弹塑性力学题目
- 格式:pdf
- 大小:189.48 KB
- 文档页数:2
弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。
( ) (2)可用矩阵描述的物理量,均可采用张量形式表述。
( ) (3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
( ) (4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
()(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么, 由()y x ,ϕ确定的应力分量必然满足平衡微分方程。
() (6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
( ) (7)Drucker 假设适合于任何性质的材料。
( ) (8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
( ) (9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。
(4)π平面上的一点对应于应力的失量的______________________。
P65 (5)随动强化后继屈服面的主要特征为:___________________________________________。
弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
第二章应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy ,τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x=γ1y ;T y =0 则σx =-γ1y ;τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a=0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cossinx xy yxy………………………………(a )将己知条件:σx=-γ1y ;τxy =-dx ;σy =cx+dy-γy代入(a )式得:1cossin 0cossin0y dx bdx cxdyy cL L L L L L L L L L L L L L L L L L化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1ctg 3β2—17.己知一点处的应力张量为312606100100Pa试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103σy =10×103 τxy =6×103,且该点的主应力可由下式求得:222231.2333312101210610222217.0831011371011 6.0828104.9172410xyxyxyPa则显然:3312317.08310 4.917100Pa Paσ1 与x 轴正向的夹角为:(按材力公式计算)22612sin 22612102cos2xy xytg 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°xO γyβBA n βγ1y则:θ=+40.2688B 40°16'或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学练习题1、已知简单拉伸时的应力-应变曲线如图所示,(1)试导出当采用刚塑性模型时的应力-应变关系表达式(2)如采用等向强化模型,区服条件()0σψξ-=,这里内变量pp pd εξωσε==⎰。
试导出()ψξ的表达式。
2、 试导出平面应变条件的Mises 区服条件和Tresca 区服条件的具体表达式。
3、设材料的屈服条件为{}1233max ,,s s s k =,其中(1,2,3)i s i =为主偏应力。
试由简单拉伸试验确定3k 。
4、什么是Drucker 公设?试用Drucker 公设论述加载面的外凸性及正交流动法则。
5、试从弹性力学平面问题基本方程出发,推导平面直角坐标系中按应力求解的基本方程。
6、 试推导平面极坐标系中的平衡微分方程。
7、已知厚壁圆筒内径为a ,外径为b ,受均匀内压p 作用,体力不计。
(1)试导出圆筒内应力的弹性解答。
(2)若材料为服从Mises 屈服准则的理想弹塑性材料,简单拉伸屈服应力为s σ。
试导出塑性区半径ρ与内压p 之间的关系,并计算弹、塑性区的应力。
8、设某点应力张量ijσ的分量值已知,求作用在过此点平面ax by cz d ++=上的应力矢量(,,)n nx ny nz p p p p ,并求该应力矢量的法向分量n σ。
9、为了使幂强化应力-应变曲线在s εε≤时能满足虎克定律,建议采用以下应力-应变关系:()()()00s ms E B εεεσεεεε⎧≤≤⎪=⎨-≤⎪⎩ 为保证σ及d d σε在s εε=处连续,试确定B 、0ε值。
10、 设123S S S 、、为主偏应力,试证明用主偏应力表示Mises 屈服条件时,其形式为:()22212332s S S S σ++= 11、 设J 2为应力偏量的第二不变量,计算 ∂J2∂σij。
12、 函数 (x,y )=ax 3y 3+bxy 5+cx 3y 如作为应力函数,各系数之间应满足什么关系?为什么?13、 按应力求解弹性力学平面问题时,应力分量应满足的基本方程是什么?试验证下列应力分量在体力不计时是否可能发生? 23326,2,46Axy Ay Ay y Ax xy y x -==-=τσσ 其中,A 为非零常数。
复习题一、选择题01.受力物体内一点处于空间应力状态(根据oxyz 坐标系),一般确定一点应力状态需( )独立的应力分量。
A .18个;B .9个;C .6个;D .2个;02.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小( )。
A .一般不等于零;B .等于极大值;C .等于极小值;D .必定等于零 ;03.一点应力状态主应力作用截面和主剪应力作用截面间的夹角为( )。
A .π/2;B .π/4;C .π/6;D .π;04.正八面体单元微截面上的正应力σ8为:( )。
A .零;B .任意值;C .平均应力;D .极值;05.从应力的基本概念上讲,应力本质上是( )。
A .集中力;B .分布力;C .外力;D .内力;06.若研究物体的变形,必须分析物体内各点的( )。
A .线位移;B .角位移;C .刚性位移;D .变形位移;07.若物体内有位移u 、v 、w (u 、v 、w 分别为物体内一点位置坐标的函数),则该物体( )。
A .一定产生变形;B .不一定产生变形;C .不可能产生变形;D .一定有平动位移;08.弹塑性力学中的几何方程一般是指联系( )的关系式。
A .应力分量与应变分量;B .面力分量与应力分量;C .应变分量与位移分量;D .位移分量和体力分量;09.当受力物体内一点的应变状态确定后,一般情况下该点必有且只有三个主应变。
求解主应变的方程可得出三个根。
这三个根一定是( )。
A .实数根;B .实根或虚根;C .大于零的根;D .小于零的根;10.固体材料受力产生了塑性变形。
此变形过程( )。
A .必定要消耗能量;B .必定是可逆的过程;C .不一定要消耗能量;D .材料必定会强化;11.理想弹塑性模型, 这一力学模型抓住了( )的主要特征。
A .脆性材料;B .金属材料;C .岩土材料;D .韧性材料;12.幂强化力学模型的数学表达式为σ=A εn ,当指数n=1时,该力学模型即为( )。
弹塑性力学简答题1、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?2、对于各向同性弹性材料,应用广义胡克定律说明应力主轴与应变主轴重合。
3、泊松比是否可以大于0.5?大于0.5会导致什么结果?4、弹性力学平面问题中物体内的应力分布是否与其弹性常数有关?试根据问题求解的基本方程和边界条件加以说明。
5、虚位移原理等价于哪两个方程?它在塑性力学中能否成立,为什么?6、什么是正交流动法则?他是在什么假定下导出的?7、什么是硬化?什么是等向硬化?8、对于理想弹塑性体,试说明极限状态和极限荷载的概念。
9、全量(变形)理论在什么情况下与增量(流动)理论一致。
10、一混凝土矩形薄板,长边方向为y,短边方向为x,受均布荷载,试问哪个方向的配筋量应该大些?为什么?11、偏应力第二不变量的物理意义是什么?12、什么是比例加载?什么是比例变形?13、求解弹塑性力学问题的应力法能应用于求解其中的位移边界条件问题吗?为什么?14、物体在一定的外力作用下,位于稳定平衡状态,试想它的每一点都产生微小的位移,在这个微小位移上外力所做功和内力所做功哪个大?为什么?15、说明为什么弹性模量必须大于零。
16、什么是超弹性材料?超弹性材料的特点是什么?它的应力、应变和应变能之间的关系如何?17、什么是Mises应力?为什么要这样定义?18、理想弹塑性体内塑性区的变形是否总是协调的吗?为什么?19、对于各向同性超弹性体,其应变能是应力的三个不变量的函数,据此说明在线性弹性情况下独立的弹性常数只有两个。
20、与Ritz法相比,有限元方法的优点主要有哪些?21、物体稳定的充分条件如何用应力增量和应变增量表示?并说明对于线弹性体该条件室恒满足的。
22、用简单的位错模型说明为什么金属材料的屈服条件可以假定与静水压力无关。
23、理想塑性材料本构的塑形因子是通过什么来确定的?24、以Mises材料为例,试说明如何根据试验确定加载面的演化方程。
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
研究生弹塑性考试试题1. 简答题:(每小题2分)(1) 弹性本构关系和塑性本构关系的各自主要特点是什么?(2) 偏应力第二不变量J 2的物理意义是什么?(3) 虚位移原理是否适用于塑性力学问题?为什么?(4) 塑性内变量是否可以减小?为什么?(5) Tresca 屈服条件和Mises 屈服条件是否适用于岩土材料?为什么?(6) 解释:在应力空间中为什么应力状态不能位于加载面之外?(7) π平面上的点所代表的应力状态有何特点?(8) 举例说明屈服条件为各向同性的物理含义?2. 岩土材料若服从Drucker-Prager 屈服条件,试使用关联流动法则求塑性体积应变增量的表达式?(8分)3. 试确定下面的平面应变状态是否存在?(6分)εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数4. 正方形薄板三边固定,另一边承受法向压力b x p p π-=sin0,如图所示,设位移函数为 0=u by b x a v 2sin sin 2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。
(15分)y xabA BC O(第4题图) (第5题图)5. 如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。
板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。
试证,为了将薄板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。
并求挠度和反力。
(15分)6. 如图所示矩形截面梁受三角形分布荷载作用,试检验应力函数ϕ=Ax 3y 3+Bxy 5+Cx 3y +Dxy 3+Ex 3+Fxy能否成立。
若能成立求出应力分量。
(15分)(第6题图)7.8. 一材料质点处在平面应变状态下(εz =0),若假定材料的弹性变形相对其塑性变形较小可忽略,应力应变关系服从Levy-Mises 增量理论,即d εij =d λs ij ,且材料体积是不可压缩的,试证明σz =21(σx +σy ) 进一步证明在此情况下,Tresca 屈服条件和Mises 屈服条件重合。
弹塑性力学试题
考试时间:2小时
考试形式:笔试,开卷
一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。
每小
题3分,共21分)
1.应力状态不变量与坐标系的选取有关。
()
2.若受力物体中取出的微元体处于平衡状态,则整个物体也处于平衡状态。
()
3.在与三个应力主轴成相同角度的斜面上,正应力3/)(321σσσσ++=N 。
(
)4.弹性力学物理方程利用了连续性、线弹性、各向同性三个假设条件。
(
)
5.塑性力学假设屈服准则与静水压力无关。
(
)6.平面问题中应力函数ϕ的量纲为[FL]。
()7.Ritz 法和Galerkin 法解薄板小挠度弯曲问题时,都设∑=m m m w C
w ,但Ritz 法中m w 必
须满足全部边界条件,Galerkin 法中m w 只需满足几何边界条件。
(
)二﹑填空及简答题(填空每小题3分,共24分)
1.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是(
)。
2.空间问题物理方程:e G y y λεσ+=2,式中λ称为(
),其值为(),e 称为(),其值为()。
3.图示弹性体(平面问题)边界12
在极坐标系中的应力边界条件为()。
4.简述求解薄板小挠度弯曲问题的思路。
(5分)
5.简述弹性力学中逆解法和半逆解法成立所依据的原理。
(5分)
6.弹性力学空间问题,物体内任一点有6个应力、6个应变、3个位移共15个未知函数,弹性力学从哪些方面来建立这些未知函数之间的关系?(5分)
1o 301q 2q x
y
243
三﹑计算题(共55分)
1.试求平面应变问题的Tresca 屈服条件的表达式。
(8分)
2.一圆环内半径为a ,外半径为b 。
在极坐标系中设函数2
21ln r C r C +=ϕ,式中C 1,C 2均为常数。
1)ϕ是否可作为应力函数?2)写出应力分量表达式。
3)内外边界上对应着怎样的边界条件?(10分)
3.图示矩形薄板,边长分别为a ,b ,取挠度222222)4/()4/(b y a x C w --=,(C 为常数),
试求:
(1)板面上的荷载),(y x q ;
(2)板内的最大弯矩()()max max y x M M 、;
(3)矩形薄板所应满足的边界条件。
(12分)
4.圆形薄板,半径为a ,边界简支,在上板面中心受集中荷载P 作用,下板面中心有一刚度为k 的弹簧弹性支承,求挠度w 及内力r M 、θM 。
(10分)
5.一均质空心厚壁圆筒内外半径分别为a 和b ,受内压q 作用,该圆筒由不可压缩的理想材料制成,处于平面应变状态,q 增加时满足简单加载定理,本构方程为3εσA =(A 为常数),求应力分布θσσ,r 。
(15分)。