信号处理采集到的陀螺信号需要进行滤波、放大、数值计算等处理,以便后续的数据分析和应用。
滤波可以去除噪声,放大可以增强信号强度,数值计算可以得到具体的角速度数值。
陀螺仪知识整理与解析1、陀螺仪基础知识 (2)2、Question and answer (2)3、陀螺仪和加速度计的区别与联系 (3)4、常用芯片介绍 (3)1、陀螺仪基础知识陀螺仪:测量角速度,是角速度传感器。
时间积分后得到相对角度。
陀螺和加速度计是惯性器件,是用来测量相对惯性空间的角速度(或对于积分类型的陀螺来说是角增量)和加速度。
在三维空间中描述一个刚体运动要六轴,三轴加速度,三轴角速度。
测量角速度大部分芯片靠的是测量科特迪奥力,也就是让排水孔的水形成涡旋的力。
角速度跟角速率:速度是矢量、有方向。
而速率是标量,只有大小,帶有平均的意味。
如果采样点很快的話(dt趋于0),速度和速率的数值是一样的。
航模的陀螺仪全是角速度传感器,不管是高端还是低端。
mems陀螺仪积分很多时候造成零偏的主要原因应该是随机游走。
2、Question and answerQ:角速度传感器如果在它的测量轴上匀速转动输出是否为定值?A:是,不过首先要保证你是在匀速转动。
用过几种角速度传感器,发现匀速转动传感器,因为加了高通滤波,传感器输出的电平和静止时的电平一样,只有加速的时候电平才变动。
Q:如果在测量轴的某一位置静态输出为A,那么匀速转过45度后静止,那么此时输出是否为A?A:如果是静止测量,是如此的。
但由于频宽,通常信号有一点点滞后。
Q:用陀螺仪测角度的话,是不是对测出的角速度积分即可?网上看到有些资料说可以用陀螺仪和加速度传感器组合测角度,这种方法具体如何实现?A:理论上如此,但是由于bias、drift、scale和数值积分的误差,积分结果是会漂移的。
假设加速度计测量到重力加速度时,可以对陀螺仪校正角度,得到较为正确的结果。
但是sensor,bias、noise、scale 誤差是免不了的。
所以才將两组数据做“数据融合”,实际操作的方法很多,主流的比如“Kalman滤波”。
Q:为啥四轴要装加速度传感器和角速度传感器呢,位置传感器与角速度传感器有什么区别呢?A:物体在自由空间的运动是两种运动的组合:质心的平移+围绕质心的转动,因此,物体运动有6DOF,6个自由度:3个平移自由度+3个转动自由度。
平衡车⼊门---MPU6050陀螺仪学习MPU6050陀螺仪模块⼀、MPU6050简介:MPU6050是⼀款陀螺仪模块,不过这个模块可不简单,它可以测量X、Y、Z三轴的⾓速度和加速度,还带有温度传感器和数字运动处理器(DMP)。
假如我们要制作平衡车、四轴、空中⿏标,那么MPU6050就真的是派上⼤⽤场了。
⼆、学习MPU6050的步骤:1、学习I2C协议,因为MPU6050是通过I2C协议进⾏驱动的,配置寄存器和获取数据都需要通过I2C协议去实现单⽚机与MPU6050之间的通信,所以I2C协议必须学习。
2、了解MPU6050的相关寄存器,可以看中⽂⽂档MPU6050的datasheet,再配合MPU6050的驱动库函数,了解库函数为什么要这样配置MPU6050的寄存器。
3、把获取到的原始数据进⾏各种处理,如通过互补滤波融合得到⾓度。
要知道只有对原始数据进⾏处理才能够使⽤,才能发挥MPU6050的价值。
三、I2C协议简介:I2C协议是⼀种在单⽚机开发中⾮常常⽤的⼀个通信协议,它是通过数据总线SDA和时钟总线SCL去完成单⽚机与⼀些传感器模块的通信。
SCL和SDA线根据I2C的协议的标准进⾏⼀系列⾼低电平的变化(时序)就可以完成信息的传输。
I2C协议还分为硬件I2C和软件I2C,硬件I2C就是通过硬件电路去实现的I2C协议,软件I2C就是通过在单⽚机上找两个IO⼝去充当SCL和SDA线,再通过⼈为编写软件去控制SCL和SDA线的⾼低电平变化去模拟I2C协议。
两者的区别是硬件I2C使⽤起来⽐较简单,执⾏速度⽐较快,耗时短,但是毕竟是硬件电路,稳定性不⼀定好,容易出现⼀些奇怪的问题。
⽽软件I2C虽然是通过软件模拟的,执⾏速度不如硬件I2C快,有⼀定的耗时,不过稳定性就⽐硬件I2C好多了。
智能车我们⾮常注重稳定性,所以推荐⼤家还是⽤软件I2C。
四、MPU6050硬件介绍:我们先来认识下MPU6050的硬件,这是MPU6050模块的图⽚,注意是模块,中间那个才是MPU6050,不过只有MPU6050是不够的,它还需要⼀些外围电路才能正常⼯作,我们可以类⽐⼀下51单⽚机和51单⽚机的最⼩系统的区别。
陀螺仪基本操作方法陀螺仪是一种可以测量和检测物体角速度的设备,广泛应用于飞行器、导航设备、运动控制器和虚拟现实系统等领域。
正确操作和使用陀螺仪可以保证其测量结果的准确性和稳定性,以下是陀螺仪的基本操作方法:1. 放置和安装:在使用陀螺仪之前,首先应该选择一个稳定平整的表面放置陀螺仪。
确保陀螺仪的机械部分处于正常工作状态,并调整陀螺仪的位置和姿态,使其能够测量到所需的物体角速度。
2. 连接电源:将陀螺仪与电源连接,并根据陀螺仪的使用说明书来确定正确的电压和电源极性。
在连接电源之前,确保电压和电流能够满足陀螺仪的要求,以免损坏设备。
3. 校准:在使用陀螺仪之前,建议进行校准操作。
校准的目的是消除陀螺仪在安装和使用过程中可能引入的误差。
校准的方法和步骤可能因陀螺仪型号和制造商而有所不同,但通常包括静态校准和动态校准两种方式。
- 静态校准:将陀螺仪置于静止状态,通过设备菜单或按钮选择校准功能。
在校准过程中,陀螺仪会自动测量和记录当前的零偏值,并在测量过程中对其进行补偿,以提高测量精度。
- 动态校准:将陀螺仪固定在稳定的运动轨道上,通过设备菜单或按钮选择动态校准功能。
在校准过程中,陀螺仪会自动测量和记录在运动过程中产生的误差,并在测量过程中对其进行补偿,以提高测量精度。
4. 启动和停止测量:在校准完成后,可以启动陀螺仪进行测量。
通过设备按钮、软件界面或远程命令等方式启动陀螺仪的测量模式,开始记录物体的角速度。
在测量过程中,确保测量环境的稳定性,并尽量避免外界干扰,以保证测量结果的准确性。
- 启动测量:按下陀螺仪上的启动按钮或通过设备菜单等方式启动测量模式。
在启动之前,可以根据需求设置测量参数,如采样率、滤波器和输出格式等。
- 停止测量:按下陀螺仪上的停止按钮或通过设备菜单等方式停止测量模式。
在停止测量之后,可以导出或记录测量数据,并关闭设备以节省能源。
5. 数据处理和分析:陀螺仪测量得到的角速度数据可以进一步进行数据处理和分析。
4.1 陀螺仪概述鱼雷控制系统的任务是根据战术指标对鱼雷的运动参数加以控制,使其按所要求的规律进行变化。
要实现对精度控制,就需要对鱼雷运动参数进行高精度的完整测量,因此对鱼雷运动参数的测量就成了实现与控制的前提件的作用就是对鱼雷的运动参数进行测量。
通常用航向陀螺测量航向角ψ,用垂直陀螺或摆式加速度计测量水平用单自由度速率陀螺测量,用压力传感器测量深度。
基于惯性敏感元件和实时计算技术的捷联式惯提供包括速度和位置信息在内的完整的鱼雷运动参数,是惯性技术在鱼雷上应用的新发展。
本章以陀螺仪为主,和惯性导航技术的基本概念,惯性敏感元件和压力传感器的原理,以及这些敏感元件在鱼雷上的应用技术。
4-1 陀螺仪概述所谓陀螺,从力学的角度讲是指绕自己的对称轴高速旋转的对称物体。
一个高速旋转的物体具有很大的角动现出出乎人们预料的,也是十分有趣的运动现象。
这些特性被人们用来感测角运动,则产生了陀螺仪这种装置。
供实用的陀螺仪,人们进行了长期探索,使陀螺仪技术不断发展,应用领域也愈来愈广。
今天,陀螺技术已发展成一个综合性的尖端领域,陀螺仪的精度有了极大的提高,除了传统的框架支承转子出现了许多新型陀螺,如液浮陀螺、静电陀螺、挠性陀螺、激光陀螺、光纤陀螺等。
以陀螺为核心的稳定平台和迅速广泛应用。
鱼雷控制是最早实现陀螺仪工程应用的领域之一。
早在1879年,鱼雷发展的初期,俄国科学家阿·什帕科夫用陀螺仪来控制鱼雷运动方向的设想。
但由于当时技术水平的局限,直到1894年才出现了第一种实用的工程方压缩弹簧驱动的陀螺仪,由于能量的限制,这种陀螺仪只能稳定地工作3~。
在发明了气动陀螺仪之后,向控制趋于成熟。
现代鱼雷的大航程、高机动性和精确制导技术的发展给陀螺仪技术提供了一个前景广阔的应用领域。
现代鱼向要用陀螺测量外,制导精度的要求使得必须对鱼雷的横滚和俯仰角加以控制,因此需采用垂直陀螺或加速度计角。
为了改善控制系统的稳定性和动态性能,通常采用了单自由度速率陀螺仪引入角速率反馈。
陀螺仪工作基本原理管线探测一、陀螺仪工作原理概述1.1陀螺仪的定义陀螺仪是一种用来测量和保持空间方向的仪器,是惯性导航系统的核心部件之一。
它通过测量角速度来确定自身的旋转状态,从而能够提供准确的方向信息。
1.2陀螺仪的分类根据工作原理和结构形式,陀螺仪可以分为机械陀螺仪、光纤陀螺仪和微机电陀螺仪等多种类型。
1.3陀螺仪的应用领域陀螺仪广泛应用于航空航天、导航、地质勘探、卫星通信等领域,是现代科技发展中不可或缺的重要部分。
二、机械陀螺仪工作原理2.1机械陀螺仪的结构机械陀螺仪由转子、支撑部件和检测器组成,转子通常采用陀螺轮、陀螺环等形式,支撑部件用来支持转子的旋转,检测器用来测量转子的旋转角速度。
2.2机械陀螺仪的工作原理当机械陀螺仪受到外力作用时,转子会产生角动量,通过测量转子的旋转角速度来确定陀螺仪所受力的方向和大小,进而实现方向的测量。
三、光纤陀螺仪工作原理3.1光纤陀螺仪的结构光纤陀螺仪由激光器、分束器、光纤环、光探测器等部件组成,其工作原理是利用光的干涉效应来测量转动速度。
3.2光纤陀螺仪的工作原理当光纤陀螺仪受到旋转时,光纤环会产生相对位移,通过测量光路的相位变化来确定陀螺仪的旋转角速度,从而实现方向的测量。
四、微机电陀螺仪工作原理4.1微机电陀螺仪的结构微机电陀螺仪采用微小的机械结构和微型传感器,其结构包括加速度传感器和角速度传感器等部件。
4.2微机电陀螺仪的工作原理当微机电陀螺仪受到旋转时,传感器会产生相对位移,通过测量传感器的信号来确定陀螺仪的旋转角速度,从而实现方向的测量。
五、陀螺仪管线探测中的应用5.1陀螺仪在管线勘探中的重要性管线勘探是指对地下管线进行测绘、探测和定位的一种技术活动,陀螺仪作为测定方向和位置的重要仪器,在管线勘探中发挥着重要作用。
5.2陀螺仪在管线勘探中的应用场景在管线勘探中,陀螺仪可以用来测量管线的走向、坡度和深度等参数,并且能够实现对管道的定位和跟踪。
5.3陀螺仪在管线勘探中的优势相比传统的测量方法,陀螺仪具有高精度、不受环境影响、快速测量等优势,因此在管线勘探中得到了广泛应用。
谈谈对陀螺仪和加速度传感器的感性认识
前几天看到官网的新规则觉得很有意思看看自己帐号注册2年多了比赛也做了2届从论坛上下了大堆资料也没给论坛贡献什么有价值的东西实在惭愧啊正好自己以前捣鼓过一段时间四轴飞行器把当时收集的一些资料发上来大家共享下吧大部分取自网络还有一部分自己的思考重要的地方用红字标明了来自网络的都用蓝字标明本人才疏学浅论坛里藏龙卧虎有不对的还请大家指正新手看看全当一个感性认识。
由于时间太长就不标原文地址了大家搜搜都能搜到另外四轴飞控论坛上已经看到有人跑过去要7260 和EN—03的资料了嘿嘿数据手册其实很好找的相关资料也很多的大家多多利用搜索引擎
啊
加速度传感器测的是什么?
我觉得很多时候大家都被它的名字给误导了我觉得准确的来说它测的不是加速度至少对于mma7260这类的片子它检测的是它受到的惯性力(包括重力!重力也是惯性力)。
那又有人要问了 F=ma 惯性力不就是加速度么?差矣加速度传感器实际上是用MEMS 技术检测惯性力造成的微小形变注意检测的是微小形变所以你把加速度传感器水平静止放在桌子上它的Z轴输出的是1g的加速度因为它Z轴方向被重力向下拉出了一个形变可是你绝对不会认为它在以1g的加速度往下落吧你如果让它做自由落体它的Z轴输出应该是0 给个形象的说法可以把它看成是一块弹弹胶它检测的就是自己在三个方向被外力作用造成的形变。
从刚才的分析可以发现重力这个东西实际是个很恶心的东西它能隔空打牛,在不产生加速度的情况下对加速度传感器造成形变,在产生加速度的时候不造成形变,而其他力都做不到。
可惜的是,加速度传感器不会区分重力加速度与外力加
速度。
所以,当系统在三维空间做变速运动时,它的输出就不正确了或者说它的输出不能表明物体的姿态和运动状态举个例子当一个物体在空间做自由落体时在X轴受到一个外力作用产生g的加速度这时候x y z 轴的输出分别是 g,0,0 如果这个物体被x轴朝下静止放在水平面上它x y z 轴的输出也分别是 g,0,0 所以说只靠加速度传感器
来估计自己的姿态是很危险而不可取的
加速度传感器有什么用?
加速度计,可以测量加速度,包括重力加速度,于是在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与刚才所说的R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也
就是横滚角和俯仰角计算公示如下俯仰角
横滚角
陀螺仪测的是什么?
陀螺仪可以测量角速度,具有高动态特性,但是它是一个间接测量器件,它测量的是角度的导数,角速度,显然我们要将角速度对时间积分才能得到角度看到积分我想敏感的同学马上就能发现一个致命的问题积分误差
积分误差的来源主要有两个一个是积分时间积分时间Dt越小,输出角度越准一个是器件本身的误差假设陀螺仪固定不动,理想角速度值是0dps(degree per second),但是有一个偏置0.1dps加在上面,于是测量出来是0.1dps,积分一秒之后,得到的角度是0.1度,1分钟之后是6度,还能忍受,一小时之后是360度,转了一圈所以说陀螺仪
在短时间内有很大的参考价值
陀螺仪另外一个问题是它的测量基准是自身,并没有系统外的绝对参照物重力轴是个绝好的参照物因此需要陀螺仪和加速度传感器的配合使用如果要测偏航角YAW 还需要电子罗盘感知地磁方向给出水平方向的绝对参考(当然这个在智能车上不存在
吧······——!)
陀螺仪和加速度传感器的融合
除了给出绝对参考系陀螺仪和加速度传感器相互融合使用的最重要的原因是:
综合考虑,加速度计是极易受外部干扰的传感器,但是测量值随时间的变化相对较小。
陀螺仪可以积分得到角度关系,动态性能好,受外部干扰小,但测量值随时间变化比较大。
可以看出,它们优缺点互补,结合起来才能有好的效果
用通俗点的话来说就是无论工作多久加速度传感器如果没收到外部干扰它测的就一定是准的!陀螺仪虽不会受到外部干扰可是时间长了由于积分误差累计它的
值就全错了!
所以两个数据融合的方法就是设计算法在短时间尺度内增加陀螺仪的权值,在
更长时间尺度内增加加速度权值,这样系统输出角度就更真实了
再通俗点说就是隔一段时间用加速度传感器的值修正一下陀螺仪的积分误差然后在隔
的这段时间内用陀螺仪本身的角度积分
其实MK四轴的平衡算法也是这样,首先对陀螺仪做PI运算,其中I的真正含义
就是积分反演角度
有了陀螺仪PI算法,四轴就有了瞬时增稳,就可以遥控飞了,但是它不会永远水平
由于累积误差的作用,很快中立点就不是水平位置了,这时候就需要用加速度不断的纠正
陀螺仪积分误差。
你可以看到MK算法中有根据加速度方向不断把积分量I递减清零的代码,就是这个融合算
法的核心了
MK立足于一个高级航模玩具,为了在低成本8位单片机上运行,不去显式的计算姿态角,
只把校正后的PI值输出负反馈控制电机了
这样的好处是基本上只用整型算法就能完成运算,而要显式的计算姿态角,更专业的做法
就是KALMAN滤波显式求解姿态
卡曼滤波也是在对历史数据积分,并且可以同步融合陀螺仪与加速度数据,陀螺仪与加速
度贡献权值还可以通过滤波参数调整
所以它就成了惯性数据处理的经典算法,他的缺点是浮点运算量较大,对系统资源要求较
高
至于具体的KALMAN滤波算法网上大把大把的这里就不多赘述了
总结一下就是:
PITCH/ROLL角速度积分->PITCH/ROLL姿态角,再结合加速度纠正累积误差
发两张四轴论坛上feng_matrix大侠发的两张图。