微生物基因组denovo测序分析流程

  • 格式:doc
  • 大小:1004.00 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#流程大放送#微生物基因组Denovo测序分析

知因无限

一介绍

微生物基因组De novo测序分析也叫微生物基因组从头测序分析,指不依赖于任何参考序列信息就可对某个微生物进行分析的测序分析技术,用生物信息学的方法进行序列拼接获得该物种的基因组序列图谱,然后进行注释等后续一系列的分析。微生物Denovo基因组测序及分析技术可以应用于医药卫生等领域。

二技术应用领域

1、基因组图谱的系统性构建

例子:过去几个月,肠病毒D68令数百名美国儿童患病。华盛顿大学的研究人员测序和分析了肠病毒D68(EV-D68)的基因组,这一成果将发表在新一期的Emerging Infectious Diseases杂志上。(Genome Sequence of Enterovirus D68 from St. Louis, Missouri, USA)肠病毒D68(EV-D68)能在儿童中引起严重的呼吸道疾病。其基因组序列可以“帮助人们开发更好的诊断测试,”共同作者Gregory Storch说。“有助于解释病毒感染为什么会造成严重的疾病,以及EV-D68为什么比过去传播得更广。”(来自于生物通的报道)

2、微生物致病性和耐药性位点检测及相关基因功能研究

例子:根据分泌蛋白、毒力因子、致病岛、必需基因等结果去探讨所测物种致病性和耐药性。

3、微生物的比较基因组分析,确定各个近缘微生物中的系统发育关系

二基本分析流程图

三可能的结果展示图

示例图1 微生物基因组的功能注释

示例图2 微生物基因组的系统进化关系

注:以上图片和文字来自参考文献21。

六参考文献

[1] Hong-Bin Shen, and Kuo-Chen Chou, "Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites", Journal of Biomolecular Structure & Dynamics, 2010, 28: 175-86.

[2]Hong-Bin Shen and Kuo-Chen Chou, "Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells.", Biopolymers. 2007, 85, 233-240.

[3] Ren Zhang and Yan Lin, (2009) DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Research 37, D455-D458.

[4] The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007 May 23;8(1):172.

[5] The Pfam protein families database: M. Punta, P.C. Coggill, R.Y. Eberhardt, J. Mistry, J. Tate,

C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E.L.L. Sonnhammer, S.R. Eddy, A. Bateman, R.

D. Finn Nucleic Acids Research (2014) Database Issue 42:D222-D230.

[6] Clustal W and Clustal X version 2.0.(2007 Nov 01) Bioinformatics (Oxford, England) 23 (21) :2947-8.PMID: 17846036.

[7] Felsenstein, J. 2004. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.

[8] Li et al (2010). De novo assembly of human genomes with massively parallel short read

sequencing. Genome Res vol. 20 (2).

[9] Li et al (2008). SOAP: short oligonucleotide alignment program. Bioinformatics Vol. 24 no.5 2008.

[10] A.L. Delcher, D. Harmon, S. Kasif, O. White, and S.L. Salzberg (1999) Improved microbial gene identification with GLIMMER, Nucleic Acids Research 27:23 4636-4641.

[11] S. Salzberg, A. Delcher, S. Kasif, and O. White (1998) Microbial gene identification using interpolated Markov models, Nucleic Acids Research 26:2, 544-548.

[12] Delcher AL, Bratke KA Powe,rs EC,et al(2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics,23(6):673-679.

[13]G. Benson(1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, Vol. 27, No. 2, pp. 573-580.

[14] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004). The KEGG resource for deciphering the genome. Nucleic Acids Res 32 (Database issue): D277–80.

[15] Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. (2006). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue): D354–7.

[16] Tatusov RL, Koonin EV, Lipman DJ(1997). A genomic perspective on protein families. Science. Oct 24;278(5338):631-7.

[17] Tatusov RL, Fedorova ND et al.(2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics. Sep 11;4:41.

[18] Magrane, M. and UniProt Consortium (2011) UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) , bar009.

[19] Bard J, Winter R (2000). Gene Ontology:tool for the unification of biology. Nat Genet. 25:25-29.

[20] ZODOBNOV.E.M,APWEILER.R.InterProScan—an intergration plaftorm forthe signature recognition methods in InterPro[J].Bioinform atics,2001,17(9):847-848.[21] Van den Bogert B1, Boekhorst J2, Herrmann R1, Smid EJ3, Zoetendal EG1, Kleerebezem M4. Comparative genomics analysis of Streptococcus isolates from the human small intestine reveals their adaptation to a highly dynamic ecosystem. PLoS One. 2013 Dec 30;8(12):e83418.